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Purpose of Stochastic Thermodynamics: 

Extend the basic notions of classical thermodynamics (work, 
heat, entropy production...) to the level of individual trajectories.• Mechanically driven systems
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The observed systems 

. have only a few degrees of freedom          fluctuations play a 
dominant role and observables are described by probability 
distributions.

. are in contact with one or several heat baths 

. stay far from equilibrium because of mechanical of chemical 
«forces».
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Thermodynamics of feedback control 
(«Maxwell’s demon»): 

DemonSystem

Information

Feedback

Figure 1: Maxwell’s demon as a feedback controller. The demon performs feedback
control based on the information obtained from measurement at the level of thermal
fluctuations.

In this chapter, we review a general theory of thermodynamics that involves mea-
surements and feedback control [7–44]. We generalize the second law of thermody-
namics by including information contents concerning the thermodynamics of feedback
control. We note that, by the “demon,” we mean a type of devices that perform feed-
back control at the level of thermal fluctuations.

This chapter is organized as follows. In Sec. 2, we discuss the Szilard engine which
is a prototypical model of Maxwell’s demon and examine the consistency between
the demon and the second law. In Sec. 3, we review information contents that are
used in the following sections. In Sec. 4, we discuss a generalized second law of
thermodynamics with feedback control, which is the main part of this chapter. In
Sec. 5, we generalize nonequilibrium equalities such as the fluctuation theorem and
the Jarzynski equality to the case with feedback control. In Sec. 6, we discuss the
energy cost (work) that is needed for measurement and information erasure. In Sec. 7,
we conclude this chapter.

2 Szilard Engine

In 1929, L. Szilard proposed a simple model of Maxwell’s demon that illustrates
the quantitative relationship between information and thermodynamics [45]. In this
section, we briefly review the model, which is called the Szilard engine, and discuss
its physical implications.

The Szilard engine consists of a single-particle gas that is in contact with a single
heat bath at temperature T . By a measurement, we obtain one bit of information
about the position of the particle and use that information to extract work from
the engine via feedback control. While the engine eventually returns to the initial
equilibrium, the total amount of the extracted work is positive. The details of the
control protocol are as follows (see Fig. 2).

Step 1: Initial state. We prepare a single-particle gas in a box of volume V0, which
is at thermal equilibrium with temperature T .

3

Purpose: Extend the second law of 
thermodynamics and the fluctuation 
theorems in the presence o f 
information transfer and control

Two types of control: 

1) Feedback is implemented discretely by an external agent 
through a series of loops initiated at a sequence of 
predetermined times, e.g. Szilard engines (non-autonomous 
machines). See recent review in Nature Phys. 11, 131 (2015).

2) Feedback is implemented continuously, in real time.  Time-
lags are then unavoidable (or chosen on purpose). Normal 
operating regime: NESS in which heat and work are permanently 
exchanged with the environment (autonomous machines).
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Main message:  Because of the time-delayed 
feedback control, the relation between dissipation and time-
reversibility becomes highly non-trivial (the reverse process is 
quite unusual).  However, in order to understand the behavior 
of the system (in particular the fluctuations of the observables, 
e.g. the heat), one must refer to the properties of the reverse 
process.

 The non-Markovian character of the dynamics (which is 
neither due to coarse-graining nor to the coupling with the 
heat bath) raises issues that go beyond the current 
framework of stochastic thermodynamics and that do not  
occur when dealing with  discrete feedback control. 
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mv̇t = ��vt + F (xt) + Ffb(t) +
p

2�T ⇠(t)

Time-delayed Langevin equation:

Stochastic Delay Differential Equations (SDDEs) have a rich 
dynamical behavior (multistability, bifurcations, stochastic 
resonance , etc.). However, we will only focus on the steady-
state regime.

with

 Inertial effects play an important role in human motor control 
and in experimental setups involving nano-mechanical 
resonators (e.g., feedback cooling)

 Deterministic feedback control: no measurement errors

Ffb(t) = Ffb(xt�⌧ + ⌘t�⌧ )
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Second-law-like inequalities
 The full description of the time-evolving state of the system in 
terms of pdf’s requires the knowledge of the whole Kolmogorov 
hierarchy 
There is an infinite hierarchy of Fokker-Planck (FP) equations 
that has no close solution in general.

There is no unique entropy-balance equation from the FP 
formalism (and no unique second-law-like inequality in the 
steady state), but a set of equations and inequalities.

For more details, see Phys. Rev. E 91, 042114 (2015)

Ẇ
ext

T
 Ṡxv

pump

The «entropy pumping» rate  
describes the influence of the 
continuous feedback. One can 
extract work from the bath if the 
entropy puming rate is positive 

(Ẇ
ext

= �Q̇)

p(x, v, t), p(x1, v1, t;x2, v2, t� ⌧), etc.

