基研研究会「熱場の量子論とその応用」2011-08-23

加速系におけるスピン軌道相互作用と スピン流生成

松尾衛(京大基研・原子力機構先端研)

共同研究者

家田淳一·前川禎通(原子力機構先端研) 齊藤英治(東北大金研・原子力機構先端研)

References:

- [1] Phys. Rev. Lett. <u>106</u>, 076601(2011)
- [2] Appl. Phys. Lett. <u>98</u>, 242501 (2011)
- [3] arXiv:1106.0366 (to appear in PRB)

Outline

Summary

Spin current

Spin current & spintronics

Spintronics (Spin electronics) Generation/Manipulation/Detection of **Spin current**

From charge to spin current

19th century

Hall (1879)

Hall effect

Seebeck effect

Seebeck (1821)

a Thermocouple Metal A VMetal B E T_2 T_1 ∇T

Electromotive force

Faraday (1831)

21st century

Spin Hall effect Dyakonov-Perel PLA (1971) Hirsh, PRL (1999)

Kato et al., Science (2004)

Inverse Spin Hall effect Saitoh et al., APL (2006)

Spin Seebeck effect

Uchida et al., Nature (2008)

Xiao et al., PRB (2010) Adachi et al., PRB (2011)

Spinmotive force

Barnes-Maekawa PRL(2007)

Hai et al., Nature (2009)

"Spin-mechatronics"

"Spin-mechatronics"

strongly coupling of mechanical motion with spin/charge transport in nanostructures

Mechanical rotation, Magnetization, & Spin current

Magnetization & Rotation

In 1915 Einstein-de Haas effect Barnett effect

→ Gyromagnetic ratio of electron

"Einstein's Only Experiment"

Motivation

between mechanical rotation & spin current?

Inertial forces on charge/spin

Quantum mechanics in inertial/noninertial frame

Spin Hall Effect in inertial frame

Pauli-Schrödinger eq. in inertial frame

Enhancement of SOI in condensed matter

Spin Hall effect in inertial frame

Spin Hall Effect in non-inertial frame

Inertial effects on spin-orbit interaction?

Rigorous derivation of inertial spin-orbit interaction

Gravitational field due to massive point particle with electromagnetic field: de Oliveira - Tiomno, Nuovo Cimento (1962)

Gravitational field in Schwarzschild spacetime without electromagnetic field: e.g. Obukhov, Phys. Rev. Lett. (2000), Silenko-Teryaev, Phys. Rev. D (2007)

Rigid rotation & Liner acceleration **without** electromagnetic field: Hehl - Ni, Phys. Rev. D (1990)

Rigid rotation **with** electromagnetic field:

MM, Ieda, Saitoh, & Maekawa, Phys. Rev. Lett. (2011)

How to derive SOI?

E-M and gravitational fields can be included by introducing "covariant derivatives."

Dirac eq. with E-M fields

$$\begin{bmatrix} \gamma^{\mu} \left(\partial_{\mu} - i\frac{q}{\hbar} A_{\mu}\right) + \frac{mc}{\hbar} \end{bmatrix} \psi = 0$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$

$$H = \beta mc^{2} + c\alpha \cdot (\mathbf{p} + e\mathbf{A}) + eA_{0}$$

$$W = \int Foldy-Wouthuysen 1950$$

$$Tani 1951$$

$$H_{z}^{O(1/m)} = \mu_{B}\sigma \cdot \mathbf{B}$$

$$H_{zot}^{O(1/m)} = \frac{-e\lambda}{\hbar}\sigma \cdot [(\mathbf{p} + \mathbf{A}) \times \mathbf{E}]$$

Flat space-time (inertial frame)

Curved space-time (non-inertial frame)

 $c)_i$

Pauli-Schrödinger eq. in rotating frame

Inertial Spin Orbit Int.

Spin Hall Effect in rotating frame

Spin current from mechanical rotation

Inertial spin Hall effect - "general relativistic effect in matter"

$$J_{s}^{\Omega \cdot B}(r) = 2ne\overline{\lambda}k_{F}^{2}\frac{\hbar\Omega}{\varepsilon_{F}} \times \frac{eB}{m^{*}} \times r$$

$$\mathbf{E}_{rot} = (\mathbf{\Omega} \cdot B)\mathbf{r}$$

Ref.

(Ballistic regime) MM, J. Ieda, E. Saitoh, and S. Maekawa, Phys. Rev. Lett. <u>106</u>, 076601 (2011) (Diffusive regime) MM, J. Ieda, E. Saitoh, and S. Maekawa, Appl. Phys. Lett. <u>98</u>, 242501 (2011)

Summary

Spin current generation from mechanical rotation

MM, Ieda, Saitoh, Maekawa, arXiv: 1106.0366 (to appear in PRB)

Ultra high speed rotor in JAEA

On going experiment for generation/detection of spin current due to mechanical rotation!

Backup Slides

from Dirac to Effective theory

E-M field in rotating frame

e.g. MM, Ieda, Saitoh, Maekawa, arXiv:1106.0366, Appendix C

GENERAL COORDINATE TRANSFORMATION

 $\begin{pmatrix} dt' \\ dx' \\ dy' \\ dz' \end{pmatrix} = \begin{pmatrix} \partial t'/\partial t & \partial t'/\partial x & \partial t'/\partial y & \partial t'/\partial z \\ \partial x'/\partial t & \partial x'/\partial x & \partial x'/\partial y & \partial x'/\partial z \\ \partial y'/\partial t & \partial y'/\partial x & \partial y'/\partial y & \partial y'/\partial z \\ \partial z'/\partial t & \partial z'/\partial x & \partial z'/\partial y & \partial z'/\partial z \end{pmatrix} \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix}$

$$\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \Omega t & -\sin \Omega t & 0 \\ 0 & \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

 $\begin{pmatrix} dt' \\ dx' \\ dy' \\ dz' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\Omega y & \cos \Omega t & -\sin \Omega t & 0 \\ \Omega x & \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix} \quad R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\Omega y \\ \Omega x \\ 0 & \sin \Omega t & \cos \Omega t & 0 \\ \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$

GENERAL COORDINATE TRANSFORMATION

$$F_{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\Omega y & \cos \Omega t & -\sin \Omega t & 0 \\ \Omega x & \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$F' = R^{T} F R$$
$$\Rightarrow \begin{cases} E' \approx E + (\Omega \times r) \times B \\ B' \approx B \end{cases}$$

SOI & ELECTROMAGNETIC FIELD IN ROTATING FRAME

$$\tilde{H}_{SOI} = \frac{\lambda}{\hbar} \boldsymbol{\sigma} \cdot \left[(\mathbf{p} - q\mathbf{A}) \times q \left(\mathbf{E} + (\boldsymbol{\Omega} \times \mathbf{r}) \times \mathbf{B} \right) \right]$$

$$\begin{cases} E_{\text{rot}} \approx E_{\text{rest}} + (\Omega \times r) \times B_{\text{rest}} \\ B_{\text{rot}} \approx B_{\text{rest}} \\ \text{(rotating frame)} \\ & \uparrow \text{ general coordinate transformation} \\ & \text{ by velocity } \Omega \times r \\ \end{cases}$$

(rest frame)

B_{rest}

 $\boldsymbol{\Omega} \parallel \mathbf{B}, \mathbf{E} = 0 \text{ (rest frame)}$ $\mathbf{E}_{\rm rot} = (\boldsymbol{\Omega} \times \mathbf{r}) \times \mathbf{B}_{\rm rest}$ (rotating frame) B