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1. Introduction

Casimir energy Vacuum energy for the free part of the system

independent of the coupling(s)

depends on the boundary parameters and the topology

quantum effect (zero-point oscillation)

highly-delicate regularization is required

AdS/CFT :

Geometrical interpretation of the renormalization group flow



Figure 1: Configuration of Casimir energy measurement.
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2. Ordinary Regularization for Casimir Energy

143 D electromagnetism (free field theory) in Minkwski space:
ds® = —dt® + dz* + dy* + dz° . (1)

2 perfectly-conducting plates parallel with the separation 2/ in the x-direction. As
for y- and z-directions,the periodicity 2L for the IR regularization.

Periodicity : z —x+2] , y—y+2L , z—2+2L |,

L>1 |, (2)
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the eigen frequencies and Casimir energy are

1
ECas =2 Z §wn,my,mz >0 ) (3)

(Z: all integers) %wmmy,mz is the zero-point oscillation energy. Introducing the

cut-off function g(z) (=1 for 0 < x < 1, 0 for otherwise),

Eé\’as — Z Wn,my,ng (wnafj\yymz) Z 0 , A UV-CutOff . (4)

Nn,My, ML



take the continuum limit L — oo, L < [ — oc.

dk dk ., dk., k
2 2 2
Cas / / / \/k ‘|‘]€ ‘|‘k’ (A)
T dkdkw TR 0.
0 |k|<A Z

Note that Fcus, ES,, and EAY  are all positive-definite. In a familiar way,
regardmg ECas as the origin of the energy scale, we consider the quantity
u = (EA,, — EAY )/(2L)? as the physical Casimir energy and evaluate it
with the help of the Euler-MacLaurin formula as u = (72/(21)%) (B4/4!) =
—(7w2/720)(1/(20)°) < 0. The final result is negative. In the present analysis we
take a new regularization which keeps positive-definiteness.




3. New Regularization for Casimir Energy

: : : : : l :
First we re-express Eégs using a simple identity : [ = fo dw (w: a regulariza-
tion axis).

1 l
EAY J(2L)? = 227T3/0 dw /lKA P(k)2nk*dk

S /0 dw(-1) / L P2y

1
E ) (6)
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where the integration variable changes from the momentum (%) to the coordinate
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(r = v/22 +y2+ 22). The integration region in (R,w)-space is the infinite
rectangular shown in Fig.2.
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We regularize the above expression using the path-integral as

EY, /(2L)? = 221”3(2%) /all paths 7(w)

[ [P ) e - WE@)]) (7)

r(w’)

where the integral is over all paths r(w) which are defined between 0 < w <[
and whose value is above A™!, as shown in Fig.3. W[r(w)] is some damping
functional.  W|[r(w)] = 0 corresponds to (6). The slightly-more-restrictve

Cas/(2L
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r(w’)

where the integral is over all periodic paths. Note that the above regularization
keep the positive-definite property. Hence the present regularization mainly
defined by the choice of W|r(w)]. In order to specify it, we introduce the
following metric in (R, w)-space.

Dirac Type : ds®* =dR*+ V(R)dw* ,V(R) = Q°R* |, (9)

or

Standard Type : ds* dR* 4+ V(R)dw?)* ,V(R)=Q*R* . (10)

= @
() : regularization constant. (When V(R) = 1, w is the familiar Euclidean time.
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) On a path R = r(w), the induced metric and the length L is given as follows.
As the damping functional W|r(w)], we take the length L.

d
ds® = ale(r’2 + Q%) ' = é ,
1 1
L= /ds = /(r’2 + 2 rHdw , Wr(w)] = %L =5 (r? + Q%r¥)dw . (11)

« , € : regularization parameters. The limit & — oo corresponds to (6).

Numerical calculation can evaluate EY . (8), and we expect the following
form[PTP121(2009)727].

w
ECa,s _ ﬁ

s = (= 3cl (4) (12)

11



where a and ¢ are some constants. a should be positive because of the positive-
definiteness of (8). The present regularization result has, like the ordinary
renormalizable ones such as the coupling in QED, the log-divergence. The
divergence can be renormalized into the boundary parameter [. This means [
flows according to the renormalization group.

Wl

dn(l'/1)

! . —
I'=1(1-3cn(lA))™5 , f="74 ,

<1, (13)

where (3 is the renormalization group function, and we assume |c| < 1. The
sign of ¢ determines whether the length separation increases (¢ > 0) or decreases
(c < 0) as the measurement resolution becomes finer (A increases). In terms of
the usual terminology, attractive case corresponds to ¢ > 0, and repulsive case to
c < 0.
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4. Conclusion

We have proposed a new regularization, in the quantum field theory, for the
calculation of divergent physical quantities such as Casimir energy.

o ds? = dR? + Q°R?dw? (Elastic view to the space)

e Path integral using Hamiltonian (Weight functional) of length.

e Positive definite
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Figure 4. A path of line in 2D Euclidean space (X,7). The path starts at x(0)=p

and ends at x(3)=p’.

X (1)
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2.Quantum Statistical System of Harmonic
Oscillator

'Dirac’ Type
ds® = dX? + W’ X?%dr? = G ApdXAdX "B

(XN =X X% =(X,7) , (Gap)=diag(l,w*X?)
R=G*BR,s5 =0

Y

Y

: (14)

where A, B =1, 2. Periodicity:

T—717+06 , [ : inverse of temperature (8 = k—T) (15)
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The induced metric on a line

d
X=a(r) , dX=ddr , 3= , 0<7<f |
T
1
ds* = (&% + 2V (x))dr? , V()= 5:132 : (16)
Then the length L of the path x(7)
s
L= /ds :/ Vi + 2V (x)dr . (17)
0

We take the half of the length (3L) as the system Hamiltonian (minimal length
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principle ). Free energy F

e BF — /_ Z dp / b(0) — p TIDe(r) e !; Oﬁ N 2V(w)d¢] (18)
z(B)=p
Normal Type
ds?® = #(dﬁf + 4V (X)2dr? + 4V (X)dX? = #(dXQ +2V(X)dr?)?* ,(19)
where we have the following condition.
dr* ~ O(e*) , dX*~O(e) L ax? o o(1) (20)

dr?
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Note that we do not have 2D metric in this case ('primordial’ geometry). We
again impose the periodicity (period: 3):(15). The induced metric on the line:

d
X=x(r) , dX =xdr |, i=r , 07

Y
T

ds® = (2 4 2V (z))%dr* . (21)

On the path, we have this induced metric. The length L is given by

B
Lia(r)] = / ds — /O (2 4+ 2V (2))dr (22)
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Taking %L as the Hamiltonian (minimal length principle), the free energy F

0

©.@) /8
e P = /_OO dp/x(O) — ) HDCIZ(T) exp [—;/ (3'32—|-2V(a:))d7'] , (23)

This is exactly the free energy of the harmonic oscillator.
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Figure 5: Singular and regular lines in 2D Euclidean space (X, 7).
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5. Conclusion

We have proposed a new formalism to calculate the friction properties. The
advantageous point, compared with the Langevin eq., is the use of the path-
integral. It clarifies the averaging procedure.

21



