## Thermal Phase Transition in Gauge-Higgs Unification in Warped Spacetime

(work in progress)

Hisaki Hatanaka

Osaka U

Aug 23, 2011

H. Hatanaka (Osaka U)

熱場の量子論とその応用 2011

Aug 23, 2011 1 / 22

- 1. Introduction
- 2. Formulation of Effective potential at finite temperature with non-periodic KK modes
- 3. Numerical Study of  $SO(5) \times U(1)$  GHU model [preliminary]

#### Electroweak phase transition and thermal effects

- Our universe : baryon asymmetric
- Baryogenesis Sakhalov's three conditions
  - 1. B-violation process
  - 2. C and CP symmetry is broken
  - 3. Out of thermal equilibrium
- Electroweak baryogenesis the 3rd condition requires the first-order phase transition and the expanding bubbles (inside : broken phase)



熱場の量子論とその応用 2011

▲ 伊 ▶ ▲ 国 ▶

#### Introduction

- For EWSB, we study
  - 1. the order of the phase transition 1st order or 2nd order
  - 2. (when 1st-order) we check the Shaposhnikov's "non-washing-out condition":



- Phase transition @high-T for SM and other Models
  - Standard Model 2nd order
  - 2. SUSY(MSSM) 1st order for some models [Cline etal, Farrar etal, Losada, Bodeker etal, Carena etal, Funakubo]
  - 3. 2HDM, extended Higgs conditions for 1st order obtained [Kanemura etail]
  - 4. Little Higgs Symmetry non-restoration [Espinosa, etl.al.(2004), Aziz, et.al.(2009)]
    - Attempts to get EWPT [Ahriche, et.al. (2009-)]
  - 5. GHU in flat-ExD (Hosotani mechanism, flat ExD)
    - 1st order [Ho-Hosotani (1990), Panico, et.al.('05)]
    - φ<sub>c</sub>/T<sub>c</sub> [Maru-Takenaga('05,'06)]

イロト イボト イヨト イヨト

## Gauge-Higgs unification (GHU)

- ► Gauge-Higgs unification (GHU) [N.S.Manton (1983), Hosotani('83),...,HH-Inami-Lim,]:
  - extra-dimensional component of the gauge field = the Higgs field

$$A_M = (A_\mu, A_y = h) \tag{3}$$

・ロト ・ 日 ・ ・ ヨ ・

- gauge symmetry is spontaneously broken by nonzero  $\langle A_y \rangle$
- Effective potential and the Higgs-mass is finite, thanks to the gauge symmetry in the higher-dimensional spacetime

 $\rightarrow$  solve the gauge hierarchy (fine-tuning) problem

- ► GHU on RS [Oda-Weiler,Falkowski, Hosotani,...,HH, and "holographic models" (agaghe, contino)]
  - fermion mass hierarchy, hierarchy between  $E_{EW}$  and  $E_{Planck}$  are explained. Sufficiently large higgs mass is obtained.
  - complicated KK mass structure : we cannot apply the Poisson sum formula to the KK-series

## Effctive Potential at Finite Temperature in Higher-Dimensional Spacetime

(日)

## FT Effects with non-periodic KK tower

▶ 1-loop effective potential (per field degrees of freedom) at temperature T with Kaluza-Klein mass  $m_{\ell}$ :

$$V_{\text{eff}}^{1-\text{loop}} = \frac{(-1)^{2\eta}}{2} \frac{1}{\beta} \int \frac{d^3 p}{(2\pi)^3} \sum_{m=-\infty}^{\infty} \sum_n \ln\left[\left(\frac{2\pi(m+\eta)}{\beta}\right)^2 + \vec{p}^2 + M_n^2\right],$$
  
$$\eta = 0(\text{boson}), \frac{1}{2}(\text{fermion}), \quad \beta \equiv 1/T.$$
(4)

• When the extra dimension is compactified on  $S^1$  (radius R),

$$M_n^2 = \left(\frac{2\pi n + \theta}{2\pi R}\right)^2 + M^2, \quad M : \text{bulk mass}$$
(5)

 $\rightarrow$  one may make use of many tricks (Poisson sum formula, etc...)

