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Caldeira-Leggett model
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* non-local effective action

» Simple case : Effective Ising spin model
In particular ,long range Ising model has
a long history itself and it is known that
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phase transition exist for 1<p<2

—> Discretizing time and taking only two values +wv for g, the systemin
Euclidean path integral formalism is equivalent to 1-D Ising model
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Our scheme to approach

infinitely long range interactions

calculation for the finite range int
* FRS (Finite Range Scaling method)
Evaluation of the criticality
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BDRG(Block Decimation Renormalization Group)

Non-nearest interactions are not ea by tl
requires the interaction space of infinite dimension.
* We define BDRG, an extended DRG to fit long range (but finite) interactions.
*  We take the maximal range of interaction n and treat the long range

interactions K, . | i . K3

<example n=3>

The k-th RG transformation
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e There are only nearest neighbor inter-block interactions. The system is
regarded as a nearest neighbor multi-state model.

« T (transfer) matrices represent the interactions between neighboring blocks.
In the case of Ising model, the dimension of T'matrix is 2" X 2.

e BDRG is able to calculate finite-range system exactly.



Quantum Mechanical BDRG

We restrict interaction range n, ,
Note that a state is infinite dimensional in quantum mechanlcs
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Ground state approximation

ground state 0) _
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2-state
approximation

Our aim is to evaluate the plausibility of our BDRG & FRS in the effective
Ising model with the ground state approximation.




For example, n=2
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T = e Wlao, bib2) f dzydeadyidys Vg, (21)¥5,(22) Vs, (y1)¥s, (¥2)

m(zy — 232)2 _ m(xp — ﬂl)z _ m(y1 — ﬂ?)z -kinetic term
4¢ 2e 4e

SSVED+VEI VD) VG|

1 1
—Le P |(ay - 22)% + (22 = 91)? + 501 — 92)?

o

- 2 2
or ((‘ﬁl —v1)° + (22 —32) )] :dissipation term
e 2%integrations of 4-dimension

o Inthe ground state approximation, 2°"

highly multi-dimensional integrations we
------------ adopt the Monte Carlo method.
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Finite Range Scaling (FRS) method

—

This method can estimate infinite range information from finite ra
information to determine the critical point quantitatively.

* First, the finite range susceptibility x(n) is calculated exactly by BDRG.

* Next, assuming that the variation of the susceptibility with respect to
range n satisfies the following scaling relation, we find the scaling exponent
B (FRS exponent),

1\ B(pm)
0g x(n) —logx(n—1) , 7, ()

Then, the infinite n behavior of x (n)is controlled

by the zeta function ((3), which has a pole singularity at 3=1.
Finally, the critical nis determined by the condition 3 =1.
Hereafter we search for the point S(p, n) =1.



Behavior of 3
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Comparison with other approaches
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dissipative double well system, where th
range interactions cause the dissipative effects.

Discretizing the time and taking the 2-state approximation with the ground
state, we convert the system into an effective long range Ising model. We
apply our BDRG & FRS method, which has been proven successful in the
simple long range Ising model, to this effective Ising model.

Highly multi-dimensional integrations are necessary to calculate effective
Ising interactions and we adopt the Monte Carlo method, the validity of
which has been confirmed by comparing our MC results with the
continuum limit e = 0 in case of no-dissipation.

Then applying our FRS method, we get the critical dissipation by the
condition, the FRS exponent 3 (7)¢)=1.

We compared our results with those obtained by other approaches.
Further calculations are required to reduce possible systematic errors.




