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1. Introduction

Casimir energy Vacuum energy for the free part of the system

• independent of the coupling(s)

• depends on the boundary parameters and the topology

• quantum effect (zero-point oscillation)

• highly-delicate regularization is required

AdS/CFT : Geometrical interpretation of the renormalization group flow
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Figure 1: Configuration of Casimir energy measurement.
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2. Ordinary Regularization for Casimir Energy

1+3 D electromagnetism (free field theory) in Minkwski space:

ds2 = −dt2 + dx2 + dy2 + dz2 . (1)

2 perfectly-conducting plates parallel with the separation 2l in the x-direction. As
for y- and z-directions,the periodicity 2L for the IR regularization.

Periodicity : x → x+ 2l , y → y + 2L , z → z + 2L ,

L ≫ l , (2)
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the eigen frequencies and Casimir energy are

ωn,my,mz =

√
(n

π

l
)2 + (my

π

L
)2 + (mz

π

L
)2 ,

ECas = 2 ·
∑

n,my,mz∈Z

1

2
ωn,my,mz ≥ 0 , (3)

(Z: all integers) 1
2ωn,my,mz is the zero-point oscillation energy. Introducing the

cut-off function g(x) (= 1 for 0 < x < 1, 0 for otherwise),

EΛ
Cas =

∑
n,my,mz∈Z

ωn,my,mzg
(ωn,my,mz

Λ

)
≥ 0 , Λ : UV-CutOff . (4)
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take the continuum limit L → ∞, L ≪ l → ∞.

EΛ0
Cas =

∫ ∞

−∞

∫ ∞

−∞

dkydkz
(πL)

2

∫ ∞

−∞

dkx
π
l

√
k2x + k2y + k2z g(

k

Λ
)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞|k|≤Λ

dkxdkydkz
(πL)

2π
l

√
k2x + k2y + k2z ≥ 0 . (5)

Note that ECas, EΛ
Cas and EΛ0

Cas are all positive-definite. In a familiar way,
regarding EΛ0

Cas as the origin of the energy scale, we consider the quantity
u = (EΛ

Cas − EΛ0
Cas)/(2L)

2 as the physical Casimir energy and evaluate it
with the help of the Euler-MacLaurin formula as u = (π2/(2l)3) (B4/4!) =
−(π2/720)(1/(2l)3) < 0. The final result is negative. In the present analysis we
take a new regularization which keeps positive-definiteness.

5



3. New Regularization for Casimir Energy

First we re-express EΛ0
Cas using a simple identity : l =

∫ l

0
dw (w: a regulariza-

tion axis).

EΛ0
Cas/(2L)

2 =
1

22π3

∫ l

0

dw

∫
k≤Λ

P (k)2πk2dk

=
1

22π3

∫ l

0

dw(−1)

∫
r≥Λ−1

P (1/r)(−1)2πr−4dr .

P (k) ≡ k , r ≡ 1

k
, (6)

where the integration variable changes from the momentum (k) to the coordinate
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(r =
√

x2 + y2 + z2). The integration region in (R,w)-space is the infinite
rectangular shown in Fig.2.

7



w

r

l
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Figure 3: A general path r(w) of
(7) and a periodic path r(w) of
(8).
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We regularize the above expression using the path-integral as

EW
Cas

′
/(2L)2 =

1

22π3
(2π)

∫
all paths r(w)∏

w

Dr(w)

[∫
dw′P (

1

r(w′)
)r(w′)−4

]
exp {−W[r(w)]} , (7)

where the integral is over all paths r(w) which are defined between 0 ≤ w ≤ l
and whose value is above Λ−1, as shown in Fig.3. W[r(w)] is some damping
functional. W[r(w)] = 0 corresponds to (6). The slightly-more-restrictve
regularization is

EW
Cas/(2L)

2 =
1

22π3
(2π)

∫ ∞

Λ−1
dρ

∫
r(0)=r(l)=ρ
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∏
w

Dr(w)

[∫
dw′P (

1

r(w′)
)r(w′)−4

]
exp {−W[r(w)]} ≥ 0 , (8)

where the integral is over all periodic paths. Note that the above regularization
keep the positive-definite property. Hence the present regularization mainly
defined by the choice of W[r(w)]. In order to specify it, we introduce the
following metric in (R,w)-space.