 For non-periodic KK modes (e.g. warped compactification) we needs another way of summation.

#### Formulation

Poisson re-summation only for Matsubara modes gives

$$V_{\text{eff}}^{1-\text{loop}} = -\frac{(-)^{2\eta}}{2} \sum_{n} \frac{\Gamma(-2)}{(4\pi)^2} |M_n|^4 + 2(-1)^{2\eta-1} \sum_{n} \sum_{\tilde{m}=1}^{\infty} (-)^{2\eta\tilde{n}} \frac{(\tilde{m}\beta|M_n|)^2 K_2(\tilde{m}\beta|M_n|)}{(\sqrt{2\pi}\tilde{m}\beta)^4}$$
(6)

 the 1st term turns out to be the zero-templerature effective potential (dimensional regularization is used inversely)

$$\frac{(-)^{2\eta}}{2} \int \frac{d^4k}{(2\pi)^4} \ln(p^2 + M_n^2) \equiv V_{\text{eff}}(T=0), \tag{7}$$

As for GHU on RS, Effective potential for T=0 can be calculated  $_{\rm [Falkowski, Oda-Weiler,\,...,\,HH]}$ 

•  $x^d K_d(x) \equiv B_d(x)$  is a super-convergent function of x:



 $\rightarrow$  Finite correction to  $V_{\rm eff}$  is obtained numerically with desired accuracy.

# Numerical Study of $SO(5) \times U(1)_X$ GHU model [preliminary]

### Field Theory in the Randall-Sundrum space-time

non-factorizable metric:

(

$$ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2, \quad k : AdS_5 \text{ curvature}$$
(8)

► circle with identification :  $y \to -y$  fundamental region :  $[0, \pi R]$  fixed points :  $y_0 = 0$ ,  $y_1 = \pi R$ 



- Hierarchy
  - 1. UV (hidden brane) scales :  $\Lambda, M_5, k, R$
  - 2. IR (visible brane) scales :  $m_{KK} = \pi k e^{-kR\pi} \frac{1}{1 e^{-\pi kR}}$
  - 3.  $kR \simeq 12 \rightarrow e^{kR\pi} \simeq M_{\rm Planck}/M_{\rm Weak}$

<ロ> <問> <問> < 回> < 回>

In the coordinate  $(x^{\mu}, z \equiv e^{ky})$ , In the KK expansion  $\Phi(x, z) = \sum_{n} \phi_n(x) f_n(z)$ , a KK wave function  $f_n(z)$  is written in terms of Bessel functions:

$$f_n(z) = z^{\beta} [AJ_{\alpha}(m_n z/k) + BY_{\alpha}(m_n z/k)],$$
(9)

and the kk spectrum is determined by boundary conditions at  $z = z_i$  $(z_0 = 1, z_1 = e^{kL})$ 

$$f_n(z_i) = 0, \quad \text{Dirichlet}$$
(10)  
$$(z^{\gamma}f_n(z))'|_{z=z_i} = 0, \quad \text{Neumann}$$
(11)

► We cannot express a m<sub>n</sub> as a explicit function of n but we have only implicit conditions F(m<sub>n</sub>) = 0.

## $SO(5) \times U(1)$ GHU model

As an application, we study the finite-temperature effect on the  $SO(5) \times U(1)_X$  GHU model. [Hosotani etal]

- outlines
  - orbifold breaking  $SO(5) \times U(1)_X \rightarrow SO(4) \times U(1)_X$ 
    - $SO(4) \sim SU(2)_L \times SU(2)_R$  : custodial symmetry
    - ▶ 4 SO(5)/SO(4) broken generators ( $\rightarrow SU(2)_L$  Higgs doublet)
  - $SU(2)_R$  is broken by scalar on the Planck brane
  - ▶ fermions : SO(5)-5's(vector) on bulk and SU(2)<sub>L</sub>-doublets on Planck brane → up- and down- sector fermions with desired masses from one Wilson-line phase, and others remain heavy states

イロト イボト イヨト イヨト

## $SO(5) \times U(1)$ GHU model

As an application, we study the finite-temperature effect on the  $SO(5) \times U(1)_X$  GHU model. [Hosotani etal]

