Out-of-equilibrium dynamics of coherent non-abelian fields

J. Berges

IKP Theory Center
Technische Universität Darmstadt

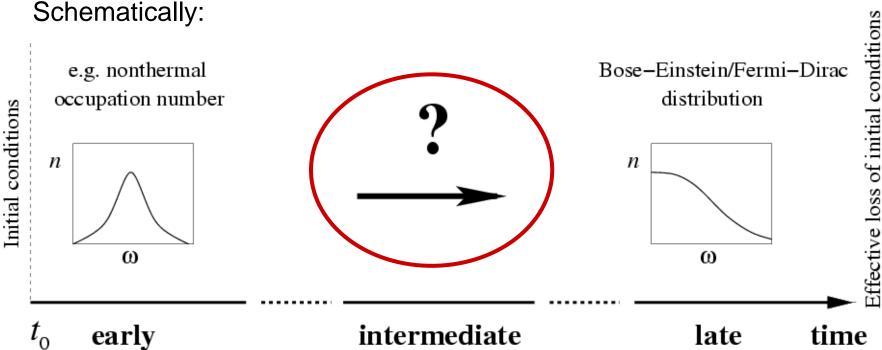
Institute for Theoretical Physics
Universität Heidelberg

SPONSORED BY THE

Nonequilibrium QCD

Relativistic heavy-ion collisions explore strong interaction matter starting from a transient *nonequilibrium* state

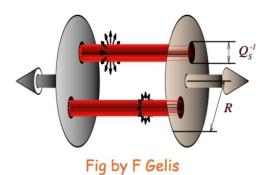
Thermalization process?



Characteristic nonequilibrium time scales? Relaxation? Instabilities?

Nonequilibrium dynamics of coherent fields

Color Glass:



'color flux tubes'

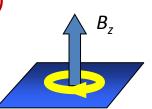
transverse sizes $\Delta R_{\perp} \sim rac{1}{Q_s}$

1) Consider extreme case: constant color magnetic field pointing in z-direction

$$B^a_j=\delta^{1a}\delta_{3j}B$$
 from $A^1_x=-\frac{1}{2}yB\,,\,A^1_y=\frac{1}{2}xB$ (all other zero)

→ exponential growth of fluctuations (Nielsen-Olesen instability) with maximum rate

$$\sqrt{gB} \sim Q_s$$



2) Consider less extreme case: *temporal* modulations on scales $\gtrsim 1/\sqrt{gB}$

$$B^a_j = \delta^{1a} \delta_{3j} B$$
 from $A^2_x = A^3_y = \sqrt{rac{B}{g}}$ (all other zero)

→ non-linear part of field strength tensor

Classical equation of motion:

$$\left(D_{\mu}[A]F^{\mu\nu}[A]\right)^{a} = 0$$

Time-dependent background field $\bar{A}_{\mu}^{a}(x^{0})$:

$$A^{a}_{\mu}(x) = \bar{A}^{a}_{\mu}(x^{0}) + \delta A^{a}_{\mu}(x)$$

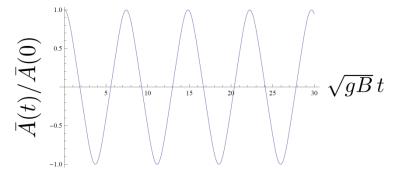
temporal (Weyl) gauge with $A_0^a = 0$ and

$$\bar{A}_{i}^{a}(t) = \bar{A}(t) \left(\delta^{a2} \delta_{i1} + \delta^{a3} \delta_{i2} \right) , \ \bar{A}(t=0) = \sqrt{B/g}$$

• Background-field equation:

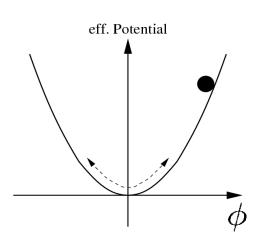
$$\left(D_{\mu}[\bar{A}]F^{\mu\nu}[\bar{A}]\right)^{a} = 0$$

$$\Rightarrow \qquad \partial_t^2 \bar{A}(t) + g^2 \bar{A}(t)^3 = 0$$

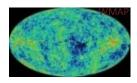


Oscillating solution:
$$\bar{A}(t) = \sqrt{\frac{B}{g}} \, \operatorname{cn}\!\left(\sqrt{gB}\,t\,,\frac{1}{2}\right)$$
 with period $\Delta t_B = \frac{4K(1/2)}{\sqrt{gB}} \simeq \frac{7.42}{\sqrt{gB}}$

Compare e.g. scalar $\lambda \Phi^4$ theory:



 early universe inflaton dynamics (preheating)



non-rel. gas of ultracold atoms (Gross-Pitaevski),
λ~a (s-wave scattering length)
B. Novak, RG-conference

→ talks next week

• Linearized fluctuation equation, SU(2):

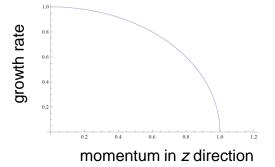
$$(D_{\mu}[\bar{A}]D^{\mu}[\bar{A}]\delta A^{\nu})^{a} - (D_{\mu}[\bar{A}]D^{\nu}[\bar{A}]\delta A^{\mu})^{a} + g\epsilon^{abc}\delta A^{b}_{\mu}F^{c\mu\nu}[\bar{A}] = 0$$

maximally amplified modes: $\delta A_- = \delta A_2^3 - \delta A_1^2$ or $\delta A_1^3 + \delta A_2^2$

$$\Rightarrow \qquad \partial_t^2 \delta A_-(t, p_z) = \left(g^2 \bar{A}(t)^2 - p_z^2\right) \delta A_-(t, p_z) \qquad (p_x = p_y = 0)$$

Oscillator with time-dependent frequency with 'wrong sign' for $p_z^2 < g^2 \bar{A}(t)^2$ approximate solution: $(\bar{A}(t=0) = \sqrt{B/g})$

$$\delta A_{-}(t,p_z) \sim e^{\sqrt{g\overline{B}-p_z^2}t}$$



→ similar to Nielsen-Olesen instability with time-averaged magnetic field

$$g\overline{B} \equiv \frac{gB(t=0)}{2K(1/2)} \int_0^{2K(1/2)} dx \operatorname{cn}^2\left(x, \frac{1}{2}\right) \approx 0.457 \, gB(t=0)$$

Non-linear evolution: Classical-statistical lattice gauge theory

Wilson action:
$$S[U] = -\beta_0 \sum_{x} \sum_{i} \left\{ \frac{1}{2 \text{Tr} \mathbf{1}} \left(\text{Tr} \, U_{x,0i} + \text{Tr} \, U_{x,0i}^{-1} \right) - 1 \right\}$$
 (real time!)
$$+\beta_s \sum_{x} \sum_{\substack{i,j \\ i < i}} \left\{ \frac{1}{2 \text{Tr} \mathbf{1}} \left(\text{Tr} \, U_{x,ij} + \text{Tr} \, U_{x,ij}^{-1} \right) - 1 \right\}$$

Plaquette variables $U_{x,\mu\nu} \equiv U_{x,\mu} U_{x+\hat{\mu},\nu} U^{\dagger}_{x+\hat{\nu},\mu} U^{\dagger}_{x,\nu} \approx \exp\left[-\mathrm{i}ga^2 F_{\mu\nu}(x)\right]$

Here: $\beta = \beta_0 / \gamma = \beta_s \gamma = 4$, temporal gauge, SU(2), no expansion

Sampling introduces classical-statistical fluctuations ('loops') → non-linear evolution, accurate for sufficiently 'large fields/high occupation' numbers:

anti-commutator
$$\langle \{A, A\} \rangle \gg \langle [A, A] \rangle$$
 commutator