The definition of the Shannon entropy depends on the 
level of description, e.g. S

xv(t) =
Z

dx dv p(x, v, t) ln p(x, v, t)
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P[X|Y] probability to observe X = {xs}t0 given the previous path Y = {xs}0�⌧

S[X,Y] =
1

4�

Z t

0
ds

⇥
mẍs + �ẋs � F (xs)� Ffb(xs�⌧ )

⇤

P[X|Y] / J e��S[X,Y]

q[X,Y] =

Z t

0
ds [�vs �

p
2�T ⇠s] � vs

= �
Z t

0
ds [mv̇s � F (xs)� Ffb(xs�⌧ )] � vs

J path-independent Jacobian (contains the factor e
�

2m t
)

S[X,Y] = Onsager-Machlup action functional

       Local detailed balance equation:
relates the heat exchanged with the bath along a given stochastic 
trajectory to the conditional probabilities of observing the trajectory 
and its time-reversed image.
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P[X|Y]

P̃[X†|x†
i ,Y

†]
=

J
J̃ [X]

e�Q[X,Y]

P̃[X†|x†
i ,Y

†] / J̃ [X]e��S̃[X†,Y†]

S̃[X,Y] =
1

4�

Z t

0
ds

⇥
mẍs + �ẋs � F (xs)� Ffb(xs+⌧ )

⇤

˜J [X] = non-trivial Jacobian due to the violation of causality

in general path dependent

with

To recover the heat, one must also reverse the feedback

i.e. change ⌧ into � ⌧ !

By simply reversing time, and taking the logratio of the 
probabilities, one does not recover the heat  because the heat is 
not odd under time reversal ! 

mv̇t = ��vt + F (xt) + Ffb(xt+⌧ ) +
p

2�T ⇠(t)

This defines a conjugate, acausal Langevin dynamics: 
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Ẇ
ext

T
 ṠJ

ṠJ := lim
t!1

1

t
hln J

J̃ [X]
istwhere

From the local detailed balance equation, one  can 
derive another second-law-like inequality in the 
stationary state 

This new upper bound to the extracted work is different from the 
one involving the entropy pumping rate. 
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3 independent parameters:Q0, g, ⌧

FLUCTUATIONS

To be concrete, we now consider a linear Langevin equation, i.e. 
a stochastic harmonic oscillator submitted to a linear feedback 

In reduced units: 
v̇t = �xt �

1
Q0

vt +
g

Q0
xt�⌧ + ⇠t

This equation faithfully 
describes the dynamics of 
n a n o - m e c h a n i c a l 
resonators (e .g . the 
cantilever of an AFM) in 
t h e v i c i n i t y o f t h e 
resonance frequency.

Q0 = !0⌧0 (!0 =
p

k/m, ⌧0 = m/�) (Quality factor of the resonator) 

Fig. 1. Illustration of the AFM system used to verify the theor-
etical predictions. The external dissipation is coupled to the
cantilever by the ferrite particle. The static magnetic "eld B

!
is

generated by a permanent magnet (not shown). The net force
exerted on the cantilever is approximately !B

!
(dB

!
/dz), where

! is a constant and B
!
!B

!
.

the oscillator has been reduced by a factor of
1#"#/". The equipartition theorem no longer ap-
plies to such an open system and the oscillator is
not at equilibrium with the medium, although its
motion is at a steady state. As such, there is no
contradiction with the laws of thermodynamics. It
should be emphasized that with this approach, the
true amplitude of thermal oscillation is reduced;
therefore, its spatial position can be precisely de-
"ned in a measurement.

The same conclusion was also arrived at by Co-
hadon et al. and the concept has been recently
applied to the cooling of a macroscopic mirror
designed for the detection of gravitational waves
[22].

It is also worth pointing out that as long as f
!"#

is
a dissipative force, regardless of its exact form, the
thermal vibration of the oscillator always de-
creases. It is also noted that the transfer function in
the `feedback loopa does not depend on the mode
of the vibration, contrary to what was suggested
previously [19].

3. Implementation in an AFM

To demonstrate the validity of this approach for
force measurements in AFM, we have constructed
a compact optical lever [23], capable of measuring
sub-As de#ections of an AFM cantilever (Fig. 1). An
external magnetic force is introduced by attaching
a small soft ferrite particle (&10}20!m in size;
Magnetics, Sprang & Company) to its end, using
methanol-diluted 5 min epoxy. A small coil is
placed below the cantilever at a close distance to
increase the magnitude of the "eld gradient [24].
Typical thermal vibrations of a cantilever
(k"0.12 nN/nm) with an attached ferrite particle
are shown in Fig. 2a. Because of the relatively high
Q in air (&100), the thermal energy is primarily
partitioned around the resonant frequency,
&10.5 kHz (Fig. 2b). The power spectrum is well
described by the theoretical form except for the
region at very low frequencies where coupling to
building vibrations becomes noticeable. Since the
RMS amplitude remained unchanged after the fer-
rite particle was attached, the spring constant of the
cantilever was not altered by this procedure. How-

ever, it should be noticed that Q has increased with
the attachment of the ferrite particle (Fig. 2b). This
is because Q is proportional to the square root of
the mass: Q"$

!
/%J"m (where %""/m is the

line-width) when k remains unchanged and " is not
signi"cantly a!ected by the attached particle. Only
those cantilevers with such a clean power spectrum
without any spurious resonances were selected for
the following experiments.

