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Reminder of the basics

Glass/jamming phase diagram

The soft sphere model:
v(r) = ε(1− r/σ)2θ(r − σ)

Two control parameters:
T/ε and ϕ = VσN/V

The glass transition goes from liquid to an “entropically” rigid solid
Jamming is a transition from “entropic” rigidity to “mechanical” rigidity

[Liu, Nagel, Nature 396, 21 (1998)]

[Berthier, Witten, PRE 80, 021502 (2009)]

[Ikeda, Berthier, Sollich, PRL 109, 018301 (2012)]
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Reminder of the basics

The jamming transition
An athermal assembly of repulsive particles
Transition from a loose, floppy state to a mechanically rigid state
Above jamming a mechanically stable network of particles in contact is formed

ϕj ϕ

Hard sphere limit T/ε→ 0:
For ϕ < ϕj : pressure P ∝ T → 0 and reduced pressure p = P/(ρT ) is finite
For ϕ > ϕj : pressure P ∝ ε(ϕ− ϕj )

For hard spheres, ϕj is also known as random close packing: ϕj (d = 3) ≈ 0.64

[Bernal, Mason, Nature 188, 910 (1960)]

[Liu, Nagel, Nature 396, 21 (1998)]

[O’Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002)]
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Reminder of the basics

The jamming transition
Anomalous “soft modes” associated to a diverging correlation length of the force network

[Wyart, Silbert, Nagel, Witten, PRE 72, 051306 (2005)]

[Van Hecke, J.Phys.: Cond.Mat. 22, 033101 (2010)]
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Reminder of the basics

Glass/jamming transitions: summary

Liquid-glass and jamming are new challenging kinds of phase transitions

Disordered system, no clear patter of symmetry breaking

Unified phase diagram, jamming happens at T = 0 inside the glass phase:
to make a theory of jamming we first need to make a theory of glass

Criticality at jamming is due to isostaticity and associated anomalous response
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Exact solution of hard spheres in infinite dimensions

Expansion around d = ∞ in statistical mechanics

Many fields of physics (QCD, turbulence, critical phenomena, non-equilibrium, strongly
correlated electrons ... liquids&glasses!) struggle because of the absence of a small parameter

[E.Witten, Physics Today 33, 38 (1980)]

In d =∞, exact solution using mean-field theory

Proposal: use 1/d as a small parameter → RFOT theory
[Kirkpatrick, Thirumalai, Wolynes 1987-1989]

[Kirkpatrick, Wolynes, PRA 35, 3072 (1987)]

Question: which features of the d =∞ solution translate smoothly to finite d?

For the glass transition, the answer is very debated!

For the jamming transition, numerical simulations show that the properties of the transition are
very weakly dependent on d

[Goodrich, Liu, Nagel, PRL 109, 095704 (2012)]

[Charbonneau, Corwin, Parisi, FZ, PRL 109, 205501 (2012)]
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞
[Charbonneau, Kurchan, Parisi, Urbani, FZ, Nature Comm. 5, 3725 (2014)]

[Rainone, Urbani, Yoshino, FZ, PRL 114, 015701 (2015) & in progress]

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞
MSD Real spacePhase space

t

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

1. Low-density liquid

Dynamics: diffusive MSD

Phase space: {xi} ∈ RNd
. Allowed configurations

have no overlaps.

Real space: xi ∈ Rd
hard sphere position
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞
Real spacePhase space

t

MSD

∆1

∆1

∆1

β-rel

α-rel

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

2. Supercooled liquid approaching ϕd

Almost disconnected phase space

Slow α relaxation

Critical β relaxation to plateau ∆1

MCT/RFOT-like caging
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞
Real spacePhase space

t

MSD

∆1

∆1

∆1
β-rel

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

3. Equilibrium above ϕd: trapped in a glass

Disconnected phase space

Completely arrested α relaxation

Non-critical β relaxation to a plateau

Complete caging with short range correlations
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞

∆1

critical

Real spacePhase space

t

MSD

∆1
β-rel

∆1

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

4. Glass approaching the Gardner point

Glass basin fractures

Critical β relaxation to a plateau

Caging with long range correlations
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞

critical
∆EA

Real spacePhase space

t

MSD

∆1
β-rel

∆1

∆EA

∆EA

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

5. Gardner (fullRSB) glass

Glass meta-basin fractured in sub-basins

Sub-basins are marginally stable

Critical β relaxation to a plateau ∆EA < ∆1

Caging with infinite range correlations
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Exact solution of hard spheres in infinite dimensions

Exact phase diagram of hard spheres in d = ∞

∆1

∆EA = 0

Real spacePhase space

t

MSD

∆1

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

6. Jamming

No motion of particles (infinite pressure)

Sub-basins shrink to points (single configurations)

The jamming line falls in the Gardner phase
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Exact solution of hard spheres in infinite dimensions

Solution in d = ∞: summary

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

A 1/d expansion around a mean-field solution is a standard tool
when the problem lack a natural small parameter

Hard spheres are exactly solvable when d →∞
You can choose your preferred method of solution: replicas are convenient

They follow the RFOT scenario with protocol-dependent glass and jamming transitions
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Exact solution of hard spheres in infinite dimensions

Solution in d = ∞: summary

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

Crucial new result:

A Gardner transition inside the glass phase with critical
β-relaxation and diverging χ4 – ending at the MCT point

Stable → marginally stable glass
[Gardner, Nucl.Phys.B 257, 747 (1985)]

The jamming line falls inside the marginal phase
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Exact solution of hard spheres in infinite dimensions

Solution in d = ∞: FAQ

How did you make the computations? ⇒ arXiv:1411.0826

How can I detect the Gardner transition in my simulations? ⇒ Beatriz Seoane’s poster

