格子ゲージ理論による 2次の輸送係数の測定

Lattice simulation of second order transport coefficients

熱場の量子論とその応用 2011/8/22-24 @ 京都

<u>河野泰宏 Yasuhiro Kohno</u> (Osaka univ.) 浅川正之 Masayuki Asakawa (Osaka univ.) 北沢正清 Masakiyo Kitazawa (Osaka univ.) 野中千穂 Chiho Nonaka (KM I, Nagoya univ.)

Heavy ion collision @ RHIC

Low viscous QCD matter

Relativistic ideal hydrodynamic models

Heavy ion collision @ RHIC

Relativistic viscous hydrodynamic models

Heavy ion collisions @ RHIC & LHC

Nonperturbative region in QCD

Low viscous QCD matter Microscopic theory (i.e. QCD)

Relativistic viscous hydrodynamic models

Transport coefficients (inputs)

Heavy ion collisions @ RHIC & LHC

Nonperturbative region in QCD

Low viscous QCD matter Lattice gauge simulation

Relativistic viscous hydrodynamic models

Transport coefficients (inputs)

We attempt to evaluate the transport coefficients in 2nd order viscous hydrodynamics by SU(3) lattice gauge simulation.

*In the following, we focus on "a shear viscosity to relaxation time ratio". Relativistic viscous hydrodynamics

 \Rightarrow Navier-Stokes theory (1st order theory) \rightarrow Causality \times

$$\pi^{\mu\nu} = 2\eta \nabla^{<\mu} u^{\nu>}$$

 $\pi^{\mu\nu}$: shear stress tensor, η : shear viscosity, u^{μ} : fluid velocity

C. Eckart, Phys. Rev. **58**, 919(1940). L. D. Landau and E. M. Lifshitz, *Fluid Mechanics*(Pergamon, New York, 1959). W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) **151**, 466(1983). ;Phys. Rev. D **31**, 725 (1985).

☆ Israel-Stewart theory (2nd order theory) → Causality O

$$\dot{\pi}^{\mu\nu} = -\frac{1}{\tau_{\pi}} \left[\pi^{\mu\nu} - 2\eta \nabla^{<\mu} u^{\nu>} + \pi^{\mu\nu} \eta T \partial_{\rho} \left(\frac{\tau_{\pi} u^{\rho}}{2\eta T} \right) \right]$$

*The relaxation time τ_{π} does not appear in 1st order theory and makes 2nd order theory causal.

W.Israel and J.M.Stewart, Ann. Phys. (N.Y.) 118, 341(1979).

$$\frac{Shear \ viscosity \ to \ relaxation \ time \ ratio}{\Rightarrow}$$
The shear viscosity η by Kubo formula,
$$\left[\eta = i \int_{t>0} dt \ t \int d^3 x < [\pi_{12}(t, \vec{x}), \pi_{12}(0, \vec{0})] > \right]$$

$$\Rightarrow \ \text{Identity} :< [A, B] >= i \int_{0}^{1/T} d\lambda < \dot{A}(-i\lambda)B >$$

$$\lambda: \text{Imaginary time}$$

$$\Rightarrow \ \text{Relaxation-time approximation}:$$

$$< \int d\lambda \ \pi_{12}(t - i\lambda)\pi_{12}(0) > \approx e^{-t/\tau_{\pi}} < \int d\lambda \ \pi_{12}(-i\lambda)\pi_{12}(0) >$$

$$\Rightarrow \ \text{Local rest frame}: \ \pi_{12} = T_{12}$$

$$\left[\frac{\eta}{\tau_{\pi}} = \int_{0}^{1/T} d\lambda \int d^3 x < T_{12}(\lambda, \vec{x})T_{12}(0, \vec{0}) > \right]$$

$$\equiv \int d^4 x < T_{12}(x)T_{12}(0) > E$$

<u>OPE & Contact term</u>

 \Leftrightarrow What we calculate is

$$\frac{\eta}{\tau_{\pi}}\Big|_{phys} = \int d^{4}x \langle T_{12}(x)T_{12}(0) \rangle_{phys}^{E}$$
Contact term
$$\cong \int d^{4}x \langle T_{12}(x)T_{12}(0) \rangle_{T=0}^{E} - \left[\frac{2}{3} \langle T_{00} \rangle_{T=0}^{E} + \frac{1}{6} \langle F^{2} \rangle_{T=0}^{E}\right]$$

 (T_{00}) & (F^2) are related to thermodynamic quantities

$$\langle T_{00} \rangle_{T=0}^{E} = -\langle T^{00} \rangle_{T=0}^{M} = -\frac{\varepsilon + P}{2} , \langle F^{2} \rangle_{T=0}^{E} = \langle F^{2} \rangle_{T=0}^{M} = -(\varepsilon - 3P)$$

They are well-studied by lattice simulation.

