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Jamming problem

€ Jamming problem can be
formulated most clearly at T=0.
® Randomly packed athermal
spheres show a number of

non-trivial critical behaviors:
@ Freq. of disordered mode
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@ Shear modulus
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[O’Hern, Silbert, Liu, Nagel...]



Jammed spheres at finite T

€ Jamming criticality is also expected to play a role in spheres
subjected to thermal fluctuation. Examples are:

PMMA colloids Oil-in-water emulsion

@ Modeling
€ Randomly packed harmonic spheres

o) = S(1 = 1 /0O —rip)
2¥
€ MD simulation at finite temperature 3080(
kpT/e=10"° 107°% 1077, 107°® %)%OFQ
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@ Analysis of the caging dynamics
[Ikeda, Berthier, Biroli 2013]




Mean square displacement

€ Mean square displacement shows
caging dynamics at finite temperature
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@ Short time — Ballistic
@ Long time — Plateau

€ Compression decreases the
plateau height.

@ It is a bit difficult to discuss the
signature of the jamming criticality
from this plot.
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Timescale (short)

@ Time scale at which the MSD
deviates from the ballistic behavior.

€ [Unjammed] Two body collision (can
be described by Enskog theory)

1 8pg(a™) fﬁ VT

To 3 m lp — wg|

@ [Jammed] Two body vibration (can
be described by Einstein Frequency)

/
P .

T_ﬂ ~ V 3 / drg(r)V2v(r) ~ const

€ Microscopic time scale strongly
depends on density
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Timescale (long)

@ Time scale at which the MSD e To10 i e
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Jammed spheres at finite T

@ At high temperature, criticality seems to be smeared out.

€ From renormalized quantities, we determined scaling regime
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This work

€ Harmonic spheres at around the J point.

€
v(rij) = =(1 — rij /o) O(c — rij) .9
P D ®
)OOO(
@ Temperature: Q%OFQ

\ A=a

kgT/e =107°, 107% 1077, 1078

@ Extend the analysis to:
€ Macroscopic mechanical moduli
@ k dependence of moduli
& Static structure factor



Macroscopic Moduli



Bulk and shear modulus
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€ Moduli are calculated through (1) fluctuation of the pressure,
(2) density dependence of the pressure, (3) fluctuation of the
displacement fields. All results agree.



Bulk and shear modulus
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@ Unjammed: Proportional to temperature
BxT(Ap)™? GuxT(Ap)™ (k~1.41..)

@ Jammed: Independent from temperature
B ~ const. G o< (Ap)Y®



Bulk/Shear ratio
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@ Divergence of B/G, a signal of the jamming criticality,

appears only at very low temperature, say T< 10°:
@ Consistent with the observation in caging dynamics



k dependence of
the moduli



Definitions

@ Displacement field: ;= Y i exp(—ik - (R;)) iy = R — (R;)

J

@ Longitudinal/Transverse :

P = k”L.IE +Ur;

@ Structure factor

k = 0 plane wave

12 description
Sp(k) = FQ‘L.E”L.E% Sp(k) = ,oT4
B + gG
Ko pT
ST(]() = ﬁ(”T.E . LiT._;\.’> St(k) = ?

[Klix, Ebert, Weysser, Fuchs, Maret, Keim, 2012]



Longitudinal

. . @)
@ Fluctuation decreases with o
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Longitudinal

@ Scaling analysis assuming

T
Sp(k) ~ Bi—iﬂmm.

3
@ The length characterizes
the breakdown of usual
plane wave description.

S.(k) (B+4G/3)IpT

@ The length diverges from .
the both sides of the | @
jamming at lower T, and '
remain microscopic at L
higher T. !
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Transverse

@ Similar behavior as the
longitudinal one, though the k-
dependence is little bit weak

@ At all the densities, S(k) are
converging to the macroscopic
modulus.

€ However characteristic wave
vector shows non-monotonic
behavior across the jamming
density.

@ At the jamming density,
ST(]C) 0.¢ kg
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Transverse
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@ Scaling analysis assuming
3
pl S 101
Sr(k) ~ = H(kér) O 10
G x
&
@ The transverse length is 100 | quai
shorter and its density ' - ' '
0.1 1 10 0.1 1 10
dependence is weaker than ké 12n ké 12
the longitudinal ones. 100 3 ‘

1 (b) | —-T=10"
| = T=10"
| —~+T=10"
| ——T=10"

MP— 10 1 }




Discussion 1

@ The longitudinal & transverse lengths characterizing
the breakdown of the usual plane wave description

diverges from the both sides of the jamming.
1073

@ Thisisin sharp
contrast to the recent
statement by Xu et al,,
“Transverse phonon
doesn’t exist in
hardsphere glasses”.

1073

P

[Wang, Xu et al PRL 2015] FIG. 3: (color online). Phase diagram including the glass

transition (circles with the line T, ~ p) and jamming-like
transition (squares with the line T; ~ p°/?). The diamonds
and triangles locate the crossover temperatures Ty, (w%‘R = 0)
and T (w?R = 0), respectively. The star marks the location
of the state shown in Fig. 2(f).



Discussion 2

@ The longitudinal & transverse lengths characterizing
the breakdown of the usual plane wave description
diverges from the both sides of the jamming.