To generate the external magnetic dissipation,
the cantilever position, detected with an optical
lever [23], was "rst di!erentiated and then sent to
a small coil driven by a power ampli"er (Fig. 1). In
order to have a su$cient force generated at the
cantilever, a strong dipole was induced in the ferrite
particle with a uniform, static magnetic "eld, cre-
ated by using a ring-shaped permanent magnet.
With this set up, the magnitude and the direction of
the force exerted on the cantilever can be easily
manipulated by the "eld gradient generated by the

S. Liang et al. / Ultramicroscopy 84 (2000) 119}125 121

Active feedback 
cooling of the 

cantilever of an  
AFM

(Liang et al. 2000)
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Work: �W[X,Y] =

2g

Q

2
0

Z t

0
ds xs�⌧vs

Heat: �Q[X,Y] = �W [X,Y]��U(xi,xf )

= �W [X,Y]� 1

Q0
(x2

f � x

2
i + v

2
f � v

2
i )

PA(A, t) = h�(A� �A[X,Y])ist

=

Z
dxf

Z
DY Pst[Y]

Z
xf

xi

DX �(A� �A[X,Y])P[X|Y]

ZA(�, t) = he���A[X,Y]ist =
Z +1

�1
dA e��APA(A, t)

“Pseudo EP” ⌃[X,Y] = �Q[X,Y] + ln

pst(xi)

pst(xf )

We study the fluctuations of 3 observables:

Quantities of interest: probability distribution functions

and the characteristic (or moment generating) functions
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PA(A = at) ⇠ e�IA(a)t

where ⇠ denotes logarithmic equivalence and I(a) is the LDF

Similarly: ZA(�, t) ⇡ gA(�)e
µA(�)t

where µA(�) = lim
t!1

1

t
lnhe���A[X,Y]ist is the SCGF

(Scaled Cumulant Generating Function)

and the pre-exponential factor gA(�) typically arises from the

average over the initial and final states. Here the “initial” state isY

Expected long-time behavior of the pdfs:

The 3 observables only differ by temporal «boundary» terms 
that are not extensive in time. However, since the potential V(x) 
is unbounded,  these terms may fluctuate to order t !

Pole singularities in the prefactors and exponential 
tails in the pdf’s (e.g. for the heat)
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Probability distribution functions:

PQ(Q = qt) P⌃(⌃ = �t) ⌧
Main Puzzle: How can we explain the change of behavior of 

and with       ?             

7
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FIG. 1: (Color on line) Stability diagram of the feedback-
controlled oscillator for Q0 = 34.2. The oscillator becomes
unstable inside the shaded regions. The acausal response
function e�(s) has all its poles located in the r.h.s. of the
complex s-plane inside the regions delimited by the dashed
red lines and two poles in the l.h.s. outside these regions.

will reveal a remarkable connection with the dynamical
behavior of the acausal Langevin equation (18).

Noise realizations
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FIG. 2: (Color on line) Stochastic fluctuations of W[X,Y]
(solid black line), Q[X,Y] (dotted blue line), and ⌃[X,Y]
(dashed red line) for Q0 = 34.2 g/Q0 = 0.25, ⌧ = 7.6 (left
panel) and ⌧ = 8.4 (right panel). The figure shows the re-
sults obtained with a trajectory of duration t = 100 and 75
independent noise realizations. Lines are only a guide for the
eyes.

To start with, we show in Fig. 2 an example of the
sample-to-sample fluctuations of W, Q, and ⌃ in the
second stability lobe for t = 100 (a qualitatively simi-
lar behavior is observed in the first lobe). The Langevin
equation is solved by using Heun’s method[91] with a
time-step �t = 5.10�4.

