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Overview 

! Introduction 

 Elasticity of Jammed materials 
 

! Probing jamming in a system of photo-elastic (soft) discs 

 Preparing a jammed granular glass 

 Exploring the vicinity of point J    
 

! Mechanical response to a point like disturbance 

 Dilatancy and Shear Softening around an Inflater 
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Experimental samples of jammed materials 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back to real world, but simplified

Experimental model systems

To what extent athermal soft spheres describe such systems ?

Green peas, Hales, 1727 Emulsion, Jorjadze et al., 2011

Colloids, Liu et al., 2010

Grains, Behringer Foam, Katgert et van Hecke, 2010

Grains, Pouliquen
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A paradigm: Jamming of soft spheres at T=0 

! A well defined concept,   
(O’Hern et al. (2002) ) 

 

 

A geometrical transition 

•  # of contacts jumps to zJ = ziso  

•  δz= z-ziso ~ (Φ-ΦJ)1/2 

•  g(r=d) = delta function 
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Rigidity transition of frictionless packings 

ΦJ 

P 

Φ	


Hard Soft 

A mechanical transition 

•  Pressure scales as prescribed by elasticity of the individual grains P ~ δφµ   

•  Elastic moduli scaling K/k ~ δz0; G/k ~ δz ~ δφ0.5  

•  NB : k is the stiffness of the individual grains k ~ δφµ-1	


•  In all cases G/K ~ δφ0.5   
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Length scales 
! Two length scales associated with the jamming transition 

     Lerner, E. et al (2014). Soft Matter, 10(28), 5085–5092. 

!   l* ~ 1/δz : length below which stability feels boundaries  

              can be seen as a point to set lengthscale 

! lc ~ 1/δz0.5 : length of 2-points correlations , or response to point perturbation 

    also the length scale beyond wich continuum elasticity holds 

! However numerical study lc ~ 1/δz      Ellenbroek, et al  (2006).PRL 97(25), 258001 
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! Validity of linear elasticity close to jamming : a long standing debate 

! Shear softening for strain γ > γc 

Hayakawa H. et al.  PRE 90, 042202 (2014) 

!   G ~ δφµ-1/2 γ-1/2	


! γc ~ δφµ 

! More Recent finite size scaling analysis 
Goodrich et al (2014). PRE, 90(2), 022138;   

van Deen et al (2014). PRE, 90(2), 020202 

! γc ~  P      for Ν2 P << 1 

! γc ~ P1/2 / Ν     for Ν2 P >> 1	


ΝΒ : P ~ δφµ	


the closer to jamming, the smaller the critical strain 

 

 

Finite size effects 

µ=1 
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The present experimental study :  

! Prepare a jammed granular glass 

! Perform the inflater experiment 

! Identify the linear and non linear regime for the response 

! Qualify the scaling with the distance to jamming 
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Preparing a jammed granular glass Pressure : from kinetic to sti↵ness

Stationnary pressure

Measurement of pressure
with vibration
without vibration
kinetic pressure
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0
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1
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�

The photoelastic grains are soft.

C. Coulais Contacts Dynamics

Obtaining a granular glass

1 Slow logarithmic
compaction

2 Measurement of
dynamics in between
decompaction steps
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C. Coulais Contacts Dynamics

! A frozen structure 

 

 

 

 

 

 

 

 

! A bi-disperse 2d packing 

 

µ ≈1.7± 0.1
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Contact number measurement

Interparticle force measurement
thresholding
gap < ✏

!
thresholding
force > f0

0.805 0.81 0.815 0.82
2

3

4

5

z

�

Force

threshold

�J

� < �J � ⇠ �J � > �J

C. Coulais Contacts Dynamics

Signature of jamming within contacts … 

φ+
 = 0.814 

φ+ 

 φ < φ+  φ > φ+ 
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… and contact dynamics Dynamics : the contact network relaxes heterogeneously

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it
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Contact Network Dynamics : from unjammed to jammed
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Probing elasticity : set up 

! Prepare the system at large 
packing fraction 
(under vibration) 

! Inflate an intruder in the 
center  
(the vibration is stopped) 

! Decrease the packing fraction 
(under vibration) 

! iterate 

R0 - > R0 + a 
γ = a/R0 
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Probing elasticity : the linear elastic framework 

! Nota Bene : In the limit of large R1, 
A->0, B->1 :  this is a shear test! 

