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1) Critical phenomena (static) --- Ising model ---
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Critical exponents:

Scaling relations:



Kadanoff’s block spin argument

Correlation  length ξ →∞ at phase transition point
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Original spin free energy :

Block spin free energy :

zoom out by factor b

Scaling part of thermodynamic potential 
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Low energy effective theory with cutoff Λ

Wilson’s renormalization group  (Z2  scalar field theory)

A fundamental theory at scale 

An effective theory at lower scale
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1) Integrate the momentum shell in loop corrections

k/1~ bk/1

UV

IR 0
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RG transformation = 2 steps with a parameter 

bk /|| 

2) Change the length scale for all variables (zoom out)

Repeat 1) and 2) = RG transformation → flows in r ,u
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Non-trivial fixed point 
(a critical point ):

Flow equations below critical dimension  4d
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Scaling dimensions
(Eigen value of Linearized RG) 



Functional (Exact , Non-perturbative) RG frameworks 

Basic idea = Kadanof’s block spin  

Integr
ate

UV

IR
Exactly/Non-perturbatively!



FRG frameworks

1) Wilson/Wegner-Hougton/Polchinski

e.g., UV cutoff function by Polchinski

for an implementation of Wilson’s RG  

2)  Legendre effective action (Nicoll-Chang, Wetterich, etc) 

Effective average action by Wetterich with UV cutoff + IR cutoff function 
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Wilson /Polchinski Exact RG

introduce an inverse lattice space ~ Λ (UV cutoff)

and keep the generating functional  invariant 

⇒ flow equation for the action S  
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Again, RG equation procedure consists of 2 steps:

1) Integration of field fluctuations in shell

which keeps the generating functional invariant up to const.  

2)  Rescaling     
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Many other variants of RG equations with sharp/smooth cutoff.

Getting above 2 together, flow equation for the effective action 



2) Structure of RG flow (critical manifold, continuum limit, renormalizability) 

Flow in all coefficient (operator) space (Z2 symmetric theory space)

Classification of operators by mass dimension: 

• >0 Relevant  (s-renormalizable)

• <0 Irrelevant (non-renormalizable)

• =0 Marginal  (renormalizable in most case?)

Theory space: 
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Tuning relevant couplings to critical surface. 

Flow to IR direction,  

fixed points on Critical surface 

(e.g., co-dimension 2 at d=3), 
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This can be well illustrated by FRG 

in case d=3 Z2 symmetric scalar theory at critical. 

Flow at lower energy scales k, 

Non-renormalizable couplings (irrelevant couplings)

are guided only by renormalizable ones 

(Polchinski order by order ):  
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RG flow

(perturbative) Renormalizability

reference point

lower energy point



One dimensional  flow

on critical surface 

G⇒WF , G as UV stable

⇒ massless theory 

Tuning to critical

WF  as UV stable 

⇒ massive theory

if starting from G 

then veer away from WF 

⇒UV  asymptotic free



3) Functional Renormalization Group  

Functional Z in Euclidean space: 

Effective Average Action (Wetterich)

Generating functional  for connected Green functions: 

Effective action (Legendre transform): 
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Scale dependent functional: 

Scale dependent effective action: 

IR cutoff fuction)(qRk
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Flow equation: 

Full effective action Classical /fundamental



Flow equation looks like a one-loop form with full 2-point function. 

Typical form of Cutoff function

Peak at k contributes to flow evolution ! 
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Infinite hierarchy 

Flow equation for n-point function:



We need a truncation to make flow equation be of a closed form. 

There are some truncation schemes, e.g., `` derivative expansion ’’: 

• From the structure of flow equation with cutoff function,

Loop momentum is limited as

• and for studies on e.g. uniform systems, 

external momenta are small  

Implying that n-point functions at zero momenta are decoupled 

from other sectors in flow equation, 

These functions are approximately closed in flow equation, and 

corrections are given by derivative expansion. 
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Expand the effective action by derivatives, at leading order

the effective potential with vertices at zero momentum,

Local potential approximation (LPA):  
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Solving flow equation in leading derivative expansion : 

• Suitable for critical phenomena where long-range physics does matter.

• Projection of functional space onto leading order of derivative expansion

without spoiling non-perturbative nature of FRG.  
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without rescaling ⇒ direct calculation of the scale dependent potential )(kU



Scaling form of Flow equation

• rescaling a la Wilson 

• search for fixed points 

• critical properties
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Critical

Rescaling (by  inverse ``lattice space’’ k)

Rescaled potential at WF fixed point

Rescaled running minimum



Critical exponents: 

Observe how quantities approach/escape from WF fixed point (a critical point) 

by adjusting parameters during RG evolution.  

Starting just off the critical surface and approach it by shooting some times. 
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k has a inverse length scale. 

Other critical exponent can be deduced from scaling relations.
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4, Chiral effective theory at finite T and μ (an exercise)

The same universality class as  QCD CEP (3d Ising model) 
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Derivative expansion for QM model:  

Temperature:                                  Chemical potential:         

Contributions from Bosonic and Fermionic parts. 

Optimized cut-off functions (Litim)



Bosonic part: Matsubara sum, analytic thanks to optimized cut-off function  



Fermionic part: Matsubara sum, analytic thanks to optimized cut-off function  



Flow equation for thermodynamic potential of QM model at finite T and μ :

where Bose and Fermi distribution functions:
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At a fixed T

Flow

Grid method:
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Scale evolution by flow equation 
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Boundary condition at cut-off scale:

Parameters are fixed to provide low energy physics: 

Pion decay constant and meson masses, etc. 



Taylor expansion around minimum :

Flow equations with beta functions.:



From Functional RG approach to a Chiral model

CEP

Inverse of Sigma mass → ∞

Critical region is small ?? though it is not universal quantity. What if QCD if exist?  
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EN et.al in PLB, 

grid method: thanks to B-J Schafer
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Most singular!

3d Ising model



Summary

• Legendre effective action in FRG  

1) UV scale (renormalizable/non-renormalizable theories) 

and IR cutoff function

2) non-perturbative framework at arbitrary dimension

• Derivative expansion and LPA 

• Flow equation with and without rescaling

1) direct evaluation of effective action (not only universal properties) 

2) universal scaling properties in critical regime 

3) at finite T and μ, with Fermions  and ….

Ref:  Delamotte,  Berges-Tetradis-Wetterich,  Bagnuls-Bervillier, etc 



d 2 3 4

α 0 0.110(1) 0

β 1/8 0.3265(3) 1/2

γ 7/4 1.2372(5) 1

δ 15 4.789(2) 3

η 1/4 0.0364(5)

ν 1 0.6301(4) 1/2

ω 2 0.84(4)