As expected, the fluctuations of the three observables
are strongly correlated. However, despite the long du-
ration of the observed trajectory, the boundary terms
(which are non-extensive in time) are still not negligible.
The most striking feature is that they contribute di↵er-
ently to the observables depending on the value of ⌧ : for
⌧ = 7.6, the quantity that exhibits the largest fluctua-
tions is ⌃, whereas it is Q for ⌧ = 8.4. Note that the sys-
tem operates in the feedback cooling regime in both cases
(T

x

/T ⇡ 0.42, T
v

/T ⇡ 0.36, �Ẇ
ext

⌘ ��Ẇ ⇡ 0.019 for
⌧ = 7.6, and T

x

/T ⇡ 0.72, T
v

/T ⇡ 0.84, �Ẇ
ext

⇡ 0.005
for ⌧ = 8.4).
To get a more quantitative picture, the corresponding

probability distributions are shown in Figs. 3 and 4.
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FIG. 3: (Color on line) Probability distribution functions
P

W

(W = wt), P
Q

(Q = qt), and P⌃(⌃ = �t) for Q0 = 34.2,
g/Q0 = 0.25 and ⌧ = 7.6. The duration of the trajectory is
t = 100. Points represent numerical data obtained by solv-
ing the Langevin equation (45) for 2.106 realizations of the
noise: W (black circles), Q (blue stars), and ⌃ (red squares).
The solid black line is the theoretical curve e�I

W

(w)t obtained
from Eq. (66), and the dashed black line is the semi-empirical
large-deviation form given by Eq. (69). The dashed red lines
on the l.h.s. for � / �0.048 is the theoretical curve e

�I⌃(�)t

obtained from Eq. (72).

These figures clearly confirm the remarkable feature
suggested by Fig. 2: P⌃(⌃ = �t) for ⌧ = 7.6 and
P
Q

(Q = qt) for ⌧ = 8.4 di↵ers markedly from P
W

(w =
wt). Of course, these results must be taken with a grain
of salt since it is notoriously di�cult to grasp the stochas-
tic fluctuations in the long-time limit. However, as will
be discussed later, the picture emerging from Figs. 3
and 4 is consistent with the exact analytical analysis
performed in Appendix A in the small-⌧ limit. There-
fore, we may reasonably assume that it represents the ac-
tual asymptotic behavior of the probability distributions,
which will be rationalized in subsection B (including the
di↵erences with the leading large-deviation behavior de-
fined by e�I

W

(w)t)
The corresponding estimates of the generating func-
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FIG. 4: (Color on line) Same as Fig. 3 for ⌧ = 8.4. The
dashed blue line on the l.h.s. for q / �0.042 is the theoretical
curve e

�I

Q

(q)t obtained from Eq. (72).

tions (more precisely (1/t) lnZ
A

(�, t)) are shown in Fig.
5. Again we observe a striking di↵erence in the behavior
of these functions for ⌧ = 7.6 and ⌧ = 8.4. It is also ob-
vious that the pre-exponential factors play an essential
role.
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FIG. 5: (Color on line) Numerical estimates of the generating
functions Z

A

(�, t) ⇡ (1/N
S

)
P

N

S

e

��A[X,Y] for t = 100 and

N

S

= 2.106: W (black circles), Q (blue stars), and ⌃ (red
squares). The solid black line represents the theoretical SCGF
µ

W

(�) given by Eq. (59) in the interval [�
min

,�

max

] in which
this quantity is real.

Finally, we focus on the special value � = 1 and show in
Fig. 6 the numerical estimates of (1/t) lnZ

A

(1, t) in the
whole stability lobe. In other words, we investigate the
influence of the delay on the asymptotic integral fluctu-
ation relations lim

t!1(1/t) lnhe��Ai
st

. At the moment,
we just observe that the data for Q are in good agree-
ment with the theoretical value 1/Q0 (i.e �/m in real

units) predicted by Eq. (27). On the other hand, the be-
havior of the asymptotic IFT’s for W and ⌃ is non-trivial
and this evidently requires a theoretical justification.
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τ
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 ln
 Z

A
(1

,t)

1/Q0

FIG. 6: (Color on line) Long-time behavior of (1/t) lnhe��Ai
st

(i.e. asymptotic integral fluctuation theorems) as a function
of ⌧ in the second stability lobe of Fig. 1. The numerical
estimates of the IFTs forW (black circles), Q (blue stars), and
⌃ (red squares) for t = 100 are compared to the theoretical
value of Ṡ

J

(solid blue line) obtained from Eq. (63). For
⌧ / 7.37 and ⌧ ' 8.32, µ

W

(1) given by Eq. (62) is equal to
Ṡ
J

, whereas it is equal to 1/Q0 (dashed red line) for 7.37 /
⌧ / 8.32. The black solid line is the extracted work rate
Ẇ

ext

/T . Note that 1/Q0 is a tighter bound to Ẇ
ext

/T than
ṠJ in the intermediate range of ⌧ .

