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Purpose of Stochastic Thermodynamics:

Extend the basic notions of classical thermodynamics (work,
heat, entropy production...) to the level of individual trajectories.
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The observed systems

. have only a few degrees of freedom == fluctuations play a

dominant role and observables are described by probability
distributions.

. are in contact with one or several heat baths

. stay far from equilibrium because of mechanical of chemical

«forcesy.
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Thermodynamics of feedback control
(«Maxwell's demony).

(g ormation Purpose: Extend the second law of
thermodynamlcs and the fluctuation

-, theorems in the presence of
Feedback information transfer and control

Two types of control:

1) Feedback is implemented discretely by an external agent
through a series of loops initiated at a sequence of
predetermined times, e.g. Szilard engines (non-autonomous
machines). See recent review in Nature Phys. 11, 131 (2015).

2) Feedback is implemented continuously, in real time. Time-
lags are then unavoidable (or chosen on purpose). Normal
operating regime: NESS in which heat and work are permanently
exchanged with the environment (autonomous machines).
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» The non-Markovian character of the dynamics (which is
neither due to coarse-graining nor to the coupling with the

heat bath) raises issues that go beyond the -current
framework of stochastic thermodynamics and that do not
occur when dealing with discrete feedback control.

Main message: Because of the time-delayed

feedback control, the relation between dissipation and time-
reversibility becomes highly non-trivial (the reverse process is
quite unusual). However, in order to understand the behavior
of the system (in particular the fluctuations of the observables,

e.g. the heat), one must refer to the properties of the reverse
process.
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Time-delayed Langevin equation:

with Fiy(t) = Fro(ze—r + D7)

» Inertial effects play an important role in human motor control
and in experimental setups involving nano-mechanical
resonators (e.g., feedback cooling)

» Deterministic feedback control;: no measurement errors

Stochastic Delay Differential Equations (SDDEs) have a rich
dynamical behavior (multistability, bifurcations, stochastic
resonance , etc.). However, we will only focus on the steady-
state regime.
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Second-law-like inequalities

The full description of the time-evolving state of the system in
terms of pdf's requires the knowledge of the whole Kolmogorov
hierarchy p(x,v,t), p(x1,v1,t;x2,v2,t — T), etc.

There is an infinite hierarchy of Fokker-Planck (FP) equations
that has no close solution in general.

ﬁ> The definition of the Shannon entropy depends on the
level of description, e.g. s*(t) = /daz dv p(z,v,t) Inp(z,v,t)

There is no unique entropy-balance equation from the FP
formalism (and no unique second-law-like inequality in the

steady state), but a set of equations and inequalities.
The «entropy pumping» rate

W . . . . describes the influence of the
exr .

< §*Y W = —O continuous feedback. One can
o T ewee Wea ) extract work from the bath if the

entropy puming rate is positive

For more details, see Phys. Rev. E 91, 042114 (2015)
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Local detailed balance equation:
relates the heat exchanged with the bath along a given stochastic
trajectory to the conditional probabilities of observing the trajectory
and its time—reversed image.

t
q|X, Y] :/ ds [yvs — \/27TEs] o v
0

t
= —/ ds (mvg — F(xs) — Frp(xs—r)] 0 vg
0
P[X|Y] probability to observe X = {z,}} given the previous path Y = {z,}° _

PIX|Y] x J e P5IXY]

S[X,Y]| = Onsager-Machlup action functional

! / ds |mis + vis — F(xs) — Frp(zs—r)]

SIX, Y] = -

J path-independent Jacobian (contains the factor ezm?)
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By simply reversing time, and taking the logratio of the
probabilities, one does not recover the heat because the heat is
not odd under time reversal !

To recover the heat, one must also reverse the feedback

i.e. change 7 into — 7!

::> This defines a conjugate, acausal Langevin dynamics:
miy = —yvy + F(xt) + Frp(@eg7) + /29T §(¢)

::> PXY] Nj LBQIX,Y]
PIXt|x}, YT J[X]

PIXT|x!, Y] oc J[X]e 5K Y]

. - 1 [t
with  S[X,Y] = o / ds [m:’c’s + vty — F(xg) — Ffb(a:SjLT)}
7 Jo
T | X| = non-trivial Jacobian due to the violation of causality

in general path dependent
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From the local detailed balance equation, one can
derive another second-law-like inequality in the

stationary state

where Sj = lim —<1H ~ >st

This new upper bound to the extracted work is different from the
one involving the entropy pumping rate.
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FLUCTUATIONS

To be concrete, we now consider a linear Langevin equation, i.e.
a stochastic harmonic oscillator submitted to a linear feedback

In reduced units: ¢, = —x; — ivt + iaﬁt_T + &

0 0

3 independent parameters: Qg, g, T
Qo = woro (wo =V Ek/m, 70 =m/v) (Quality factor of the resonator)

This equation faithfully
describes the dynamics of
nano-mechanical
resonators (e.g. the
cantilever of an AFM) in
the vicinity of the
resonance frequency.

