

Shear Modulus and Dilatancy Softening above Jamming

Antoine Seguin, Corentin Coulais, Olivier Dauchot

Introduction

Elasticity of Jammed materials

Probing jamming in a system of photo-elastic (soft) discs
 Preparing a jammed granular glass
 Exploring the vicinity of point J

Mechanical response to a point like disturbance
 Dilatancy and Shear Softening around an Inflater

Experimental samples of jammed materials

A paradigm: Jamming of soft spheres at T=0

A well defined concept,
 (O'Hern et al. (2002))

A geometrical transition

- # of contacts jumps to $z_J = z_{iso}$
- $\delta z = z z_{iso} \sim (\Phi \Phi_J)^{1/2}$
- g(r=d) = delta function

Rigidity transition of frictionless packings

A mechanical transition

- Pressure scales as prescribed by elasticity of the individual grains P ~ $\delta \phi^{\mu}$
- Elastic moduli scaling K/k ~ $\delta z^{0;}$ G/k ~ $\delta z \sim \delta \varphi^{0.5}$
- NB : k is the stiffness of the individual grains k ~ $\delta \varphi^{\mu 1}$
- In all cases G/K ~ $\delta \varphi^{0.5}$

Length scales

Two length scales associated with the jamming transition

Lerner, E. et al (2014). Soft Matter, 10(28), 5085–5092.

I* ~ $1/\delta z$: length below which stability feels boundaries

can be seen as a point to set lengthscale

- I_c ~ $1/\delta z^{0.5}$: length of 2-points correlations , or response to point perturbation also the length scale beyond wich continuum elasticity holds
- **However numerical study** $I_c \sim 1/\delta z$ Ellenbroek, et al. (2006).PRL 97(25), 258001

Finite size effects

- Validity of linear elasticity close to jamming : a long standing debate
- Shear softening for strain $\gamma > \gamma_c$

Hayakawa H. et al. PRE 90, 042202 (2014)

G ~
$$\delta \phi^{\mu - 1/2} \gamma^{-1/2}$$

γ_c ~ δφ^μ

More Recent finite size scaling analysis

Goodrich et al (2014). *PRE*, *90*(2), 022138; van Deen et al (2014). *PRE*, *90*(2), 020202

the closer to jamming, the smaller the critical strain

EC2M Effets Collectifs

 10^{-4}

10^4 10^2

 10^{2}

 10^{4}

 10^{0}

 N^2P

The present experimental study :

- Prepare a jammed granular glass
- Perform the inflater experiment
- Identify the linear and non linear regime for the response
- Qualify the scaling with the distance to jamming

Preparing a jammed granular glass

Signature of jamming within contacts ...

EC2M Effets Collectifs & Matière Molle

... and contact dynamics

$$egin{aligned} Q^{z}(t, au) &= rac{1}{N}\sum_{i}Q^{z}_{i}(t, au) & ext{where } Q^{z}_{i}(t, au) &= iggl\{ egin{aligned} 1 & ext{if } |z_{i}(t+ au) - z_{i}(t)| \leq 1 \ 0 & ext{if } |z_{i}(t+ au) - z_{i}(t)| > 1 \ Q_{z}(au) &= \langle Q^{z}(t, au)
angle_{t} \end{aligned}$$

Probing elasticity : set up

- Prepare the system at large packing fraction (under vibration)
- Inflate an intruder in the center
 (the vibration is stopped)
- Decrease the packing fraction (under vibration)

iterate

Probing elasticity : the linear elastic framework

Nota Bene : In the limit of large R₁, A->0, B->1 : this is a shear test!

Gulliver

$$div(\underline{\sigma}) = 0$$

$$\underline{\sigma} = \frac{1}{2}Tr(\underline{\sigma})\underline{1} + \underline{\tau}$$

$$\underline{\sigma} = KTr(\underline{\varepsilon})\underline{1} + 2G\underline{\gamma}$$

$$\underline{\varepsilon} = \frac{1}{2}\left[\underline{\nabla U} + \frac{t}{\nabla U}\right] = \frac{1}{2}Tr(\underline{\varepsilon})\underline{1} + \underline{\gamma}$$

$$\begin{split} \delta &= Tr\left(\underline{\underline{\varepsilon}}\right) = -2\frac{a}{R_0}A\\ \gamma &= J_2\left(\underline{\underline{\gamma}}\right) = \sqrt{\frac{1}{2}} \underbrace{\underline{\gamma} \circ \underline{\gamma}}_{\underline{z}} = \frac{a}{R_0} B\left(\frac{R_0}{r}\right)^2\\ P &= Tr\left(\underline{\underline{\sigma}}\right) = KTr\left(\underline{\underline{\varepsilon}}\right)\\ \tau &= J_2\left(\underline{\underline{\tau}}\right) = \sqrt{\frac{1}{2}} \underbrace{\underline{\tau}} \circ \underline{\underline{\tau}} = 2GJ_2\left(\underline{\underline{\gamma}}\right) \end{split}$$

For each packing fraction and each a/R₀

Spatially averaged quantities

$$a^* = a / R_0$$

The average shear strain entirely controled by a*

The stresses are non linear and depend on packing fraction

Parametric plot of local stress vs. local strain

Gulliver

Softening regime in the (ϕ , γ) plane

- We recover the softening regime observed by Hayakawa et al.
- The coupling to dilatancy is a key ingredient role as anticipated

Tighe B. Granular Matter (2014) 16:203–208

What is captured here is the transition to a saturated linear regime

=> different from linear elasticity

Radial profiles

From $div(\underline{\sigma}) = 0$ and the NL constitutive equation,

Assuming azimuthal invariance,

Critical length diverging at jamming

$$\frac{r_c}{R_0} = \left(\frac{a^*}{\gamma_c}\right)^{1/2} \exp\left[\frac{R_0}{2G_0}a^*\left(1-\frac{\gamma_c}{a^*}\right)\right].$$

$$r_c \sim \gamma_c^{-1/2} \sim \Delta \phi^{-0.85}$$

Remember the 2 lengths : I* ~ $1/\delta z$ ~ $1/\delta \varphi^{1/2}$ and I_c ~ $1/\delta z^{0.5}$ ~ $1/\delta \varphi^{1/4}$

=> none of these length scale; also here potential dependent

Close to jamming
$$r_c > I^* > I_c$$

Conclusion

- Probing experimentally the mechanical response to a point shear perturbation, we have shown that
 - We could not access linear response in the range of ϕ and strain explored here
 - It saturates to an affective linear regime at large strain
 - The critical strain scales like $\delta \phi^{\mu}$, where μ characterizes the grains stiffness.
 - In the non linear regime both shear modulus and dilatancy soften like strain^{1/2}
 - The critical distance from intruder length-scale above which non-linear effects can be seen diverges like $\delta \phi \mu/2$

Thank you!

Further readings : Soft Matter, 2014, 10, 1519 PRL, 2014, 113 198001