- outlines
  - orbifold breaking  $SO(5) \times U(1)_X \rightarrow SO(4) \times U(1)_X$ 
    - ▶  $SO(4) \sim SU(2)_L \times SU(2)_R$  : custodial symmetry
    - ▶ 4 SO(5)/SO(4) broken generators ( $\rightarrow SU(2)_L$  Higgs doublet)
  - $SU(2)_R$  is broken by scalar on the Planck brane
  - ▶ fermions : SO(5)-5's(vector) on bulk and SU(2)<sub>L</sub>-doublets on Planck brane → up- and down- sector fermions with desired masses from one Wilson-line phase, and others remain heavy states
- outcomes
  - $m_h$ : 70GeV ~ 140GeV
  - The model have "H-parity"
    - $P_H = -1$  is assigned for h and +1 for other SM fields
    - ▶ All  $P_H$ -odd interactions  $(hWW, hZZ, h\bar{f}f, hhh)$  vanish. → the model can avoid the LEP constraint  $(m_h \leq 114 \text{GeV})$
    - ▶ *h* is stable and can be the candidate of dark matter (higgs dark-matter).

イロト 不得 トイヨト イヨト 二日

#### Effective potential



Figure: [preriminary] For  $z_L = 10^{15}$ , (a)  $V_{eff}^{gauge}$  (b)  $V_{eff}^{fermion}$  with solid ( $\tilde{T} = 0.1$ ), dotted (0.5), dashed (1.0), dot-dashed (2.0)

• As T grows,  $V_{eff}^{fermion}$  quickly shrinks [c.f. Ho-Hosotani(1990)]

H. Hatanaka (Osaka U)

熱場の量子論とその応用 2011

### Phase Transition



Figure: [preliminary] Plots of  $V_{eff}^{Total}(\theta_H, T)$  ( $z_L = 10^{15}$ ) (a) plots for  $\tilde{T} = 0.1, ..., 1.0$  (from bottom to top), (b) for  $\tilde{T} = 0.58$  (dashed), 0.5841 (solid) and 0.59 (dotted).

< /□> < □>

#### Results for various $z_L$

Table: [preliminary] Critical temperature  $T_c$ , the ratio  $\varphi_c/T_c$ , the height of the potential barrier  $V_{\text{barrier}} \equiv V^{\text{Total}}(\pi/4, T_c)$  for various value of  $z_L = e^{\pi kR}$ 

| $z_L$                                  | $10^{5}$ | $10^{7}$ | $10^{10}$ | $10^{12.15}$ | $10^{15}$ | $10^{17}$ |
|----------------------------------------|----------|----------|-----------|--------------|-----------|-----------|
| $T_c[\text{GeV}]$                      | 158      | 188      | 224       | 246          | 273       | 290       |
| $\varphi_c/T_c$                        | 1.6      | 1.3      | 1.1       | 1.0          | 0.90      | 0.85      |
| $V_{\rm barrier} \ [10^6 {\rm GeV}^4]$ | 3.0      | 3.8      | 4.9       | 5.5          | 6.3       | 6.8       |
| $V_{\rm barrier}^{1/4}/T_c$            | 0.26     | 0.24     | 0.21      | 0.20         | 0.18      | 0.18      |

first-order phase transition with very shallow potential

$$V_{\text{barrier}}/T_c^4 \sim (0.2)^4 \tag{12}$$

- Shaposhnikov's criteria (aka "non washing-out condition")
  - $\varphi_c = \varphi_0 \simeq 246 \text{GeV}$  in this model
  - The condition  $\varphi_c/T_c \gtrsim 1$  is satisfied for  $z_L \lesssim 10^{12}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

#### Summary

## Summary

- $\blacktriangleright$  We Numerically studied the  $SO(5)\times U(1)_X$  GHU model on RS at finite-temperature.
  - finite-temperature corrections are obtained by summing up Kaluza-Klein masses and dual Matsubara modes.
  - We obtained critical temperature and the height of the potential wall of the model.