B. Theoretical analysis

We now present a theoretical scenario that (tenta-
tively) explains the complicated behavior of the fluctua-
tions of the three observables described above. The main
challenge is to understand why W, Q, and ⌃, which only
di↵er by temporal boundary terms, behave in such a dis-
tinct manner as a function of the delay. We first fo-
cus on the work fluctuations and derive the expression of
µ
W

(�) and I
W

(w) by analyzing the long-time behavior
of Z

W

(�, t), given by Eq. (29). Our main assumption
is that the average over the initial and final conditions
(Y and x

f

) is irrelevant asymptotically. In other words,
we assume that i) one can use the Fourier transform to
compute the path integral over the trajectory X, and ii)
there are no singularities in the pre-exponential factor
g
W

(�). The study of the fluctuations of Q and ⌃ is more
delicate, and our analysis will be inspired by the exact re-
sults available of the small-⌧ limit reported in Appendix
A.

Q0 = 34.2, g/Q0 = 0.25

Length of the trajectory: t=100

 °°° W, °°° Q, °°° S
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where

˙SJ := lim

t!1

1

t
ln

J
˜J

is a function of ⌧

he��⌃ist ⇠ eṠJ t

he��Qist = e�t/m

Two (related) explanations:

1) Existence of exact sum-rules (IFT= integral fluctuation 
theorems)

valid at all times and for any underdamped Langevin dynamics

valid only asymptotically (somewhat related to Sagawa-
Ueda IFT involving the «efficacy» parameter.

. For the heat: 

. For the «pseudo» entropy production: 
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If e�(t) ! 0 as t ! ±1 then

x(t) ⇡
Z 1

�1
dt

0 e�(t� t

0)⇠(t0)

=

Z t

�1
dt

0e�+(t� t)⇠(t0) +

Z 1

t
dt

0e��(t� t

0)⇠(t0)

x(!) ⇡ e�(!)⇠(!)

2) The behavior of the pdf’s also depends on whether the 
conjugate, acausal dynamics reaches or does not reach a 
stationary state. 

What does this mean ?
Although the conjugate dynamics is acausal and therefore 
cannot be physically implemented, one can still define a 
response function e�(t� t

0) = hx(t)⇠(t0)i

or in the frequency domain:
In this sense, the acausal dynamics reaches a stationary state 
that is independent from the initial and final conditions for t ! ±1
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
rather present a figure for Q0 = 43.2.)

where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of
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FIG. 4: (Color on line) Same as Fig. 3 for ⌧ = 8.4. The
dashed blue line on the l.h.s. for q / �0.042 is the theoretical
curve e

�I

Q

(q)t obtained from Eq. (72).

tions (more precisely (1/t) lnZ
A

(�, t)) are shown in Fig.
5. Again we observe a striking di↵erence in the behavior
of these functions for ⌧ = 7.6 and ⌧ = 8.4. It is also ob-
vious that the pre-exponential factors play an essential
role.
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FIG. 5: (Color on line) Numerical estimates of the generating
functions Z

A

(�, t) ⇡ (1/N
S

)
P

N

S

e

��A[X,Y] for t = 100 and

N

S

= 2.106: W (black circles), Q (blue stars), and ⌃ (red
squares). The solid black line represents the theoretical SCGF
µ

W

(�) given by Eq. (59) in the interval [�
min

,�

max

] in which
this quantity is real.

Finally, we focus on the special value � = 1 and show in
Fig. 6 the numerical estimates of (1/t) lnZ

A

(1, t) in the
whole stability lobe. In other words, we investigate the
influence of the delay on the asymptotic integral fluctu-
ation relations lim

t!1(1/t) lnhe��Ai
st

. At the moment,
we just observe that the data for Q are in good agree-
ment with the theoretical value 1/Q0 (i.e �/m in real

units) predicted by Eq. (27). On the other hand, the be-
havior of the asymptotic IFT’s for W and ⌃ is non-trivial
and this evidently requires a theoretical justification.
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FIG. 6: (Color on line) Long-time behavior of (1/t) lnhe��Ai
st

(i.e. asymptotic integral fluctuation theorems) as a function
of ⌧ in the second stability lobe of Fig. 1. The numerical
estimates of the IFTs forW (black circles), Q (blue stars), and
⌃ (red squares) for t = 100 are compared to the theoretical
value of Ṡ

J

(solid blue line) obtained from Eq. (63). For
⌧ / 7.37 and ⌧ ' 8.32, µ

W

(1) given by Eq. (62) is equal to
Ṡ
J

, whereas it is equal to 1/Q0 (dashed red line) for 7.37 /
⌧ / 8.32. The black solid line is the extracted work rate
Ẇ

ext

/T . Note that 1/Q0 is a tighter bound to Ẇ
ext

/T than
ṠJ in the intermediate range of ⌧ .