R0
a + R0

R1

! U
! ε
!

(er, eθ, ez)

! U U = U(r)er
! r = R0 U(R0) = a
! r = R1 U(R1) = 0

! ε(U) =
1

2

(
rad U + rad U T

)

! Div = 0

! = λTr(ε)1 + 2µε

A = R0
2

R1
2 − R0

2( )

div σ( ) = 0

σ =
1
2
Tr(σ )1+τ

σ = KTr(ε)1+ 2Gγ

ε =
1
2
∇U + t∇U"# $%=

1
2
Tr(ε)1+γ

U(R0 ) = a
U(R1) = 0

δ ≡ Tr ε( ) = −2 a
R0
A

γ ≡ J2 γ( ) ≡ 1
2
γ γ = a

R0
B R0

r
#

$
%

&

'
(
2

P ≡ Tr σ( ) = KTr ε( )

τ ≡ J2 τ( ) = 1
2
τ τ = 2GJ2 γ( )

B = R1
2

R1
2 − R0

2( )
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For each packing fraction and each a/R0 

!   

δ=Tr(ε) γ=J2(ε) 

P=Tr(σ) τ=J2(σ) 
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
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deviates significantly from the elastic response : there
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spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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Fig. 5. Cartographies des invariants des déformations et des
contraintes (extraite de [32]). Cartographies de la dilatation,
ε , (a), cisaillement, γ, (b), pression, P , (c) et contrainte de
cisaillement, τ , (d), pour φ = 0,8294 et a∗ = 4,4 × 10−2. Les
grains sans couleurs sont masqués par le tube pneumatique
qui alimente l’intrus en air comprimé. Les images représentées
ici ne représentent qu’un tiers du système entier.

Fig. 5. Maps of the strain and stress invariants. (Adapted
from [32]). Maps of dilation, ε, (a), shear strain, γ, (b), pres-
sure, P , (c) and shear stress, τ , (d), for φ = 0.8294 and
a∗ = 4.4 × 10−2. The displayed images only show a third of
the whole system. The uncolored grains sit below the pneumatic
tube connected to the intruder, which masks the field of view.

l’intrus, une importante dilatation se produit à cause de
la condition limite imposée par l’intrus lui-même. Etant
donné que l’intrus possède un diamètre plus important
que celui des grains, la variation de fraction surfacique
localisée due au gonflement reste singulière par rapport à
la fraction surfacique moyenne. Le reste de l’empilement
présente de large fluctuations (avec ici un écart type de
3×10−3) avec un léger accroissement de la fraction surfa-
cique (d’amplitude 6×10−5) (Fig. 5a), assurant la conser-
vation globale du volume.

Par conséquent, en dehors de la première couronne
de grains autour de l’intrus, que nous allons exclure de
l’analyse, le matériau peut être considéré comme incom-
pressible. Nous postulerons donc dans la suite que ε = 0.
Ainsi, la sollicitation mécanique se révèle plutôt être une
déformation cisaillante pure. La deuxième observation im-
portante montre un écart significatif à la réponse élastique
linéaire : le champ de pression est inhomogène et diminue
à mesure que l’on s’écarte du centre de l’intrus. Comme
ce champ de pression ne correspond pas à des variations
sensibles de volume, il est nécessairement induit par la
déformation de cisaillement. Cet effet est la manifesta-
tion de la présence de dilatance dans un système à vo-
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Fig. 6. Réponse au gonflement. Moyennes spatiales des in-
variants des tenseurs en fonction du paramètre de gonflement
a∗. (a) Pression P , (b) Cisaillement γ, (c) Contrainte de ci-
saillement σ et (d) puissance de travail des efforts de cisaille-
ment γσ. Le code couleurs s’échelonne de bleu pour les faibles
fractions surfaciques à rouge pour les grandes fractions surfa-
ciques.