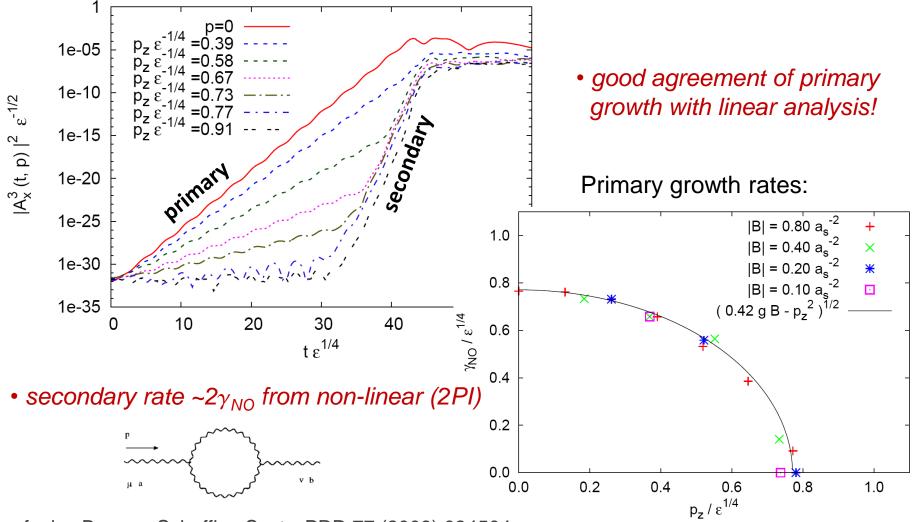
→ 'working horse' for instability dynamics

Romatschke, Venugopalan; Berges, Gelfand, Sexty, Scheffler, Schlichting; Kunihiro, Müller, Ohnishi, Schäfer, Takahashi, Yamamoto; Fukushima, Gelis; ...

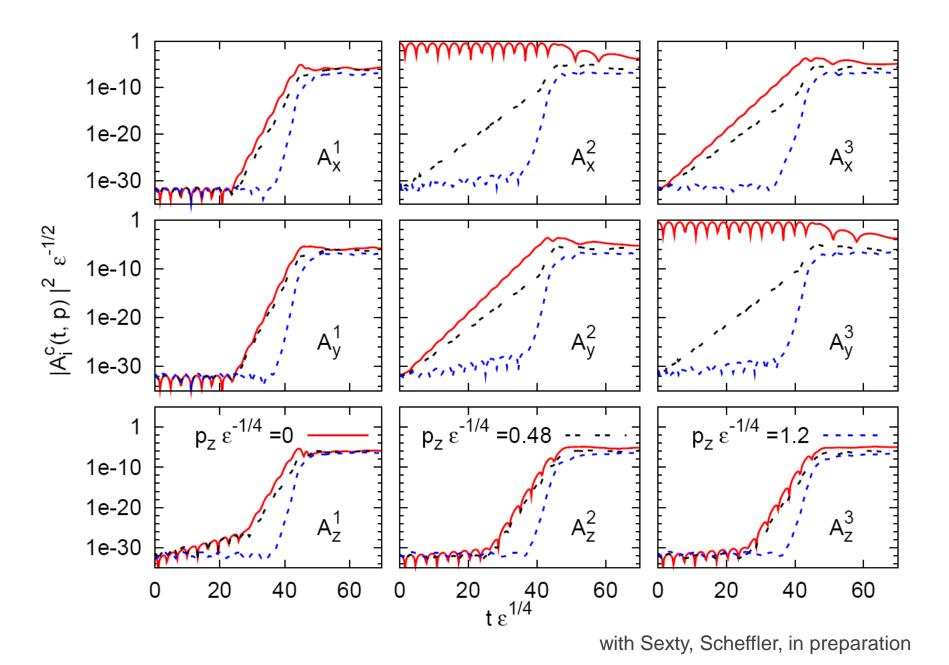
Nonequilibrium coherent fields on the lattice