G. Boyd, J. Engels, F. Karsch, E. LAermann, C. Legeland, M. Lutgemeruer, and B. Petersson, Nucl. Phys. B **469**:419-444(1996).

- SU(3) pure gauge (with Wilson action)
- 1HB + 4OR for each update
- Traceless definition for $T_{\mu\nu}$
- Clover type plaquette for $F_{\mu\nu}$
- Isotropic lattice
- Lattice sizes $\beta = 6.499(a=0.049fm) : 32^3 \times 4,6,8,32$ $\beta = 6.205(a=0.074fm) : 32^3 \times 4,6,8,32$ $\beta = 6.000(a=0.094fm) : 32^3 \times 4,6,8,16$ $\beta = 6.000(a=0.094fm) : 16^3 \times 4,6,8,16$
- Number of configurations : 300,000-2,000,000
- Error estimation by jackknife method (bin size=50-1000)

<u>Results: $(n / \tau_{\pi})_{T-0}$ & contact term</u>

<u>Results: $(n / \tau_{\pi})_{T=0}$ & contact term</u>

①Lattice spacing & volume dependences : small.②Non-negative.

- ☆ We evaluated the 2nd order transport coefficient η / τ_{π} by SU(3) lattice gauge simulation for the temperature range realized at the LHC.
- ☆ There was extra contribution from the contact term which cannot be removed by T=O subtraction.
- ☆ We obtained η / τ_{π} from direct measurement of lattice observables ($\int d^4x \langle T_{12}T_{12} \rangle$, $\langle T_{00} \rangle$ and $\langle F^2 \rangle$).
- \Leftrightarrow Signal speed \doteqdot 0.5 \rightarrow Causality \bigcirc .
- ☆ Future works
 ①High statistics near Tc.
 ②Bulk & heat channels.

Appendix

 $T^{\mu\nu} = T^{\mu\nu}_{eq} + \delta T^{\mu\nu}$: non-equilibrium energy-momentum tensor $N^{\mu} = N^{\mu}_{eq} + \delta N^{\mu}$: non-equilibrium particle current $S^{\mu} = S^{\mu}_{eq} + \delta S^{\mu}$: non-equilibrium entropy current

W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341(1979).

<u>1st order viscous hydrodynamics</u>

rightarrow Step1: The entropy current S^{μ}

$$S^{\mu} = S^{\mu}_{eq.} + \frac{q^{\mu}}{T}$$

 $\Rightarrow \text{Step2}: 2^{\text{nd}} \text{ law of thermodynamics}$ $T \partial_{\mu} S^{\mu} = \Pi X - q_{\mu} X^{\mu} + \pi_{\mu\nu} X^{\mu\nu} \ge 0 \quad \P_{\mu} q^{\mu} < 0$ X: thermodynamic forces

☆Step3 : Linear response

$$\Pi = \varsigma X \quad , \quad q^{\mu} = \lambda X^{\mu} \quad , \quad \pi^{\mu\nu} = 2\eta X^{\mu\nu}$$

 ζ : bulk viscosity , λ : heat conductivity , η : shear viscosity

1st order transport coefficients (Non-negative)

C. Eckart, Phys. Rev. 58, 919(1940).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).

W. A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) **151**, 466(1983). ;Phys. Rev. D **31**, 725 (1985).

 \Rightarrow Eta/tau_pi can be obtained from lattice observable.

$$\frac{\eta}{\tau_{\pi}} = \int d^3x \int_0^{1/T} d\lambda \left\langle T_{12}(\lambda, \vec{x}) T_{12}(0, \vec{0}) \right\rangle$$

H. B. Meyer, Phys. Rev. D**76**:101701(2007).

D. Kharzeev and K. Tuchin, JHEP 0809, 093(2008).

☆ Operator-Product Expansion (OPE) Behavior of composite operator in the short distance

$$A(x)B(y) \xrightarrow{x \to y} \sum_{i} C_i(x-y)O_i\left(\frac{x+y}{2}\right)$$

A,B,O : local operator , C : c-number function

The coefficients
$$C_i$$
 behave as
 $C_i(x-y) \xrightarrow{x \to y} \left(\frac{1}{x-y}\right)^{d_A+d_B-d_i}$

 d_A , d_B , d_i : dimensions of each operator

 \rightarrow Lower order terms in d_i are dominance in OPE.

K. G. Wilson, Phys. Rev. 179, 1499(1969).