Fig. 6. Response to inflation. Spatial averaged of the tensors
vs. the inflation parameter a∗. (a) Pressure P , (b) shear strain
γ, (c) shear stress σ and (d) shear stress power γσ. Color code
spans from blue to red with increasing packing fractions.

lume constant, un effet bien connu dans les milieux granu-
laires [29]. Le coefficient de dilatance à pression constante
est défini par P = Rγ2, et lié à celui défini à volume
constant D par le module de compressibilité K tel que
R = DK [43].

Finalement, tandis que la pression P (moyennée
ortho-radialement) évolue linéairement avec a∗ (Fig. 6a),
la déformation de cisaillement γ (moyennée ortho-
radialement) crôıt plus vite avec a∗ (Fig. 6b). C’est une
indication de la nature non-linéaire du matériau. En re-
vanche, le travail des efforts de cisaillement τγ évolue en
a∗2 (Fig. 6d), ce qui suggère que la réponse mécanique
du milieu granulaire à la sollicitation est dominée par des
déformations élastiques. Ainsi, malgré le changement si-
gnificatif de contacts dans l’empilement, il n’y a essentiel-
lement pas de dissipation de l’énergie. Ces observations
sont valables pour l’ensemble des fractions surfaciques
considérées.

6 Relations constitutives

Nous détaillons à présent l’analyse quantitative des
relations de comportement entre les invariants τ , P et γ.
Nous rassemblons l’ensemble des données moyennées or-
thoradialement P (r, a∗) et τ(r, a∗) en fonction de γ(r, a∗),
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Fig. 5. Maps of the strain and stress invariants. (Adapted
from [32]). Maps of dilation, ε, (a), shear strain, γ, (b), pres-
sure, P , (c) and shear stress, τ , (d), for φ = 0.8294 and
a∗ = 4.4 × 10−2. The displayed images only show a third of
the whole system. The uncolored grains sit below the pneumatic
tube connected to the intruder, which masks the field of view.

l’intrus, une importante dilatation se produit à cause de
la condition limite imposée par l’intrus lui-même. Etant
donné que l’intrus possède un diamètre plus important
que celui des grains, la variation de fraction surfacique
localisée due au gonflement reste singulière par rapport à
la fraction surfacique moyenne. Le reste de l’empilement
présente de large fluctuations (avec ici un écart type de
3×10−3) avec un léger accroissement de la fraction surfa-
cique (d’amplitude 6×10−5) (Fig. 5a), assurant la conser-
vation globale du volume.

Par conséquent, en dehors de la première couronne
de grains autour de l’intrus, que nous allons exclure de
l’analyse, le matériau peut être considéré comme incom-
pressible. Nous postulerons donc dans la suite que ε = 0.
Ainsi, la sollicitation mécanique se révèle plutôt être une
déformation cisaillante pure. La deuxième observation im-
portante montre un écart significatif à la réponse élastique
linéaire : le champ de pression est inhomogène et diminue
à mesure que l’on s’écarte du centre de l’intrus. Comme
ce champ de pression ne correspond pas à des variations
sensibles de volume, il est nécessairement induit par la
déformation de cisaillement. Cet effet est la manifesta-
tion de la présence de dilatance dans un système à vo-
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Fig. 6. Response to inflation. Spatial averaged of the tensors
vs. the inflation parameter a∗. (a) Pressure P , (b) shear strain
γ, (c) shear stress σ and (d) shear stress power γσ. Color code
spans from blue to red with increasing packing fractions.

lume constant, un effet bien connu dans les milieux granu-
laires [29]. Le coefficient de dilatance à pression constante
est défini par P = Rγ2, et lié à celui défini à volume
constant D par le module de compressibilité K tel que
R = DK [43].