B. Theoretical analysis

We now present a theoretical scenario that (tenta-
tively) explains the complicated behavior of the fluctua-
tions of the three observables described above. The main
challenge is to understand why W, Q, and ⌃, which only
di↵er by temporal boundary terms, behave in such a dis-
tinct manner as a function of the delay. We first fo-
cus on the work fluctuations and derive the expression of
µ
W

(�) and I
W

(w) by analyzing the long-time behavior
of Z

W

(�, t), given by Eq. (29). Our main assumption
is that the average over the initial and final conditions
(Y and x

f

) is irrelevant asymptotically. In other words,
we assume that i) one can use the Fourier transform to
compute the path integral over the trajectory X, and ii)
there are no singularities in the pre-exponential factor
g
W

(�). The study of the fluctuations of Q and ⌃ is more
delicate, and our analysis will be inspired by the exact re-
sults available of the small-⌧ limit reported in Appendix
A.
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FIG. 1: (Color on line) Stability diagram of the feedback-
controlled oscillator for Q0 = 34.2. The oscillator becomes
unstable inside the shaded regions. The acausal response
function e�(s) has all its poles located in the r.h.s. of the
complex s-plane inside the regions delimited by the dashed
red lines and two poles in the l.h.s. outside these regions.

will reveal a remarkable connection with the dynamical
behavior of the acausal Langevin equation (18).

Noise realizations

-6

-4

-2

0

2

W
, Q

, Σ

Noise realizations

-8

-6

-4

-2

0

2

4
τ=7.6 τ=8.4

FIG. 2: (Color on line) Stochastic fluctuations of W[X,Y]
(solid black line), Q[X,Y] (dotted blue line), and ⌃[X,Y]
(dashed red line) for Q0 = 34.2 g/Q0 = 0.25, ⌧ = 7.6 (left
panel) and ⌧ = 8.4 (right panel). The figure shows the re-
sults obtained with a trajectory of duration t = 100 and 75
independent noise realizations. Lines are only a guide for the
eyes.

To start with, we show in Fig. 2 an example of the
sample-to-sample fluctuations of W, Q, and ⌃ in the
second stability lobe for t = 100 (a qualitatively simi-
lar behavior is observed in the first lobe). The Langevin
equation is solved by using Heun’s method[91] with a
time-step �t = 5.10�4.

As expected, the fluctuations of the three observables
are strongly correlated. However, despite the long du-
ration of the observed trajectory, the boundary terms
(which are non-extensive in time) are still not negligible.
The most striking feature is that they contribute di↵er-
ently to the observables depending on the value of ⌧ : for
⌧ = 7.6, the quantity that exhibits the largest fluctua-
tions is ⌃, whereas it is Q for ⌧ = 8.4. Note that the sys-
tem operates in the feedback cooling regime in both cases
(T

x

/T ⇡ 0.42, T
v

/T ⇡ 0.36, �Ẇ
ext

⌘ ��Ẇ ⇡ 0.019 for
⌧ = 7.6, and T

x

/T ⇡ 0.72, T
v

/T ⇡ 0.84, �Ẇ
ext

⇡ 0.005
for ⌧ = 8.4).
To get a more quantitative picture, the corresponding

probability distributions are shown in Figs. 3 and 4.
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FIG. 3: (Color on line) Probability distribution functions
P

W

(W = wt), P
Q

(Q = qt), and P⌃(⌃ = �t) for Q0 = 34.2,
g/Q0 = 0.25 and ⌧ = 7.6. The duration of the trajectory is
t = 100. Points represent numerical data obtained by solv-
ing the Langevin equation (45) for 2.106 realizations of the
noise: W (black circles), Q (blue stars), and ⌃ (red squares).
The solid black line is the theoretical curve e�I

W

(w)t obtained
from Eq. (66), and the dashed black line is the semi-empirical
large-deviation form given by Eq. (69). The dashed red lines
on the l.h.s. for � / �0.048 is the theoretical curve e

�I⌃(�)t

obtained from Eq. (72).

These figures clearly confirm the remarkable feature
suggested by Fig. 2: P⌃(⌃ = �t) for ⌧ = 7.6 and
P
Q

(Q = qt) for ⌧ = 8.4 di↵ers markedly from P
W

(w =
wt). Of course, these results must be taken with a grain
of salt since it is notoriously di�cult to grasp the stochas-
tic fluctuations in the long-time limit. However, as will
be discussed later, the picture emerging from Figs. 3
and 4 is consistent with the exact analytical analysis
performed in Appendix A in the small-⌧ limit. There-
fore, we may reasonably assume that it represents the ac-
tual asymptotic behavior of the probability distributions,
which will be rationalized in subsection B (including the
di↵erences with the leading large-deviation behavior de-
fined by e�I

W

(w)t)
The corresponding estimates of the generating func-

32

of t + ⌧ (as a consequence of Eq. (150)). e�(t) is also
solution of the second-order di↵erential equation

ë�(t) +
1

Q0
ė�(t) + e�(t)� 1

Q0
e�(t+ ⌧) = �(t) , (E2)

and e�(t�t

0) = hx(t)⇠(t0)i with x(t) solution of the acausal
Langevin equation (136).

