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(QGP) at high temperature, and a “semi”-QGP in be-
tween [31, 32, 33, 34]. Physically, there is no ionization of
color in the confined phase, total ionization in the com-
plete QGP, and only partial ionization in the semi-QGP
[34]. (While we discuss a purely gluonic plasma, we adopt
the common term QGP.)

The principal thrust of this paper is that from indirect
measurements on the lattice, we suggest that the width
of the semi-QGP is much narrower than indicated by
present results for the renormalized Polyakov loop: not
up to ⇥ 4.0 Tc, but only ⇥ 1.2 Tc. We do not understand
this discrepancy in detail, but suggest a possible reason
later. This discrepancy is the reason why, having fit the
parameters of our model from the pressure, we compute
both the ’t Hooft loop and gluon masses.

While we treat the pure glue theory, our model can
be extended to QCD, with dynamical quarks [17]. It is
reasonable to assume that in QCD, the semi-QGP is like
that of the pure glue theory, relatively narrow. We thus
conclude by discussing the possible phenomenological im-
plications of our results for heavy ion collisions.

How confinement arises in our model can be under-
stood by analogy. For a bosonic field, with energy E and
chemical potential µ, the Bose-Einstein statistical distri-
bution function is

n(E, q) =
1

e(E�µ)/T � 1
=

1
eE/T�2⇥iq � 1

. (1)

Instead of taking µ to be real, as in ordinary thermody-
namical systems, for the purposes of the analogy we take
it to be purely imaginary, and define µ = 2⇤T i q, where
q is real.

Doing so, n(E, q) is clearly a periodic function of q,
invariant under q ⇤ q + 1. Thus we can choose to define
q to lie within the range from � 1

2 to + 1
2 .

Now assume that we integrate over q, with a distri-
bution which is flat in q. Expand for large energy, so
that the first term is the Boltzmann statistical distribu-
tion function. Given the assumed distribution in q, the
integral of this term vanishes,

e�E/T

⌥ +1/2

�1/2
e2⇥iq dq = 0 . (2)

Indeed, we can expand the Bose-Einstein distribution
function term by term in powers of Boltzmann factors,
e�E/T+2⇥iq [13]; doing so, the integral over each and ev-
ery term obviously vanishes. The same is true for the
Fermi-Dirac distribution function as well.

Thus a flat distribution in q represents the confined
phase. To represent a phase with partial deconfinement,
one integrates over a limited region, say q : �q0 ⇤ +q0,
with q0 < 1

2 . Complete deconfinement occurs when one
integrates over a distribution which is a delta-function in
q.

This example appears somewhat artificial. For a given
q, the statistical distribution functions are complex val-
ued, and so only integrals over q can possibly represent

physical quantities. Indeed, the grand canonical ensem-
ble is characterized by a fixed value for the chemical po-
tential, and not by an integral over µ’s.

Nevertheless, precisely this mechanism arises for the
deconfining phase transition in a SU(N) gauge theory.
Consider the expansion about a background field for the
time-like component of the vector potential,

�
Acl

0

⇥
ab

=
2⇤T

g
qa �ab ; (3)

a and b are colors indices, running from 1 . . . N . For
nonzero qa’s, this background field acts like an imaginary
chemical potential for the diagonal elements of the gauge
group. Integration over the qa’s arises from imposing
Gauss’ law for those elements of the gauge group [19].

This background field generates a non-trivial expecta-
tion for the Polyakov loop, ✏, which is the color trace of
the thermal Wilson line, L:

✏ =
1
N

trL ; L = P exp

⇤
ig

⌥ 1/T

0
A0 d⌅

⌅
; (4)

P represents path ordering, T is the temperature, and ⌅
the imaginary time, ⌅ : 0⇤ 1/T .

The lattice demonstrates that near Tc, the expectation
value of the Polyakov loop is not near one, and decreases
as the temperature does. In such a region, the eigenvalues
of the logarithm of the thermal Wilson line are nonzero.
Taking an ansatz such as Eq. (3) is the simplest possible
way to model this. We do not attempt to derive the
distribution of these eigenvalues, but to guess that from
lattice results.

Since the gauge potential A0 is an element of SU(N),⇧N
a=1 qa = 0, modulo one, there are N � 1 independent

qa’s. At infinite N , the qa’s form a continuum, and the
example of Eq. (1) is exact; see, e.g., computations on
a femtosphere at N = ⌅ [13]. For two colors, we can
choose the eigenvalues to be q1 = �q2; for three, q1 =
�q2, and q3 = 0.