Exponential growth of fluctuations:

with Sexty, Scheffler, in preparation



cf. also Berges, Scheffler, Sexty, PRD 77 (2008) 034504

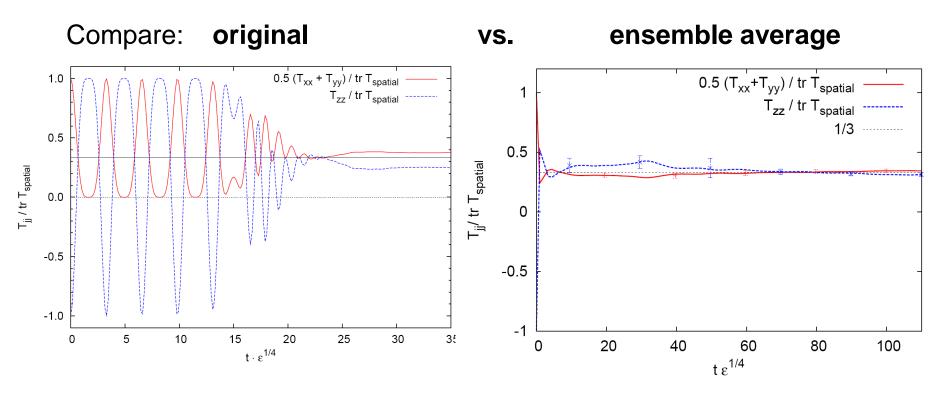


Isotropization

3) Choose initial homogeneous fields randomly (ensemble)

with zero mean and width $<\sqrt{gB}\sim Q_s$

with Sexty, Scheffler, in preparation



- very efficient isotropization for ensemble averaged homogeneous fields!
- → early equation of state for hydrodynamics

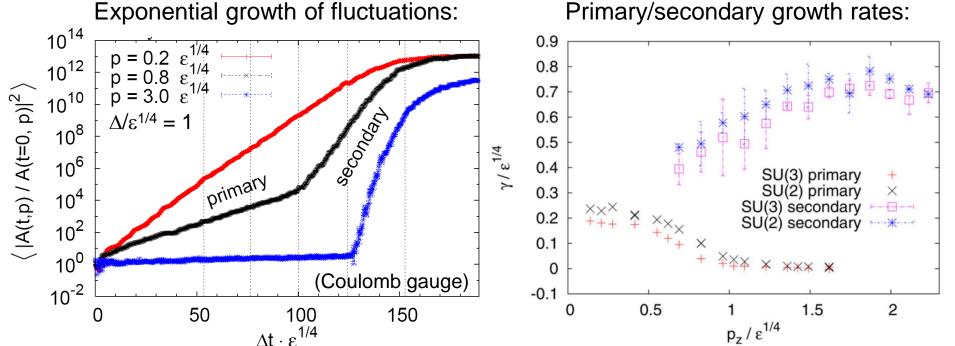
Comparison to previous ensembles

Initial conditions: stochastically generated inhomogeneous fields with

$$\langle |A_j^a(t=0,\vec{k})|^2 \rangle \sim C \exp\{-\frac{k_x^2 + k_y^2}{2\Delta_z^2} - \frac{k_z^2}{2\Delta_z^2}\}$$

 $-\Delta$ k_{T}

and $Q_s \sim \Delta \gg \Delta_z$ (extreme oblate anisotropy)