Dirac Type : ds2 = dR2 + V (R)dw2 , V (R) = Ω2R2 , (9)

or

Standard Type : ds2 =
1

dw2
(dR2 + V (R)dw2)2 , V (R) = Ω2R2 . (10)

Ω : regularization constant. (When V (R) = 1, w is the familiar Euclidean time.
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) On a path R = r(w), the induced metric and the length L is given as follows.
As the damping functional W[r(w)], we take the length L.

ds2 = dw2(r′
2
+Ω2r2)2 , r′ ≡ dr

dw
,

L =

∫
ds =

∫
(r′

2
+Ω2r2)dw , W[r(w)] ≡ 1

2α
L =

1

2α

∫
(r′

2
+Ω2r2)dw . (11)

α , Ω : regularization parameters. The limit α → ∞ corresponds to (6).

Numerical calculation can evaluate EW
Cas (8), and we expect the following

form[PTP121(2009)727].

EW
Cas

(2L)2
=

a

l3
(1− 3c ln (lΛ)) , (12)
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where a and c are some constants. a should be positive because of the positive-
definiteness of (8). The present regularization result has, like the ordinary
renormalizable ones such as the coupling in QED, the log-divergence. The
divergence can be renormalized into the boundary parameter l. This means l
flows according to the renormalization group.

l′ = l(1− 3c ln(lΛ))−
1
3 , β ≡ d ln(l′/l)

d lnΛ
= c , |c| ≪ 1 , (13)

where β is the renormalization group function, and we assume |c| ≪ 1. The
sign of c determines whether the length separation increases (c > 0) or decreases
(c < 0) as the measurement resolution becomes finer (Λ increases). In terms of
the usual terminology, attractive case corresponds to c > 0, and repulsive case to
c < 0.
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4. Conclusion

We have proposed a new regularization, in the quantum field theory, for the
calculation of divergent physical quantities such as Casimir energy.

• ds2 = dR2 +Ω2R2dw2 (Elastic view to the space)

• Path integral using Hamiltonian (Weight functional) of length.

• Positive definite
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Figure 4: A path of line in 2D Euclidean space (X,τ). The path starts at x(0)=ρ
and ends at x(β)=ρ′.
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2.Quantum Statistical System of Harmonic
Oscillator

’Dirac’ Type

ds2 = dX2 + ω2X2dτ2 = GABdX
AdXB ,

(XA) = (X1, X2) = (X, τ) , (GAB) = diag(1, ω2X2) ,

R = GABRAB = 0 , (14)

where A,B = 1, 2. Periodicity:

τ → τ + β , β : inverse of temperature (β =
1

kT
) (15)
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The induced metric on a line

X = x(τ) , dX = ẋdτ , ẋ ≡ dx

dτ
, 0 ≤ τ ≤ β ,

ds2 = (ẋ2 + 2V (x))dτ2 , V (x) ≡ 1

2
x2 . (16)

Then the length L of the path x(τ)

L =

∫
ds =

∫ β

0

√
ẋ2 + 2V (x)dτ . (17)

We take the half of the length (12L) as the system Hamiltonian (minimal length
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principle ). Free energy F :

e−βF =

∫ ∞

−∞
dρ

∫
x(0) = ρ
x(β) = ρ

∏
τ

Dx(τ) exp

[
−1

2

∫ β

0

√
ẋ2 + 2V (x)dτ

]
, (18)

Normal Type

ds2 =
1

dτ2
(dX2)2 + 4V (X)2dτ2 + 4V (X)dX2 =

1

dτ2
(dX2 + 2V (X)dτ2)2 , (19)

where we have the following condition.

dτ2 ∼ O(ϵ2) , dX2 ∼ O(ϵ2) ,
1

dτ2
dX2 ∼ O(1) , (20)
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Note that we do not have 2D metric in this case (’primordial’ geometry). We
again impose the periodicity (period: β):(15). The induced metric on the line:

X = x(τ) , dX = ẋdτ , ẋ ≡ dx

dτ
, 0 ≤ τ ≤ β ,

ds2 = (ẋ2 + 2V (x))2dτ2 . (21)

On the path, we have this induced metric. The length L is given by

L[x(τ)] =

∫
ds =

∫ β

0

(ẋ2 + 2V (x))dτ . (22)
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Taking 1
2L as the Hamiltonian (minimal length principle), the free energy F :

e−βF =

∫ ∞

−∞
dρ

∫
x(0) = ρ
x(β) = ρ

∏
τ

Dx(τ) exp

[
−1

2

∫ β

0

(ẋ2 + 2V (x))dτ

]
, (23)

This is exactly the free energy of the harmonic oscillator.
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Figure 5: Singular and regular lines in 2D Euclidean space (X,τ).
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5. Conclusion

We have proposed a new formalism to calculate the friction properties. The
advantageous point, compared with the Langevin eq., is the use of the path-
integral. It clarifies the averaging procedure.
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