In the presence of the background field of Eq. (3),
a potential for the qa’s is generated at one loop order
[18, 19, 20, 21, 22],

Vpt(qa) =
2⇤2T 4

3

N⌃

a,b=1

q2
ab (1� |qab|)2� (N2�1)

⇤2T 4

45
.

(5)
where qab = qa � qb, defined modulo one. The minimum
is at qa = 0, where �Vpt(0) is the pressure for an ideal
gas of gluons.

The potential Vpt(qa) enters in computations of the ’t
Hooft loop. It is useful to consider deconfinement as a
type of spin system. A pure SU(N) gauge theory has
N degenerate vacua, where the thermal Wilson line L
equals one of the N roots of unity,

L = e2⇥ij/N 1 , (6)

Polyakov Loop
秩序変数

重たい粒子の1粒子のfree energy
� =

1
Nc

�trL� � e�fq/T fq =�� � = 0
fq = finte� � �= 0

閉じ込め

非閉じ込め

Z(N)対称性 U(�) = e2i�n/NcU(0), U � SU(Nc)

L� U(�)LU†(0) �� e2i�n/Nc�

この変換で作用は不変.

Polyakov Loopは不変でない．⇒秩序変数



Lattice (pure glue, Nc=3)
Polyakov Loop from Lattice: pure Glue, no Quarks

Lattice: (renormalized) Polyakov loop.  Strict order parameter
Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.
Suggests wide transition region, like pressure, to ~ 4 Tc.
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Lattice: SU(N) thermodynamics

Lattice: SU(N) thermodynamics ≈ independent of N
SU(N) gauge theories without quarks, temperature T ≠ 0
Scaled by ideal gas, energy “e” and pressure “p” approximately independent of N.  
e and p ≈ 0 below Tc: ~ N2 - 1 gluons above Tc, vs ~ 1 hadrons below.
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Lattice: SU(N) thermodynamics ≈ independent of N
SU(N) gauge theories without quarks, temperature T ≠ 0
Scaled by ideal gas, energy “e” and pressure “p” approximately independent of N.  
e and p ≈ 0 below Tc: ~ N2 - 1 gluons above Tc, vs ~ 1 hadrons below.
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Lattice: peak in conformal anomaly
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (latent heat ~ N2)
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Lattice: peak in conformal anomaly
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (latent heat ~ N2)
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非閉じ込め相転移を記述する模型
Lの固有値を SU(Nc)よりとする. 

摂動項 (Weiss potential)

Vpert(qa) =
2�2T 4

3

Nc�

a,b

q2
ab(1� qab)2 � (N2

c � 1)
�2T 4

45

非摂動項
Vnon(qa) = T 2T 2

c

Nc�

a,b

(c1qab(1� qab) + c2q
2
ab(1� qab)2 + c3)

�

�qb
V (qa) = 0 p(T ) = �Ve�(�qa�)

Ve�(qa) = Vpert(qa) + Vnon(qa)

e2i�Tqa

Nc�

a=1

qa = 0



N>2の時，3次の項が存在⇒1次相転移を引き起こす.

VN (�) = �m2|�|2 + c4|�|4 + cN (�N + ��N ) + · · ·
Loop model

N=3以外では，３次の項は無い．
c.f. Svetisky and Yaffe ’80

有効ポテンシャル

Ṽ(�, t) = �1
2
m2

��2 �
�

1� 4
N2

�
�3 +

�
2� 3

N2

�
�4

Ve� =
�2(N2

c � 1)T 4
c

45
t2(t2 � 1)Ṽ(�, t)

t =
T

Tc
m2

� = 1 +
6

N2
c

� c1

t2 � c2
� = 1� q

Nc



Lattice vs 0- and 1- parameter matrix models, N = 3
Results for N=3 similar to N=2.
0-parameter model way off.
Good fit e-3p/T4 for 1-parameter model, 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.  

c1 = 0.32 , c2 = 0.83 , c3 = 1.13
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Polyakov loop: matrix models ≠ lattice
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Interface tension(’t Hooft loop)

T/Tc

5

corrections ⇤ g2 are large, ⇤ 50%, our results should be
considered as tentative.

