Leticia F. Cugliandolo

Université Pierre et Marie Curie Sorbonne Universités Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia

Work in collaboration with

D. Loi & S. Mossa (2007-2009) and

G. Gonnella, G.-L. Laghezza, A. Lamura, A. Mossa & A. Suma (2013-2015)

Kyoto, Japan, August 2015

Motivation & goals

Active dumbbell system

- Reason for working with this model
- Main properties of the model phase diagram
- Translational and rotational collective motion
- Dynamics of tracers in complex environments revisited.
- Effective temperatures out of equilibrium

Diatomic molecule - toy model for bacteria

Escherichia coli - Pictures borrowed from internet.

Bacteria colony

Active matter

Rabani, Ariel and Be'er 13

Diatomic molecule

Two spherical atoms with diameter $\sigma_{
m d}$ and mass $m_{
m d}$

Massless spring modelled by a finite extensible non-linear elastic force between the atoms $\mathbf{F}_{\text{fene}} = -\frac{k\mathbf{r}}{1 - r^2/r_0^2}$ with an additional repulsive contribution (WCA) to avoid colloidal overlapping.

Polar active force along the main molecular axis $\mathbf{F}_{act} = F_{act} \hat{\mathbf{n}}$.

Purely repulsive interaction between colloids in different molecules.

Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces, $-\gamma \mathbf{v}_i$, and independent noises, η_i , on the beads.

Directional motion (active) and effective torque (noise)

Control parameters

Number of dumbbells N and box volume S in two dimensions :

packing fraction

$$\phi = \frac{\pi \sigma_{\rm d}^2 N}{2S}$$

Energy scales:

Active force work $F_{
m act}\sigma_{
m d}$ thermal energy k_BT

Active force $F_{
m act}\sigma_{
m d}/\gamma$ viscous force $\gamma\sigma_{
m d}^2/m_{
m d}$

Péclet number

$$\mathbf{Pe} = \frac{2F_{\rm act}\sigma_{\rm d}}{k_B T}$$

Reynolds number

$$\mathsf{Re} = \frac{m_{\mathrm{d}} F_{\mathrm{act}}}{\sigma_{\mathrm{d}} \gamma^2}$$

We keep the parameters in the harmonic (fene) and Lennard-Jones (repulsive) potential fixed. Stiff molecule limit: vibrations frozen.

We study the ϕ , $F_{\rm act}$ and k_BT dependencies. Pe $\in [0, 40]$, Re $< 10^{-2}$

Phase segregation

Fixed packing fraction ϕ and fixed activity $F_{
m act}$, vary k_BT

Gonnella, Lamura & Suma 13

Phase diagram : from the distribution of local dumbbell density

Mechanism for aggregation: note the head-tail alignment in the cluster.

Phase diagram

Focus on the dynamics in the homogeneous phase ; vary ϕ and Pe.

Single molecule limit

Active force switched-on, $F_{\rm act} \neq 0$

 $\mathsf{ballistic} \to \mathsf{diffusive} \to \mathsf{ballistic} \to \mathsf{diffusive}$

- The dynamics is accelerated by $F_{\rm act}$ and a new ballistic regime in the centreof-mass translational motion appears at $t^* = 16t_a/{\rm Pe}^2$
- Ballistic to diffusive crossover of the cm motion at Note that $t_a \to \infty$ at $k_B T \to 0$.

$$\chi = \gamma \sigma_{\rm d}^2 / (2k_B T)$$

• The diffusion constant is

$$D_A = k_B T / (2\gamma) \left(1 + \mathrm{Pe}^2\right)$$

 $\langle [\mathbf{r}_{\rm cm}(t+t_0) - \mathbf{r}_{\rm cm}(t_0)]^2 \rangle$

Single molecule limit

Active force switched on, $F_{\rm act} \neq 0$

- The dynamics is accelerated by $F_{\rm act}$ and a new ballistic regime in the centre-

of-mass translational motion appears at

• Ballistic to diffusive crossover of the cm motion at Note that $t_a \to \infty$ at $k_B T \to 0$.

$$t^* = 16t_a/\mathrm{Pe}^2$$

$$t_a = \gamma \sigma_{\rm d}^2 / (2k_B T)$$

• The rotational motion is not affected by the longitudinal active force.

Finite density system

Centre-of-mass mean-square displacement

$$\langle \Delta \mathbf{r}_{\rm cm}^2 \rangle = \langle [\mathbf{r}_{\rm cm}(t+t_0) - \mathbf{r}_{\rm cm}(t_0)]^2 \rangle$$

Pe and ϕ effect

Finite density system

Angular mean-square displacement

$$\langle \Delta \theta^2 \rangle = \langle [\theta(t+t_0) - \theta(t_0)]^2 \rangle$$

Pe and ϕ effect

Diffusion constants

$$\langle \Delta \mathbf{r}_{\mathrm{cm}}^2 \rangle \simeq 2 d D_A t$$

Translational diffusion

diminishes at

increasing density

at all Pe

increases at

increasing Pe

at fixed ϕ

Proposals for ϕ , Pe dependence

Similar to what observed for

e.g., Janus particles in $\mathsf{H}_2\mathsf{O}_2$

Zheng et al 13

Diffusion constants

Rotational diffusion
enhanced at
increasing density
for large Pe
Incipient clusters