Active feedback
cooling of the

cantilever of an
AFM
(Liang et al. 2000)
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We study the fluctuations of 3 observables:

29 t
Work: WX, Y] = —5 dS Ty_ Vg
0

Heat: BOIX,Y|=pW[X,Y]| - AU(x;,xf)

- 1
= BWIX,Y] — Q—(xi — i +v; — v
0

“Pseudo EP” Y[X,Y] = SO[X,Y] +In L ot(Xi)
DPst (Xf)

Quantities of interest: probability distribution functions
Pa(A,t) = (0(A — BAIX,Y])) s

:/dxf/DY Pst| Y] Y DX (A - BAIX,Y])PX]|Y]

and the characteristic (or moment benerating) functions

400
Za(\t) = (e MPAXY]Y | — / dA e M P4(A,t)

— 0
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Expected long-time behavior of the pdfs: Pa(A = at) ~ ¢ f4(®)!

where ~ denotes logarithmic equivalence and I(a) is the LDF

Similarly: Za(\,t) &~ ga(A\)ertaM?

1
where 4 ()\) = lim — In(e MAXY] s the SCGF

t—oo 1

Scaled Cumulant Generating Function)
and the pre-exponential factor ga(\) typically arises from the
average over the initial and final states. Here the “initial” state is'Y

The 3 observables only differ by temporal «boundary» terms
that are not extensive in time. However, since the potential V(x)
Is unbounded, these terms may fluctuate to ordert!

ﬁ> Pole singularities in the prefactors and exponential
tails in the pdf’s (e.g. for the heat)
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Probability distribution functions: Qo =34.2,9/Qo0

Length of the trajectory: t=100

= 0.25
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Probability distributions

Probability distributions
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Main Puzzle: How can we explain the change of behavior of

gt) and Ps(X=ot) with 7 ?
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Two (related) explanations:

1) Existence of exact sum-rules (IFT= integral fluctuation
theorems)

. For the heat: <€_BQ>st — @7’5/7”
valid at all times and for any underdamped Langevin dynamics

. For the «pseudo» entropy production:
<6—52>8t N eSjt

1

where S7 := lim ~In < is a function of 7
t—oo 1 J
valid only asymptotically (somewhat related to Sagawa-
Ueda IFT involving the «efficacy» parameter.
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2) The behavior of the pdf's also depends on whether the

conjugate, acausal dynamics reaches or does not reach a
stationary state.

What does this mean ?

Although the conjugate dynamics is acausal and therefore
cannot be physically implemented, one can still define a
response function Y(t —t') = (x(t)&(t'))

If x¥(t) — 0 ast — +oo then
o(t) ~ / at' 5t — t)E(H)

_too 00
= [ arRie-nee)+ [ drgoe— o)
or in the frequency domain: x(w) ~ x(w)&(w)

In this sense, the acausal dynamics reaches a stationary state
that is independent from the initial and final conditions fort — 400
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Modified Crooks FT for the work: When the acausal dynamics
reaches a stationary state, one can show that

Py (W = wt) ~ p(w+ST)t

~ I~

P(W = —wt)

Probability distributions

, T — 00

>

In the long-time Ilimit, the
atypical trajectories that
dominate (e=""),, are the
conjugate twins (Jarzynski
2006) of fypical realisations
of the reverse (acausal)
process
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Alternatively, one can determine the properties of the atypical
noise that generates the rare events.

Since the conjugate dynamics converges, the solution of the
acausal Langevin equation is

Inserting into the original Langevin equation yields

X (W)€atyp(w) = X(w)E(w)

And thus:

Eatyp(w) = =& (w) -
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Hence  (Satyp(t)€atyp(t')) = v(t —1t')

T dw

with v(t) = 29T [5(15) -+ / o

— 00

Variance of the atypical noise
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X(w) 2 _ q{]p—iwt
x(w)‘ !

The «atypical»

noise

that generates the rares

events dominating

(e~ PW),, is colored !
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CONCLUSION

One can extend the framework of stochastic thermodynamics
to treat non-Markovian effects induced by a time-delayed
feedback. This introduces a new and interesting
phenomenology .

Experimental tests ?

Thank you for your attention !

lundi 10 aolt 15