Finalement, tandis que la pression P (moyennée
ortho-radialement) évolue linéairement avec a∗ (Fig. 6a),
la déformation de cisaillement γ (moyennée ortho-
radialement) crôıt plus vite avec a∗ (Fig. 6b). C’est une
indication de la nature non-linéaire du matériau. En re-
vanche, le travail des efforts de cisaillement τγ évolue en
a∗2 (Fig. 6d), ce qui suggère que la réponse mécanique
du milieu granulaire à la sollicitation est dominée par des
déformations élastiques. Ainsi, malgré le changement si-
gnificatif de contacts dans l’empilement, il n’y a essentiel-
lement pas de dissipation de l’énergie. Ces observations
sont valables pour l’ensemble des fractions surfaciques
considérées.

6 Relations constitutives

Nous détaillons à présent l’analyse quantitative des
relations de comportement entre les invariants τ , P et γ.
Nous rassemblons l’ensemble des données moyennées or-
thoradialement P (r, a∗) et τ(r, a∗) en fonction de γ(r, a∗),
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Fig. 5. Maps of the strain and stress invariants. (Adapted
from [32]). Maps of dilation, ε, (a), shear strain, γ, (b), pres-
sure, P , (c) and shear stress, τ , (d), for φ = 0.8294 and
a∗ = 4.4 × 10−2. The displayed images only show a third of
the whole system. The uncolored grains sit below the pneumatic
tube connected to the intruder, which masks the field of view.

l’intrus, une importante dilatation se produit à cause de
la condition limite imposée par l’intrus lui-même. Etant
donné que l’intrus possède un diamètre plus important
que celui des grains, la variation de fraction surfacique
localisée due au gonflement reste singulière par rapport à
la fraction surfacique moyenne. Le reste de l’empilement
présente de large fluctuations (avec ici un écart type de
3×10−3) avec un léger accroissement de la fraction surfa-
cique (d’amplitude 6×10−5) (Fig. 5a), assurant la conser-
vation globale du volume.

Par conséquent, en dehors de la première couronne
de grains autour de l’intrus, que nous allons exclure de
l’analyse, le matériau peut être considéré comme incom-
pressible. Nous postulerons donc dans la suite que ε = 0.
Ainsi, la sollicitation mécanique se révèle plutôt être une
déformation cisaillante pure. La deuxième observation im-
portante montre un écart significatif à la réponse élastique
linéaire : le champ de pression est inhomogène et diminue
à mesure que l’on s’écarte du centre de l’intrus. Comme
ce champ de pression ne correspond pas à des variations
sensibles de volume, il est nécessairement induit par la
déformation de cisaillement. Cet effet est la manifesta-
tion de la présence de dilatance dans un système à vo-
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Fig. 6. Response to inflation. Spatial averaged of the tensors
vs. the inflation parameter a∗. (a) Pressure P , (b) shear strain
γ, (c) shear stress σ and (d) shear stress power γσ. Color code
spans from blue to red with increasing packing fractions.

lume constant, un effet bien connu dans les milieux granu-
laires [29]. Le coefficient de dilatance à pression constante
est défini par P = Rγ2, et lié à celui défini à volume
constant D par le module de compressibilité K tel que
R = DK [43].

Finalement, tandis que la pression P (moyennée
ortho-radialement) évolue linéairement avec a∗ (Fig. 6a),
la déformation de cisaillement γ (moyennée ortho-
radialement) crôıt plus vite avec a∗ (Fig. 6b). C’est une
indication de la nature non-linéaire du matériau. En re-
vanche, le travail des efforts de cisaillement τγ évolue en
a∗2 (Fig. 6d), ce qui suggère que la réponse mécanique
du milieu granulaire à la sollicitation est dominée par des
déformations élastiques. Ainsi, malgré le changement si-
gnificatif de contacts dans l’empilement, il n’y a essentiel-
lement pas de dissipation de l’énergie. Ces observations
sont valables pour l’ensemble des fractions surfaciques
considérées.