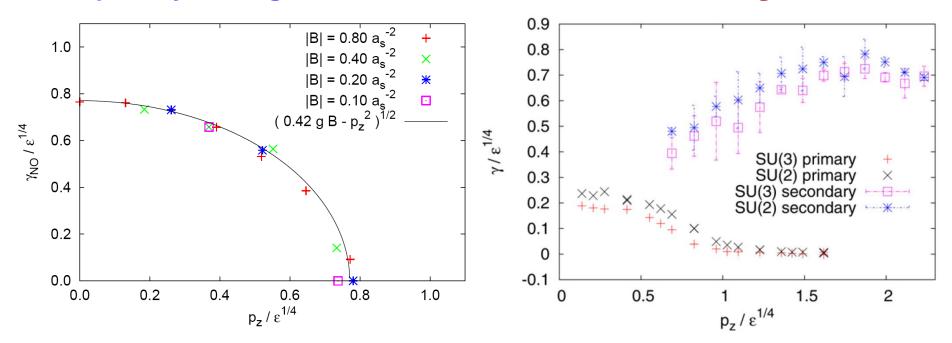


Berges, Scheffler, Sexty, PRD 77 (2008) 034504 (SU(2)); + Gelfand, PLB 677 (2009) 210 (SU(3))

Coherence speed-up

Compare:

spatially homogeneous fields vs. stochastic inhomogeneous fields

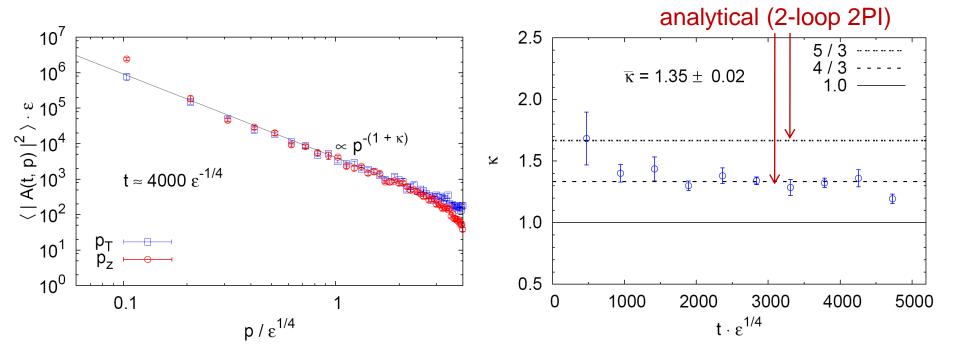


Inverse primary growth rates: e.g. $\varepsilon_{\rm RHIC} \sim$ 5-25 GeV/fm³, $\varepsilon_{\rm LHC} \sim$ 2 × $\varepsilon_{\rm RHIC}$

$$1/\gamma_{NO} \simeq 0.3 - 0.6$$
 fm/c

$$1/\gamma \simeq 1.0 - 1.8 \text{ fm/c}$$

Non-linear dynamics leading to turbulence



- Scaling exponent close to perturbative Kolmogorov value at high p: $\kappa = 4/3$ Berges, Scheffler, Sexty, PLB 681 (2009) 362; see also Fukushima, Gelis, arXiv:1106.1396 [hep-ph]
- Nonperturbative infrared scaling behavior with $\kappa = 4$ ($\kappa = 5$) expected Infrared "occupation number" $\sim 1/g^2 \rightarrow strongly correlated! Universal!$

Berges, Rothkopf, Schmidt '08; Berges, Hoffmeister '09; Scheppach, Berges, Gasenzer '10; Carrington, Rebhan '10; Nowak, Sexty, Gasenzer '10; ...

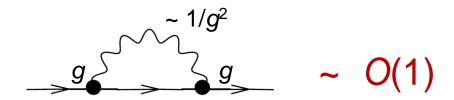
→ see also talks next week

Quantum corrections and fermions

- Classical-statistical gauge field description accurate for
 - → sufficiently large field expectation values/highly occupied modes
 - → but quantum corrections at low occupied higher momenta inclusion into simulations using inhomogeneous 2PI effective action

cf. Berges, Roth, NPB 847 (2011) 197

- Fermions: $n_{\psi}(p) \leq 1$ (Pauli principle)
 - → *no* classical-statistical approximation
 - → enhancement of quantum corrections from highly occupied bosons!



Requires real-time lattice simulations with dynamical fermions!