Perspective

- This method can by applied to study other models of extra dimension at finite temperature.
- Spharelon process in higher-dimensional space-time
- Flavor mixing, CP violation phase in GHU

## **Backup Slides**

э

・ロット 4 日マット 4 日マット

[Trodden, RMP71-1463]

- quantum scalar field theory:
  - @ tree level

$$V(\varphi) = -\frac{\mu^2}{2}\varphi^2 + \frac{\lambda}{4}\varphi^4, \quad \varphi \equiv \sqrt{\phi^{\dagger}\phi}, \quad (13)$$

@ 1-loop zero temperature

$$V_{\text{eff}}^{(1)}(\varphi) = -\frac{\mu^2}{2}\varphi^2 + \frac{\lambda}{4}\varphi^4 + \frac{1}{64\pi^2}(3\lambda\varphi^2 - \mu^2)^2 \ln\left(\frac{3\lambda\varphi^2 - \mu^2}{2\mu^2}\right) + \frac{21\lambda\mu^2}{64\pi^2}\varphi^2 - \frac{27\lambda^2}{128\pi}\varphi^4,$$
(14)

SM, @ 1-loop, finite temperature

$$V_{\text{eff}}^{(1)}(\varphi;T) = \left(\frac{3g^2}{32} + \frac{\lambda}{4} + \frac{m_t^2}{4v^2}\right) (T^2 - T_*^2)\varphi^2 - \frac{3g^2}{32\pi}T\varphi^3 + \frac{\lambda}{4}\varphi^4, (15)$$
  
$$v : \text{usual Higgs VEV}$$

• cubic  $\varphi$ -term :  $\rightarrow$  : first order phase transition

H. Hatanaka (Osaka U)

熱場の量子論とその応用 2011

▲ E ト E ク へ (~ Aug 23, 2011 18 / 22

・ロト ・四ト ・ヨト ・ヨト

## Effective Potential

Effective potential consists bosonic and fermionic parts:

$$V_{\text{eff}}^{\text{Total}}(\theta_H, T) = V_{\text{eff}}^{\text{gauge}}(\theta_H, T) + V_{\text{eff}}^{\text{fermion}}(\theta_H, T),$$
(16)

- ▶  $V^{\text{gauge}}$  contains the loop contribution from W, Z, 3 Higgs bosons and their KK excitations
- $\blacktriangleright$   $V_{\rm fermion}$  contains the loop contribution from top-quark and its KK excitations
- In the following, other contributions are neglected.
- each parts are decomposed zero-temperature parts and finite-temperature corrections

$$V^{f}_{\text{eff}}(\theta_{H},T) = V^{f}_{\text{eff},T=0}(\theta_{H}) + \Delta V^{f}_{\text{eff}}(\theta_{H},T), \quad (f = \text{gauge}, \text{fermon})$$
(17)

・ロト ・ 日 ・ ・ ヨ ・

Zero temperature parts:

$$V_{\text{eff},T=0}^{\text{gauge}}(\theta_{H}) = \underbrace{4I[\frac{1}{2}Q_{0}(q,\frac{1}{2},\theta_{H})]}_{W-tower} + \underbrace{2I[\frac{1}{\cos^{2}\theta_{W}}Q_{0}(q,\frac{1}{2},\theta_{H})]}_{Z-tower} + \underbrace{3I[Q_{0}(q,\frac{1}{2},\theta_{H})]}_{Higgs-tower},$$
(18)  
$$V_{\text{eff},T=0}^{\text{fermion}}(\theta_{H}) = \underbrace{-4 \cdot 3I[\frac{1}{2}Q_{0}(q,c_{\text{tb}},\theta_{H})]}_{top-tower},$$
(19)

where

$$I[Q(q;c,\theta_H)] \equiv \frac{\tilde{k}^4}{(4\pi)^2} \int_0^\infty dq \, q^3 \ln[1 + Q(q;c,\theta_H)], \quad \tilde{k} \equiv k/z_L, \quad (20)$$

$$Q_0 \equiv \frac{z_L}{q^2} \frac{\sin^2 \theta_H}{\hat{F}_{c-\frac{1}{2},c-\frac{1}{2}}(q/z_L,q)\hat{F}_{c+\frac{1}{2},c+\frac{1}{2}}(q/Z_L,q)},$$
(21)

$$\hat{F}_{\alpha,\beta}(u,v) \equiv I_{\alpha}(u)K_{\beta}(v) - e^{-i(\alpha-\beta)\pi}K_{\alpha}(u)I_{\beta}(v), \qquad (22)$$

and  $c_{tb}$  is determined to obtain the correct top-quark mass for  $z_{L^{-}}$ 