The acausal character of Eq. (E1) introduces unusual
properties with respect to causal Volterra equations: i)
it has an infinite number of solutions (or none at all),
and ii) these solutions may be unbounded as t ! +1
or t ! �1. However, by fixing the Bromwich contour,
which essentially amounts to fixing the ROC of e�(s), we
have selected a unique solution. In particular, by dif-
ferentiating Eq. (155) with respect to g and using Eq.
(160), we derive that

e�(⌧) = Q0
@ṠJ
@g

= Q0
@(es+ + es

�)

@g

. (E3)

The behavior of e�(t) for t � 0 is obtained from the
property that there are only 2 poles, s̃+ and s̃

�, to the
left of the ROC of e�(s). The inverse Laplace transform in
Eq. (161) of the main text can thus be computed by clos-
ing the contour to the left with a large semi-circle (with
radius taken to infinity). The only singularities inside
the contour are the two poles s̃± and the residues at the
poles then give e�(t) in the form of a linear combination

of es̃
+
t and e

s̃

�
t. On the other hand, when t ! �1, the

asymtotic behavior of e�(t) is dominated by the pole(s),

say s̃

(2)
± , that are the closest to the ROC on its right:

this leads to an asymptotic dependence in e

s̃

(2)
± t. Some

illustrative examples of the behavior of e�(t) are shown in
Figs. 18-20.

-20 -10 0 10 20 30

t
-8

-6

-4

-2

0

2

4

6

8

A
ca

u
sa

l 
re

sp
o

n
se

 f
u

n
ct

io
n

FIG. 18: Acausal response function e�(t) versus time for Q0 =
2, g/Q0 = 0.55 and ⌧ = 1.2. e�(s) has no poles on the left-hand
side of the complex plane. The poles s̃

± ⇡ 0.0394 ± 0.847 i

and s̃

(2) ⇡ 1.977 on the right-hand side control the behavior
of e�(t) for t � 0 (hence the oscillations and the diverging time
dependence) and t ! �1 (hence the rapid decay to zero),
respectively. The ROC of e�(s) is defined by �

min

= Re(s̃±) <
Re(s) < �

max

= s̃

(2).
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FIG. 19: Acausal response function e�(t): Same as Fig.
18 for ⌧ = 8. e�(s) has 4 poles on the left-hand side of
the complex plane. The poles s̃

± ⇡ �0.187 ± 0.958 i and
s̃

(2)
± ⇡ �0.033± 0.967 i control the behavior of e�(t) for t � 0
(hence the oscillation and the asymptotic decay to zero) and
t ! �1 (hence the oscillations and the diverging asymp-
totic behavior), respectively. The ROC of e�(s) is defined by

�

min

= Re(s̃±) < Re(s) < �

max

= Re(s̃(2)± ).

-40 -30 -20 -10 0 10 20

t
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
ca

u
sa

l 
re

sp
o

n
se

 f
u

n
ct

io
n

FIG. 20: Acausal response function e�(t): Same as Fig. 18 for
g/Q0 = 0.45 and ⌧ = 10. The poles s̃

± ⇡ �0.257 ± 0.984 i

and s̃

(2)
± ⇡ 0.0407 ± 0.692 i control the behavior of e�(t) for

t � 0 and t ! �1, respectively. Note the cusp behavior for
t = 0 and the weaker singularities for �⌧,�2⌧, etc.

Note finally that e�(t) is not C1 at t = 0,�⌧,�2⌧, etc.,
as can be easily seen by di↵erentiating Eq. (E1) twice:
this is more clearly seen in Fig. 20.
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
rather present a figure for Q0 = 43.2.)

where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of

Modified Crooks FT for the work: When the acausal dynamics 
reaches a stationary state, one can show that

In the long-time limit, the 
atypical trajectories that 
dominate                are the 
conjugate twins (Jarzynski 
2006) of typical realisations 
of the reverse (acausal) 
process  

he��W ist
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x(!) ⇡ e�(!)⇠(!)

�(!)⇠atyp(!) ⇡ e�(!)⇠(!)

⇠atyp(!) ⇡
e�(!)
�(!)

⇠(!) .

Alternatively, one can determine the properties of the atypical 
noise that generates the rare events.
Since the conjugate dynamics converges, the solution of the 
acausal Langevin equation is 

Inserting into the original Langevin equation yields

17
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FIG. 7: (Color on line) Acausal response function e�(t) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. (In the final version, we will
rather present a figure for Q0 = 43.2.)

where the sums in e�
+

(t) and e��(t) are over the two poles in the l.h.s. of the complex plane and all the poles in the
r.h.s., respectively. ex(t) is thus given by an infinite but converging sum of exponentials,

ex(t) ⇡
X

s2l.h.s.