6 Relations constitutives

Nous détaillons à présent l’analyse quantitative des
relations de comportement entre les invariants τ , P et γ.
Nous rassemblons l’ensemble des données moyennées or-
thoradialement P (r, a∗) et τ(r, a∗) en fonction de γ(r, a∗),
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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above relations, one obtains the rescaling shown in fig-
ure 3(c),(d) with γc ∼ ∆φζ , τc = 2G0γc and Pc = R0γ2

c .
Despite the fact that the couples of exponents (µ,α)
and (ν,β) have been obtained independently, we obtain
that ζ = µ/(2 − α) and ζ = ν/(1 − β) lead to the
same value ζ = 1.7 as it should be. The above equa-
tions and the related scaling are the key results of the
present study. To our knowledge, this is the first time
that non linear elasticity is quantified precisely approach-
ing the jamming transition of a granular packing. Note
that the ”linear” regime observed here should not be
confused with the linear response and should rather be
seen as a saturation of the nonlinearities. For very small
strain, (γ # 10−6), such as those probed in numerical
studies [3, 36], and much smaller than the lowest strain
probed here (γ # 10−3), one expects to recover a linear
response for all ∆φ > 0 [23]. For strains of experimental
relevance, very recent numerical studies have reported a
crossover from the linear response at small strains to a
shear softening regime, with a exponent β # 0.5 [37, 38],
compatible with the present results.
Shear strain profiles — We finally proceed to a self-

consistency check by integrating the condition of mechan-
ical equilibrium ∇ · σ = 0, with the above constitutive
laws to derive the expected shear strain profiles and com-
pare them with those obtained experimentally. We intro-
duce here the reduced shear strain γ̃ = γ/γc. Axisym-
metry ensures that σ is diagonal in polar coordinate and
independent of the azimuthal coordinate θ. ∇ · σ = 0
thus reads:

Pc(αγ̃α−1 + 2γ̃) + τc(βγ̃β−1 + 1)

γ̃β + γ̃
dγ̃ = −2τc

dr

r
(3)

We integrate numerically Eq. 3 with the boundary con-
dition γ̃(r = rI) = a∗/γc and we obtain the profiles plot-
ted in figure 4(a), together with the experimental data.
The agreement is very satisfactory, given the absence of
any adjustable parameter and the fact that we have ne-
glected the confinement at large r. For intermediate val-
ues of ∆φ and a∗, the crossover of the constitutive law
translates into a spatial crossover with a characteristic
length rc between the saturated linear regime for r < rc,
close to the inflater, and the truly non linear regime for
r > rc. An estimate of rc can be derived by integrating
the above equation in the saturated linear regime and
selecting γ = γc (γ̃ = 1) :

rc
rI

=

(
a∗

γc

)1/2

exp

[
R0

2G0
a∗

(
1− γc

a∗

)]
. (4)

In the limit, γc → 0, approaching jamming, rc ∼ γ−1/2
c ∼

∆φ−0.85. One can indeed observe the emergence of this
singular behavior on figure 4(b), together with the expo-
nential regularization at large ∆φ.
Summary-Discussion — Our measurements provide a

quantitative characterization of the elastic response of
a bi-dimensional packing of grains to the local inflation
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FIG. 4: Shear strain profiles (color online) (a): Shear
strain profile for (!) (φ = 0.8208; a∗ = 0.0374), (!) (φ =
0.8268; a∗ = 0.0314) and (#) (φ = 0.8338; a∗ = 0.0306). The
symbols are experimental data and the solid lines come from
the integration of eq.(3). The green dashed line indicates the
crossover for the case (φ = 0.8268; a∗ = 0.0314) (b): Spa-
tial crossover rc(φ, a