H. Hatanaka (Osaka U)

non-zero temperature corrections:

$$\Delta V_{\text{eff}}^{\text{gauge}}(\theta_H, T) = 4S[P_W(\lambda, \theta_H), T, 0] + 4S[P_Z(\lambda, \theta_H), T, 0] + 4S[P_H(\lambda, \theta_H), T, 0]$$
(23)

$$\Delta V_{\text{eff}}^{\text{fermion}}(\theta_H, T) = 12S[P_T(\lambda, \theta_H), T, 1/2], \qquad (24)$$

$$S[P(\lambda,\theta_H),T,\eta] \equiv -(-)^{2\eta} \frac{T^4 k^4}{2\pi^2} \sum_{\tilde{m}=1}^{\infty} \frac{(-)^{2\tilde{m}\eta}}{\tilde{m}^4} \sum_{n=0}^{\infty} B_2(\frac{\tilde{m}\lambda_n}{\tilde{T}}), \quad (25)$$

$$\tilde{T} \equiv T/\tilde{k}, \quad B_2(x) \equiv x^2 K_2(x),$$
(26)

where  $\tilde{\lambda}_n$  is the *n*-th smallest root of  $P_f$  :  $P_f(\tilde{\lambda}_n/z_L, \theta_H) = 0$ ,

$$P_W(\lambda, \theta_H) = 2S(1; \lambda)C'(1; \lambda) + \lambda \sin^2 \theta_H, \quad \text{[for } W\text{-boson KK tower]}$$
(27)

$$P_Z(\lambda, \theta_H) = 2S(1; \lambda)C'(1; \lambda) + \lambda \frac{\sin^2 \theta_H}{\cos^2 \theta_W}, \quad \text{[for } Z\text{-boson KK tower]}$$
(28)

 $P_H(\lambda, \theta_H) = 2S(1; \lambda)C'(1; \lambda) + \lambda \sin^2 \theta_H, \quad \text{[for higgs-boson KK tower]}$ (29)

 $P_T(\lambda, \theta_H) = 2S_L(1; \lambda, c_{tb})S_R(1; \lambda, c_{tb}) + \sin^2 \theta_H$ , [for top-quark KK tower[30]

with

$$S(z;\lambda) \equiv +\frac{\pi}{2}\lambda z z_L F_{1,0}(\lambda z,\lambda z_L), \quad C(z;\lambda) \equiv -\frac{\pi}{2}\lambda z z_L F_{1,1}(\lambda z,\lambda z_L),$$
(31)

$$S_{L/R}(z;\lambda,c) = \mp \frac{\pi}{2} \lambda \sqrt{zz_L} F_{c-\frac{1}{2},c-\frac{1}{2}}(\lambda z,\lambda z_L), \tag{32}$$

▶ In this model, we have very few free parameter:  $z_L$ 

- 1. Compare the *W*-mass 80.4GeV and the first zero of (27) at  $\theta_H = \pi/2$  $\rightarrow$  Determine the normalization of k ( $\tilde{k}$ )
- 2. Compare the top mass 173GeV and the first zero of (30) at  $\theta_H = \pi/2$   $\rightarrow$  determine the value of  $c_{top}$ 
  - we can obtain the correct value of  $c_{\rm tb}$  only when  $z_L \gtrsim 3.4$ .
- 3. Then, calculate  $V_{eff}(\theta_H, T)$  with  $z_L$  and  $c_{\rm tb}$
- we have summed up 100 dual Matsubara modes and 200 Kaluza-Klein modes in each part of ΔV<sub>eff</sub>, to calculate V<sub>eff</sub> with desired accuracy.