€ = Longitudinal and transverse length of phonon at w*?
£ o —@y) Ex o (o — @)™
[Silbert et al 2006]

€ We couldn’t fit our data with these exponents.
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Discussion 3

30

‘ "Non'eqUi"ibrium index” F X, with S(0) calculated from Fig. 2 intercepts
250 — X, with S(0) calculated from fit to Fig. 2 intercepts
@ In liquid state 0 T
_ T  Zoomf S .
lim S(k) = P T N
k—0 B 10+ 055 06 0.61 0.62 0.63 064
@ “Non-equilibrium index” was
introduced by Torquato et al.
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X = lim S(k)B

—1
k—0  pl

€ Diverging X at around the Jamming = “It strongly
indicates that the jammaed glassy state for hard spheres is
fundamentally nonequilibrium in nature”

[Hopkins, Stilinger, Torquato 2012 and more]



Discussion 3

| - o
Sty = —opp_p)  pp=)_exp(=ik - R;)
J

@® Insolid:  Sk) = S5(k) + So(k).

1 1
Ss(k) = ﬁ@p@:@p_;;) So(k) = ﬁpg)(p_z)

l Spp =Y _[—ik -ii; + OK*)]exp(—ik - (R}))

J

~ Sp(k)

= Bulk modulus



Discussion 3

30

@ “Non-equillibrium index” A
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k—0 0 S5 ieaeroR o oo
@ “Non-equilibrium index” was
introduced by Torquato et al.

0.58 0.59 0.6 0.61 0.62 0.63 0.64
¢

X = lim S(k)B —

1
k—0  pl

@€ Our results: The fluctuation formula for solids works

perfectly.
@ Even if the solids are formed through equilibrium phase transitions,

X would be able to take a non-zero value



Discussion 3

@ Bulk modulus is evaluated through the fluctuation of pressure.
(bold-line)

@ Bulk modulus from the

10°

derivative of the pressure (a)
against the density (dashed) b
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Static structure
factor



Hyperuniformity
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@ S(k) ~ k (seems going to zero at k = 0) is observed at the

jamming of hardspheres. [Donev, Stillinger, Torquato, 2005]

@ Avoid some confusions: Hyperuniformity (S,) is NOT related to
the compressibility (S4..,) of the jammed spheres



Temperature dependence
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@ Hyperuniformity is very much robust against the thermal

fluctuation
@ Sharp constrast to other critical quantities



Density dependence
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@ Prepared a large system (N=512000) at T=0 and calculated S(k).
@ (1) Hyperuniformity in intermediate k is very much robust
against the density change!

@ (2) Strict hyperuniformity at k = 0 is not observed even at the

jamming! (Sharp contrast to other critical quantities)
A similar conclusion is reached in [Wu, Olsson, Teitel, 2015]



Discussion

@ Strict hyperuniformity should be observed...?
@ Problem is related to the distribution of the jamming density

(athermal) S(k — 0) = PJ—4‘%§36|pk|2’\'fvilighﬂQ

Width of the distribution
w=woN

(1=0.55%=0.03

[O’Hern et al, 2003]
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@ It seems natural not to have the strict hyperuniformity...



Conclusion

@ Fluctuation formula works perfectly for the estimate of
mechanical moduli 2 Non-equillibrium index is not required

@ k-dependent moduli is characterized by the scaling laws

F(x = T H(x Hh=1
F(kgy) Fo<b=l Sy(k) ~ %H(kg—f) (e

F(x > 1) o x2, H(x > 1) o x?

Sz(k) ==

+3G

The lengths characterize the breakdown of the usual continuum
mechanics with macroscopic mechanical moduli.

@ The length diverges from the both sides of the jamming at T=>0,
but the lengths remain microscopic at higher T

@ Hyperuniformity seems not to be directly related to the
jamming criticality itself.

@ Strict hyperuniformity (S(k=0) =0) is not observed even at the jamming.
@ Protocol dependence? Slow quenching give a different result?



Jamming problem

@ Not clear in thermal soft particles
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Dynamic heterogeneity

@ Structure factor of displacements in vibration

N

1 o

Sa(g,t) = ~ > (i) (t) exp(iq - 7))
=1

S4(q)

] Scaling analysis
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Insight into experiments

9 In simulations, we have used “temperature” to control :

£a2 kBT
— o =
ksT T

]{BT/E Tr

a3

€ But in experiments, temperature is almost always fixed at the
room temperature. Instead,"“particle softness” and¥particle size”
is controllable.



Within harmonic approx.

€ Diagonalization of hessian of the potential energy (alike for
unjammed) shows excess of low frequency modes.
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[Silbelt, Liu, Nagel (2005)]
[Brito, Wyart (2009)]
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Critical slowing down

€ Renormalized quantities
150 -

@ To see the time scale for the collective /
I
motion, we renormalize the long time by = 100 - I,
ballistic time.
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@ Likewise, we define microscopic
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Discussion 1

¥ “Non-equilibrium index” is ill-defined,
S(k)B
ol

X = lim
f—0)

@ Even if the solids are
formed through equilibrium
phase transitions, X would be
able to take non-zero value

@ X actually diverges inlow T
in Lennard-Jones glass,
however it is just 1/T.

—1

[Hopkins, Stilinger, Torquato 2012 and more]
because bulk modulus is related to the thermal fluctuation part.
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