$$\frac{D_R}{k_BT} = f_R(\mathrm{Pe},\phi)$$

ø

Translational motion in the active-force driven regimes

$$p(\Delta x) = p(x_{\rm cm}(t+t_0) - x_{\rm cm}(t_0))$$

 $t^* < t < t_a$

 $t_a < t$

$$\phi = 0.1$$

$$\sigma_x = \langle \Delta x^2 \rangle^{1/2}$$

Non-Gaussian at high Pe

Translational motion in the active-force driven regimes

Janus particles in H_2O_2

Same double peak at high Pe

Zheng et al. 13

Translational motion in the active-force driven regimes

$$p(\Delta x) = p(x_{\rm cm}(t+t_0) - x_{\rm cm}(t_0))$$

0.3 0.4 0.5 0.6 0.7

10⁴

10⁻⁴

10⁻⁵ – 10⁻³

10-4

10⁰ 10¹

Non-Gaussian & exponentail tails in III

Translational motion in super-cooled liquids and granular matter

$$G_s(r) = N^{-1} \sum_{i=1}^{N} \langle \delta(r - |\vec{r}_i(t + t_0) - \vec{r}_i(t_0)|) \rangle$$

van Hove correlation function delay-time shorter than the structural relaxation time $t < t_{\alpha}$ $\sigma = \langle \Delta \mathbf{r}^2 \rangle^{1/2}$

Exponential tails

Chaudhuri, Berthier & Kob 07

Rotational motion in the active-force driven regimes

$$p(\Delta \theta) = p(\theta(t + t_0) - \theta(t_0))$$

 $t^* < t < t_a$

 $t_a < t$

$$\phi = 0.1$$
 Low density
 $\sigma_{ heta} = \langle \Delta \theta^2 \rangle^{1/2}$
Gaussian

Rotational motion in the active-force driven regimes

$$p(\Delta \theta) = p(\theta(t + t_0) - \theta(t_0))$$

 $\begin{array}{l} \left| \mbox{ Pe = 40} \right| \\ \sigma_{\theta} = \langle \Delta \theta^2 \rangle^{1/2} \\ \mbox{ Exponential tails for } \phi \geq 0.7 \end{array}$

Phase diagram

cfr. **Berthier 13 ; Berthier & Levis 14-15** for a different model system & **Suma** *et al.* work in progress

Diatomic molecule

Two spherical atoms with diameter $\sigma_{
m d}$ and mass $m_{
m d}$

Massless spring modelled by a finite extensible non-linear elastic force between the atoms $\mathbf{F}_{\text{fene}} = -\frac{k\mathbf{r}}{1 - r^2/r_0^2}$ with an additional repulsive contribution (WCA) to avoid colloidal overlapping.

Polar active force along the main molecular axis $\mathbf{F}_{act} = F_{act} \hat{\mathbf{n}}$.

Purely repulsive interaction between colloids in different molecules.

Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces, $-\gamma \mathbf{v}_i$, and independent noises, η_i , on the beads.

Directional motion (active) and effective torque (noise)

Passive tracers

Spherical particles

Spherical particle with diameter $\sigma_{
m tr}$ and mass $m_{
m tr}$

Very low tracer density $\phi_{
m tr} \ll \phi$

No polar active force $\mathbf{F}_{\mathrm{act}}^{\mathrm{tr}}=0$

Purely repulsive interaction between colloids in different molecules & tracers.

Langevin modelling of the interaction with the embedding fluid:

viscous forces, $-\gamma_{\rm tr} {\bf v}_{\alpha}^{\rm tr}$, and independent noises, $\eta_{\alpha}^{\rm tr}$, on the tracers.

We will distinguish thermal $\gamma_{tr} \neq 0$ from athermal $\gamma_{tr} = 0$ tracers

Spherical tracers to probe the dynamics of the "active bath"

Gonnella, Laghezza, Lamura, Mossa, Suma & LFC

Passive tracer motion

Thermal vs. athermal

 $\sigma_{
m d}=\sigma_{
m tr},\ m_{
m d}=m_{
m tr}$ thermal $\gamma_{
m d}=\gamma_{
m tr},\ T_{
m d}=T_{
m tr}$ athermal $\gamma_{
m tr}=0,\ T_{
m d}=T_{
m tr}$

Study of the dependence on $m_{
m tr}$, ϕ , and other parameters

Suma, Gonnella & LFC in preparation

Diffusivity enhancement

Active density dependence of the tracer's diffusion constant

Wu & Libchaber 00 bacteria

Leptos et al. 09 algae

Is this captured by this model (with no hydrodynamics) for some parameters ?

Motivation & goals

Active dumbbell system

- Model with persistent activity & segregation
- Translational and rotational collective motion in the homogeneous phase

Four dynamic regimes even at finite ϕ $D/(k_BT)$'s in last diffusive regime depend on Pe, ϕ Complex (though simpler than in just passive colloids, cfr. **Tokuyama & Oppenheim 94**) dependence of translational diffusion constant on ϕ Enhanced rotational diffusion constant for increasing $\phi < 0.5$ More complex than Pe² corrections at finite ϕ

• Effective temperatures out of equilibrium.

w/ Gonnella, Laghezza, Lamura, Mossa & Suma via FDT

In progress : potential and kinetic tracers coupled to the active dumbbells,

always in homogenous phase

(non persistent) Active polymers

Tracer's velocities & effective temperature

Spherical particles with mass m_{tr} that interact with the active matter.

Maxwell pdf of tracers' velocities v at an effective temperature $T_{\rm eff}(m_{tr})$

Loi, Mossa & LFC 07-09

Work in progress

Passive Leannard-Jones system

The kinetic energy of a tracer particle (the thermometer) as a function of its mass ($\tau_0 \propto \sqrt{m_{tr}}$) $\frac{1}{2}m_{tr} \langle v_z^2 \rangle = \frac{1}{2}k_B T_{\text{eff}}$.

J-L Barrat & Berthier 00

Same measurement in active dumbbell sample to compare with measurements of $T_{\rm eff}$ from FDT.