∗)/rI (for a∗ = 0.0208 (green), 0.0440
(turquoise) and 0.0681 (blue) extracted from the experimen-
tal profiles (×) and obtained numerically from eq. (3) (dashed
lines). (Inset): same in log-log axis with the predicted scal-
ing rc ∼ ∆φ−0.85. In both figures, the gray zone is the region
occupied by the inflater.

of an intruder close to jamming. This specific geome-
try actually probes the response to an inhomogeneous
shear at constant volume. Our results highlight the effect
of dilatancy and unveil a nonlinear regime above jam-
ming where both the shear modulus and the dilatancy
coefficient soften. The importance of shear dilatancy in
marginal solids was recently emphasized in [39], where
it was shown that the Reynolds coefficient at constant
volume RV ∼ ∆φ−1/2. Here we also observe a singular
behavior, albeit of a different kind since the present ex-
periment probes the nonlinear softening of the dilatancy.
In a different context, Ren et al. [30] report a steep in-
crease of dilatancy under homogeneous shear as the den-
sity of an unjammed packing of grains is increased. The
dilatancy coefficient R0 reported here is indeed very large
(R0 ∼ 104 N/m) and could be seen as a saturation of the
divergence reported in [30].

Finally, the present study uncovers a length scale, rc,
which separates the nonlinear regime from the saturated
linear one. Its scaling with the distance to jamming does
not match any scaling reported before for length scales
of linear origin, such as )∗ or )c. This suggests that rc
could encompass crucial information about the density
of the low energy non-linear excitations reported recently
for sphere packings [24]. Further insights in this mat-
ter could come from simulations of point-like response
of the kind reported in [7] albeit in the non linear regime.
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Softening regime in the (φ, γ) plane 

! We recover the softening regime observed by Hayakawa et al. 

! The coupling to dilatancy is a key ingredient role as anticipated 
      Tighe B. Granular Matter (2014) 16:203–208 

! What is captured here is the transition to a saturated linear regime 

  => different from linear elasticity 
 

is crucial and, above jamming, shear softening occurs at
moderate strain [Fig. 1(b)]. Elasticity is effectively recov-
ered only for strains larger than a critical strain, which
scales with the distance to jamming and eventually van-
ishes at ϕJ [Fig. 1(c)]. We compute the strain profiles from
the inferred constitutive laws and show that they match the
experimental profiles and display a spatial crossover
between the two regimes. The crossover length diverges
like Δϕ−0.85 when the system (un)jams.
Setup and protocol.—The setup is adapted from [16,31].

A bidisperse layer of 8166 photoelastic disks of diameter 4
and 5 mm is confined in a rectangular frame. Awall piston
allows us to precisely tune the packing fraction ϕ. The
grains lie on a glass plate which can be vibrated with an
amplitude of 1 cm at a frequency of 10 Hz perpendicularly
to the direction of the wall piston. The inflater is made of a
brass spacer, equipped with 9 radial pistons, is surrounded
by an O ring of diameter 2rI ¼ 26.3 mm and connected to
a pressure switch. When the pressure is increased inside the
spacer, the pistons push the O ring radially, ensuring a
uniform radial dilation, up to 2ðrI þ aÞ ¼ 28.5 mm. When
the pressure is switched off, the elasticity of the O ring
brings back the inflater to its initial diameter. The dilation
rate a% ¼ a=rI ∈ ½1–10'%.
Varying both the strain amplitude and packing fraction,