Besides the ’t Hooft loop, which is an interface ten-
sion for an order-order interface at T ⇥ Tc, the interface
tension for the order-disorder interface, at Tc, is also com-
putable in our model. This only exists for a first order
transition; for three colors,

⇥dis = 0.0258012
T 2

c⇧
g2

. (11)

It is necessary to compute the corrections ⇤ g2 before
comparing to lattice data, though.

The parameters for three colors, Eq. (8), and two col-
ors, Eq. (9), are similar; the di⇥erence is commensurate
with a dependence on ⇤ 1/N2, with the coe⇧cient of
order one. We have then assumed that the parameters
for three colors are close to those for higher N . We find
reasonable agreement for the interaction measure to lat-
tice results [16]. When N ⇥ 4, there is more than one
’t Hooft loop. Lattice simulations find that they obey
Casimir scaling to good approximation [24]. We have not
checked this explicitly, but suspect that in our model, ’t
Hooft loops respect Casimir scaling.

The most novel prediction of our model is that there
is a Higgs e⇥ect in the semi-QGP. This was noted first
in Ref. [33], and in theories at a femtoscale [12]. To
understand it, consider the quantum fluctuations about
the background field of Eq. (3):

�
(Aqu

0 )ab (✓x) (Aqu
0 )ba (0)

⇥
⇤

⌅
d3p

(2�)3
ei�p·�x

+⇤⇤

n=�⇤
�00

(12)
where �00 is the quantum propagator

�00 =
e�ip0�

(✓p )2 + p2
0 + m2

D(q)
; p0 = 2�T (n + qa � qb) .

(13)
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FIG. 3: The ’t Hooft loop for SU(3) pure gauge theory: lattice
data from Ref. [24], and GKA, Giovannangeli and Korthals
Altes, Ref. [21], the semi-classical computation in the com-
plete QGP, including corrections of ⇥ g2. In our model we
show results for two and three colors, assuming that the cor-
rections of ⇥ g2 are identical in the complete and semi-QGP;
see text.

The shift in the energy, p0 = 2�Tn⌅ 2�T (n+qa�qb), is
because we are expanding about a background field. The
background field Acl

0 acts upon quantum fluctuations like
an adjoint Higgs field. Because the field is diagonal in
color, Eq. (3), diagonal fields do not feel the background
field. Thus for diagonal fields, the only mass they develop
is the Debye mass, mD. This is of order ⇤ gT times a
function of the qa’s [34]. In contrast, o⇥ diagonal fields
have non-trivial commutators with a diagonal field, and
so they develop “masses” which are large, ⇤ 2�T (n +
qa � qb).

We illustrate this in Fig. (4) for three colors. The
masses of the two diagonal gluons are equal, and decrease
as T ⌅ T+

c . There are two types of o⇥-diagonal gluons:
four with |a � b| = 1, and two with |a � b| = 2. The
splitting of the masses is evident only close to Tc, for
T < 1.2 Tc.

We do not plot lattice data, because it is somewhat
contradictory. Lattice measurements of a gauge invariant
quantity, the two point function between Polyakov loops,
shows that the associated mass decreases as T ⌅ T+

c [15].
In contrast, the two point function of gluons indicate that
the gauge dependent mass increases as T ⌅ T+

c [27].
Clearly it would be best to reanalyze the lattice data
with a Higgsed propagator in the e⇥ective theory, Eq.
(13), with its characteristic combination of modes whose
masses both increase and decrease.

The static, spatial gluon fields, the Ai, also undergo a
Higgs e⇥ect. This happens as well in a monopole gas [7].

We have not discussed the most obvious application of
our model: the computation of the Polyakov loop. We
plot this quantity, and the lattice results, for three colors
in Fig. (5). A direct comparison of the two is somewhat
misleading. We have not computed perturbative correc-
tions to the Polyakov loop, which enter at ⇤ g3 [39].
This contribution is positive, and will increase the re-
sult. Nevertheless, while the two coincide at Tc — which
is presumably coincidence — they immediately diverge
from one another. From Fig. (5), in our model the loop
quickly goes up to a constant value by ⇤ 1.2 Tc; this is
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まとめ
Polyakovループの固有値を変数とする模型の構築

今回使った模型の解析ではSemi-QGPの領域は1.2Tcくらいまで.

圧力, エネルギー, Interface tension等の
物理量を計算した.

今後の展望
クォークを入れる拡張

輸送係数の計算

レプトン対生成の計算
エネルギーロスの計算