Conclusions & Outlook

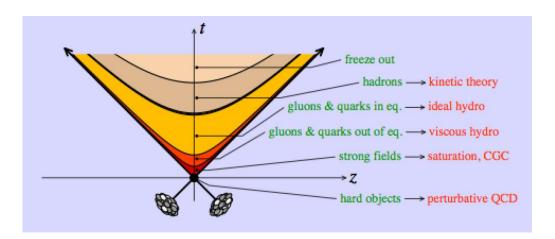
coherent fields can lead to ultra-fast dynamics:

$$1/\gamma_{NO} \simeq 0.3 - 0.6$$
 fm/c

for typical LHC/RHIC energies

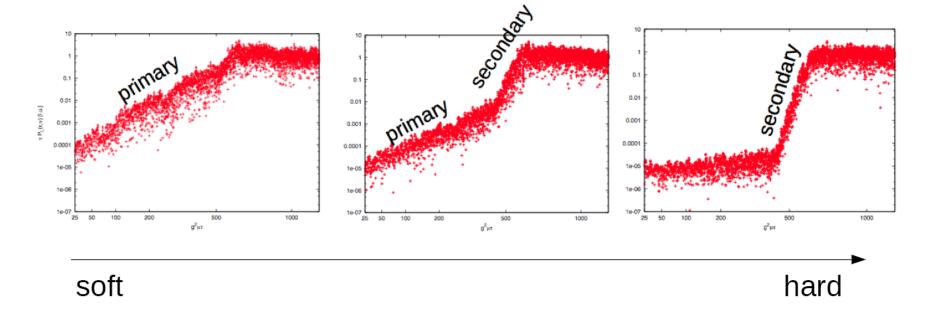
- very efficient isotropization for ensemble averaged homogeneous fields!
 - → early equation of state for hydrodynamics
- non-linear dynamics crucial for efficient development of turbulence
- \rightarrow perturbative Kolmogorov scaling exponent at high p: $\kappa = 4/3$
- → non-perturbative scaling exponent at low *p*? shown to be true for scalars PRL 101 (2008) 041603
 - enhancement of quark corrections to O(1) from highly occupied bosons? shown to be true for quark-meson model PRL 107 (2011) 061301
- → real-time dynamical fermions on the lattice in 3+1 dimensions

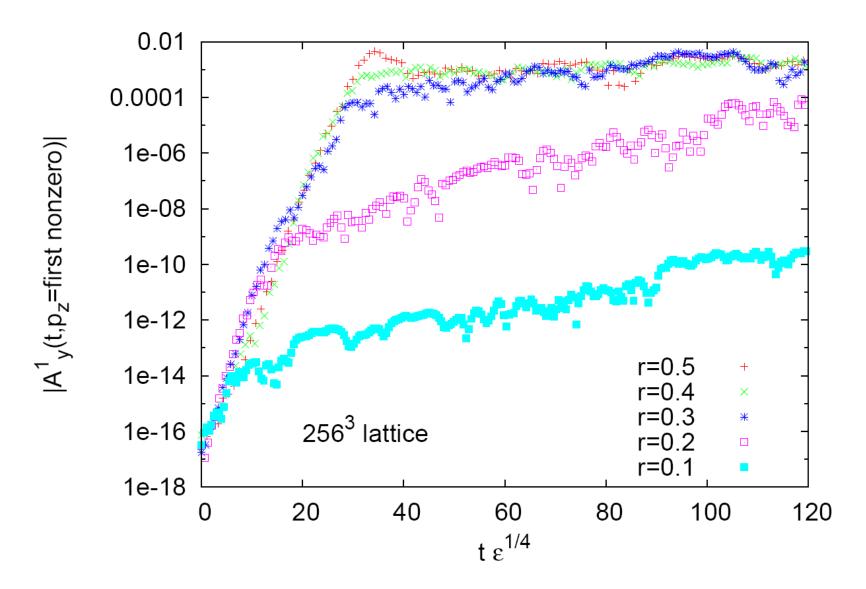
Non-linear dynamics with expansion



Venugopalan, Romatschke '06; see also Fukushima, Gelis '11

Sören Schlichting





with Sexty, Scheffler, in preparation