A(s)

Z

t

�1
dt0es(t�t

0
)⇠(t0) +

X

s2r.h.s.

B(s)

Z 1

t

dt0e�s(t

0�t)⇠(t0) , (81)

and it can be numerically computed for a given noise history (in practice of course, one can only include a finite number
of terms in the second sum and the quality of the approximation depends on the specific values of the parameters).
In this way, we can generate a representative ensemble of trajectories and obtain the statistics of the modified work

fW[X,Y] =
2g

Q2

0

Z

t

0

ds ex(s+ ⌧)ėx(s) . (82)

A numerical check of Eq. (75) is shown in Fig. 8.
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FIG. 8: (Color on line) Verification of the asymptotic Crooks fluctuation theorem, Eq. (75). The figure compares P

W

(W =

wt)e�wt (black circles) with e
P (W̃ = �wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55 and ⌧ = 2.5. The original pdf

P

W

(W = wt) is represented by the solid black line. The observation time is t = 20.

This figure also shows that this whole calculation is not purely academic since it gives some information about the
rare events that dominate the integral

R

P
W

(W, t)e�W dW in the long-time limit. These rare trajectories are generated
by rare realizations of the stochastic noise, and they are the conjugate twins (adopting the terminology of [29]) of

And thus:
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FIG. 9: (Color on line) Variance of the atypical noise ⇠

atyp

(t) that generates the rare events shown in Fig. 8.

typical realizations of the reverse process. The remarkable feature here is that the dynamics of the reverse process is
acausal (this must not be confused with the “anticausal” trajectories discussed in [29? ] which are determined by the
final conditions of the forward process).

Alternatively, we may compute the properties of the atypical noise ⇠
atyp

(t) which produces such trajectories by
simply inserting the solution ex(!) = e�(!)⇠(!) into the original Langevin equation. This leads to

⇠
atyp

(!) =
e�(!)

�(!)
⇠(!) . (83)

The atypical noise is thus colored, with a variance h⇠
atyp

(t)⇠
atyp

(t0)i = ⌫(t� t0) given by

⌫(t) = 2�T



�(t) +

Z

+1

�1

d!

2⇡
[| e�(!)
�(!)

|2 � 1]e�i!t

�

= 2�T



�(t) +

Z

+1

�1

d!

2⇡
[
H(!, 1)

H(!, 0)
� 1]e�i!t

�

(84)

The variance of the noise corresponding to Fig. 8 is plotted in Fig. 9.

IV. SUMMARY AND OUTLOOK

Appendix A: The Markovian small-⌧ limit

In order to better understand the non-trivial behavior of the fluctuations of the various observables, it is useful to
consider once again (after [3]) the small-⌧ limit of the linear Langevin equation (44). By expanding the feedback force
F
fb

(t) = k0x(t� ⌧) to first order in ⌧ , we get

mv̇
t

= �k̄x
t

� (� + �0)v
t

+
p

2�T ⇠
t

, (A1)

where k̄ = k � k0 and �0 = k0⌧ respectively define a modified spring constant and an additional damping constant.
The dimensionless version of this equation is given by Eq. (70), but we prefer to work with Eq. (A1) in this Appendix
in order to make it easier the connection with previous studies[3–5].

The dynamics described by Eq. (A1) is Markovian, but the fact that the feedback force F
fb

(t) = ��0v
t

is velocity-
dependent induces some special features that are also encountered in the original non-Markovian time-delayed model.
For our present purpose, the main interest of the small-⌧ limit is that the various generating functions can be obtained
analytically, even for a finite observation time[3]. Note that Eq. (A1) also describes the dynamics of a Brownian
particle coupled to two thermostats at temperatures T and T 0 in the special case T 0 = 0. In this model, the quantity
of interest is the heat exchanged between the two baths, but the generating function Z

Q

(�, t) is only known in the
long-time limit when T 0 > 0[46] (see also [47–49]). The full analytical solution has only be computed for k̄ = 0, that
is for a free Brownian particle[37] (see also [35]).

Variance of the atypical noise

⌫(t) = 2�T


�(t) +

Z +1

�1

d!

2⇡
[| e�(!)
�(!)

|2 � 1]e�i!t

�
h⇠atyp(t)⇠atyp(t0)i = ⌫(t� t0)Hence

with

The «atypical» noise 
that generates the rares 
events dominating              
                 is colored !he��W ist
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Thank you for your attention ! 

One can extend the framework of stochastic thermodynamics 
to treat non-Markovian effects induced by a time-delayed 
feedback. This introduces a new and interest ing 
phenomenology .

Experimental tests ?

CONCLUSION
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