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Caldeira-Leggett model

target environment
path integrate out environmental degrees of freedom

• non-local effective action

l ff d l• Simple case : Effective Ising spin model
In particular ,long range Ising model  has 
a long history itself and it is known that

seek for critical 
coupling constanta long history itself and it is known that

phase transition exist for                     .
coupling constant

Discretizing time and taking  only two values         for q, the system in 
fEuclidean path integral formalism is equivalent to 1-D Ising model 

with long range interactions



Our scheme to approach

• BDRG(Block Decimation Renormalization Group)

infinitely long range interactions 
BDRG(Block Decimation Renormalization Group)
calculation for the finite range interactions

• FRS（Finite Range Scaling method) 
Evaluation of the criticality  
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BDRG(Block Decimation Renormalization Group)

• Non-nearest interactions are not easily treated by the original DRG because it 
requires the interaction space of infinite dimension.

• We define BDRG, an extended DRG to fit long range (but finite) interactions. g g ( )
• We take the maximal range of interaction  n and treat the long range 

interactions Kn .

<example n=3>

×n site n site n site

The k-th RG transformation ×The k th RG transformation 

RGT

• There are only nearest neighbor inter-block interactions.  The system is 
regarded as a nearest neighbor multi-state model.

• T (transfer) matrices represent the interactions between neighboring blocks.T (transfer) matrices represent the interactions between neighboring blocks. 
In the case of Ising model, the dimension of T matrix is 2n £ 2n.

• BDRG is able to calculate finite-range system exactly.



Quantum Mechanical BDRG

We restrict interaction range n, then 1-block involves n sites. 
Note that a state  is infinite dimensional in quantum mechanics.

bi-local potential W 
and T matrixand T matrix

change of base
completeness:

change of base

*We need to choose a proper set of states.

States need to be restricted.



Ground state approximation
We take the linear combination of ground state and 1st excited state of double 
well without dissipation,                .  It is one of 2-state approximations and 
consistent to the procedure in the CL model.
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Our aim is to evaluate the plausibility of our BDRG & FRS in the effective 
Ising model with the ground state approximation. 



For example, n=2

ground state approximation

:kinetic term

t ti l t:potential term

*² : discretization step
:dissipation term

 24 integrations of 4-dimension

² : discretization step

 In the ground state approximation, 22n

integrations of 2n-dimensions are necessary 
t t th i iti l T t i f BDRG T kto get the  initial T matrix of BDRG. To make 
highly multi-dimensional integrations we 
adopt the Monte Carlo method.



Finite Range Scaling  (FRS) method 

• This method can estimate infinite range information from finite range  
information to determine the critical point quantitatively.information to determine the critical point quantitatively.

• First,  the finite range susceptibility Â(n) is calculated exactly by BDRG.

• Next, assuming that the variation of the susceptibility with respect toNext, assuming that the variation of the  susceptibility with respect to  
range n satisfies the following scaling relation, we find the scaling exponent 
¯ (FRS exponent) ,

• Then, the infinite n behavior of  Â (n) is controlled 

by the zeta function ³ (¯) ,  which has a pole singularity at ¯=1.         
• Finally the critical η is determined by the condition ¯ 1• Finally, the critical η is determined by the condition ¯ = 1.
• Hereafter we search for the point                          .



Behavior of ¯

(number of configurations )





<Earlier researches abo t dissipati e do ble ell q ant m mechanics>
Comparison with other approaches

<Earlier researches about dissipative double well quantum mechanics>
Monte Carlo simulation：
Takeshi MATSUO, Yuhei NATSUME and Takeo KATO, J. Phys. Soc. Jpn. 75 (2006) 1-4.
Other approach by using non-perturbative Renormalization Group method：
Ken-Ichi Aoki and Atsushi Horikoshi, Phys.Lett. A 314 (2003) 177-183.



Summary
 We study the Classical-Quantum phase transition in the quantum  

Summary
y Q p q

dissipative double well system, where the Caldeira-Leggett effective long 
range interactions cause the dissipative effects.

• Discretizing the time and taking the 2 state approximation with the ground• Discretizing the time and taking the 2-state approximation with the  ground 
state, we convert the system into an effective long range Ising model. We 
apply our  BDRG & FRS method, which has been proven successful in the 
i l l I i d l hi ff i I i d lsimple long range Ising model, to this effective Ising model.

• Highly multi-dimensional integrations are necessary to calculate effective 
Ising interactions and we adopt the Monte Carlo method, the validity of g p , y
which has been confirmed by comparing our MC results with the 
continuum limit ² → 0 in case of no-dissipation.

• Then applying our FRS method we get the critical dissipation by the• Then applying our FRS method, we get the critical dissipation by the 
condition, the FRS exponent ¯ (     )=1. 

• We compared our results with those obtained by other approaches. p y pp
• Further calculations are required to reduce possible systematic errors. 