we record the stress response following a precise protocol.
First we introduce the inflater at the center of the packing
at low packing fractions. We then compress the packing
into a highly jammed state while vibrating the bottom plate
(see [31] for details). We stop the vibration and start
acquiring images while increasing the size of the intruder
using steps of 1.5%. At the end, we let the inflater recover
its initial size, turn on the vibration, stepwise decrease the
packing fraction, and start the next measurement loop. The
vibration steps homogenize the stresses between change
of packing fraction, while keeping the packing structure
identical [16,31].
The photoelastic grains are backlit with a large, uniform,

circularly polarized light source. Pictures are taken using a
high-resolution CCD camera. We record both photoelastic

and position information by alternating between cross-
polarized and direct pictures using a cross polarizer
mounted on a synchronized step motor (see [31] for
details). We process these images with standard segmenta-
tion, tracking, and tessellation techniques, to obtain the
displacement field and the force network [31]. We then
compute the strain tensor ϵ and the stress tensor σ fields at
the grain scale [28,33–36]. Having checked that these
tensors share the same eigenvectors [37], we restrict the
analysis to their first and second invariants: the dilatation
ε ¼ 1

2

P
kϵkk, the pressure P ¼ − 1

2

P
kσkk, the shear strain

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

P
i;jðϵij − εδijÞ2

q
and the shear stress τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

P
i;jðσij þ PδijÞ2

q
, where δij is the Kronecker symbol.

In the following, P and τ are normalized by the contact
stiffness k ¼ 1 N=mm and the length unit is the diameter of
the small grains s ¼ 4 mm. The stress and strain tensors
are, respectively, measured with a resolution of 10−4

and 10−3.
Initial state.—For each packing fraction, before inflating

the intruder, the system is characterized by an initial state,
with force chains spanning the whole system. This com-
pressed state above jamming, which has been studied in
detail before [31], is statistically homogeneous. The aver-
age contact number z0 is essentially constant at low packing
fraction [see Fig. 2(a)]. At intermediate packing fraction, it
exhibits a kink from where it increases sublinearly. We
identify the location of the kink with the jamming transition
at packing fraction ϕJ ¼ 0.8251( 0.0009. One should
not be surprised to observe a finite z0 below jamming:
when the vibration is turned off, the structure is quenched
abruptly from a vibrational state where the averaged
number of contact need not be zero. The sublinear increase
of z0 with packing fraction is compatible with the one
obtained in simulations of frictional particles [17,38]. The
initial pressure P0 also increases above jamming from a
small residual value below jamming, again inherited from
the vibrational state [see Fig. 2(b)]. Since the packing
is compressed by moving only one lateral wall, the

(a) (b) (c)

FIG. 1 (color online). (a) Quadrant of combined raw photoelastic and direct light pictures. The intruder (pink) is inflated and induces
radial compression and orthoradial stretch (white arrows): the packing is sheared azimuthally. (b) Sketch of the shear modulus, G and
dilatancy coefficient R, vs shear strain γ. In the linear regime (LR, γ < γ%), not probed here, both are constant. For γ% < γ < γc both
decrease, this is a shear softening (SS) regime. For γ > γc, effective linear elasticity (SL) is recovered. (c) ϕ − γ parameter space with the
different regimes: both γ% and γc vanish at Jamming. The gray regions could not be accessed in the present experiment.
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Radial profiles 

! From            and the NL constitutive equation,  

! Assuming azimuthal invariance,  

! = > radial strain profiles γ(r), to be compared with direct observation 

RnlðΔϕ; γÞ ¼
!
0 for ϕ < ϕJ

aΔϕμγα−2 for ϕ > ϕJ
;

GnlðΔϕ; γÞ ¼
!
0 for ϕ < ϕJ

bΔϕνγβ−1 for ϕ > ϕJ
;

with μ ¼ 1.7$ 0.1, α ¼ 1.0$ 0.1, a ¼ 8.1$ 0.3 × 10−2,
ν ¼ 1.0$ 0.1, β ¼ 0.4$ 0.1, and b ¼ 7.5$ 0.3 × 10−1.
From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ2c. Despite the fact that the exponent pairs ðμ; αÞ
and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a&=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a&, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:

rc
rI

¼
"
a&

γc

#
1=2

exp
$
R0

2G0

a&
"
1 −

γc
a&

#%
: ð4Þ

In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear

(a) (b)

(c) (d)

FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343(. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.

(a) (b)

FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a& ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a& ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a& ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a& ¼0.0314). (b) Spatial crossover rcðϕ; a&Þ=rI (for a& ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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div σ( ) = 0

r / R0

γ > γc ⇔ r < rc

γ < γc ⇔ r > rc

saturated linear regime 

genuine non linear regime 
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Critical length diverging at jamming 

! Remember the 2 lengths : l* ~ 1/δz~ 1/δφ1/2  and lc ~ 1/δz0.5 ~ 1/δφ1/4  

  => none of these length scale; also here potential dependent 

! Close to jamming rc > l* > lc 

RnlðΔϕ; γÞ ¼
!
0 for ϕ < ϕJ

aΔϕμγα−2 for ϕ > ϕJ
;

GnlðΔϕ; γÞ ¼
!
0 for ϕ < ϕJ

bΔϕνγβ−1 for ϕ > ϕJ
;

with μ ¼ 1.7$ 0.1, α ¼ 1.0$ 0.1, a ¼ 8.1$ 0.3 × 10−2,
ν ¼ 1.0$ 0.1, β ¼ 0.4$ 0.1, and b ¼ 7.5$ 0.3 × 10−1.
From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ2c. Despite the fact that the exponent pairs ðμ; αÞ
and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a&=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a&, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:
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In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear

(a) (b)

(c) (d)

FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343(. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.
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FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a& ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a& ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a& ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a& ¼0.0314). (b) Spatial crossover rcðϕ; a&Þ=rI (for a& ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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aΔϕμγα−2 for ϕ > ϕJ
;

GnlðΔϕ; γÞ ¼
!
0 for ϕ < ϕJ

bΔϕνγβ−1 for ϕ > ϕJ
;

with μ ¼ 1.7$ 0.1, α ¼ 1.0$ 0.1, a ¼ 8.1$ 0.3 × 10−2,
ν ¼ 1.0$ 0.1, β ¼ 0.4$ 0.1, and b ¼ 7.5$ 0.3 × 10−1.
From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ2c. Despite the fact that the exponent pairs ðμ; αÞ
and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a&=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a&, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:
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In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear
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FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343(. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.
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FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a& ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a& ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a& ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a& ¼0.0314). (b) Spatial crossover rcðϕ; a&Þ=rI (for a& ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ2c. Despite the fact that the exponent pairs ðμ; αÞ
and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a&=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a&, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:
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In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear
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FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343(. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.
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FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a& ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a& ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a& ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a& ¼0.0314). (b) Spatial crossover rcðϕ; a&Þ=rI (for a& ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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ν ¼ 1.0$ 0.1, β ¼ 0.4$ 0.1, and b ¼ 7.5$ 0.3 × 10−1.
From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ2c. Despite the fact that the exponent pairs ðμ; αÞ
and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a&=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a&, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:
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In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear
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FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343(. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.
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FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a& ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a& ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a& ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a& ¼0.0314). (b) Spatial crossover rcðϕ; a&Þ=rI (for a& ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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Conclusion 
! Probing experimentally the mechanical response to a point shear 

perturbation, we have shown that 

!   We could not access linear response in the range of φ and strain explored here 

!   It saturates to an affective linear regime at large strain 

!   The critical strain scales like δφµ, where µ characterizes the grains stiffness. 

!   In the non linear regime both shear modulus and dilatancy  soften like strain1/2 

!   The critical distance from intruder length-scale above which non-linear effects can be 
seen diverges like  δφ-µ/2 

! Thank you! 

 

   Further readings :  !   Soft Matter, 2014, 10, 1519  

!   PRL, 2014, 113 198001 