How universal is all this stuff? ⇒ arXiv:1501.03397, 1506.01997

What about rheological properties? ⇒ Hajime Yoshino’s talk

Francesco Zamponi (CNRS/LPT-ENS) Critical exponents at jamming Kyoto, August 11, 2015 14 / 19



The critical exponents of jamming

Outline

1 Reminder of the basics

2 Exact solution of hard spheres in infinite dimensions

3 The critical exponents of jamming

Francesco Zamponi (CNRS/LPT-ENS) Critical exponents at jamming Kyoto, August 11, 2015 14 / 19



The critical exponents of jamming

Criticality around jamming

The plateau value ∆EA goes to zero at jamming, ∆EA ∼ p−κ

At p =∞, gap distribution g(h) ∼ h−γ and force distribution P(f ) ∼ f θ

[Wyart, PRL 109, 125502 (2012)]

Three critical exponents κ, γ, θ

Scaling relations based on marginal mechanical stability of the packing

γ = 1/(2 + θ) and κ = 2− 2/(3 + θ)

Only one exponent remains undetermined

Numerically γ ≈ 0.4 in all dimensions, which implies θ ≈ 0.5 and κ ≈ 1.4

[DeGiuli, Lerner, Brito, Wyart, PNAS 111, 17054 (2014)]

The jamming transition is a new kind of zero-temperature “critical” point,
characterized by scaling and non-trivial critical exponents
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The critical exponents of jamming

Critical exponents of jamming

Neglecting the Gardner transition gives θ = 0 and γ = 1: plain wrong

Taking into account the Gardner transition gives correct values:
κ = 1.41574 . . ., γ = 0.41269 . . ., θ = 0.42311 . . .

Consistent with scaling relations γ = 1/(2 + θ) and κ = 2− 2/(3 + θ)

Marginal stability in phase space and marginal mechanical stability are intimately
connected

[Charbonneau, Kurchan, Parisi, Urbani, FZ, Nature Comm. 5, 3725 (2014)]
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The critical exponents of jamming

Critical exponents of jamming
κ = 1.41574 . . ., γ = 0.41269 . . ., θ = 0.42311 . . .
Perfectly compatible with the numerical values in all dimensions d = 2 · · · 10

[Charbonneau, Kurchan, Parisi, Urbani, FZ, Nature Comm. 5, 3725 (2014)]
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The critical exponents of jamming

Critical exponents of jamming
κ = 1.41574 . . ., γ = 0.41269 . . ., θ = 0.42311 . . .
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The critical exponents of jamming

Critical exponents of jamming
κ = 1.41574 . . ., γ = 0.41269 . . ., θ = 0.42311 . . .
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Summary and perspectives

Summary

The jamming transition is a new kind of zero-temperature critical point,
characterized by scaling and non-trivial critical exponents

Critical properties of jamming are obtained only by taking into account
the Gardner transition to a marginal fullRSB phase
Analytic computation of the non-trivial critical exponents γ, θ, κ

An unexpected connection between hard spheres in d →∞ and the SK model
An instance where the fullRSB structure gives quantitative predictions for critical
exponents in finite dimensions!
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Summary and perspectives

Perspectives
The Gardner transition is known since 1985 in spin glasses, but it has always been considered as
an exotic phenomenon. Its existence in structural glasses proves that it is instead a new Unifying
Concept in Glass Physics.

It explains the criticality of the jamming transition and the abundance of soft modes in
low-temperature glasses

It implies that zero-field-cooled (ZFC) and field-cooled (FC) responses are different

It implies a critical β-relaxation and non-trivial β-aging inside a glass basin – which could
explain the anomalous behavior of the β-relaxation observed in some polymer experiments

It could explain the presence of dynamical heterogeneities (divergent χ4) in
low-temperature glasses

It could explain the anomalies of quantum glasses (“two-level systems”)

THANK YOU FOR YOUR ATTENTION
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Additional material

Expansion around d = ∞ in statistical mechanics

Theory of second order PT (gas-liquid)

• Qualitative MFT (Landau, 1937)
Spontaneous Z2 symmetry breaking
Scalar order parameter
Critical slowing down

• Quantitative MFT (exact for d →∞)
Liquid-gas: βp/ρ = 1/(1− ρb)− βaρ

(Van der Waals 1873)
Magnetic: m = tanh(βJm)

(Curie-Weiss 1907)

• Quantitative theory in finite d (1950s)
(approximate, far from the critical point)

Hypernetted Chain (HNC)
Percus-Yevick (PY)

• Corrections around MFT
Ginzburg criterion, du = 4 (1960)
Renormalization group (1970s)
Nucleation theory (Langer, 1960)

Theory of the liquid-glass transition

• Qualitative MFT (Parisi, 1979; KTW, 1987)
Spontaneous replica symmetry breaking
Order parameter: overlap matrix qab

Dynamical transition “à la MCT”

• Quantitative MFT (exact for d →∞)
Kirkpatrick and Wolynes 1987
Kurchan, Parisi, Urbani, FZ 2006-2013

• Quantitative theory in finite d
DFT (Stoessel-Wolynes 1984)
MCT (Bengtzelius-Götze-Sjolander 1984)
Replicas (Mézard-Parisi 1996, +FZ 2010)

• Corrections around MFT
Ginzburg criterion, du = 8 (2007, 2012)
Renormalization group (2011–)
Nucleation (RFOT) theory (KTW 1987)
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Additional material

1/d as a small parameter – amorphous hard spheres

Geometric argument:
kissing number ed � coordination at jamming 2d
⇒ uncorrelated neighbors
Uncorrelated neighbors correspond to a mean field situation
(like Ising model in large d)

Statistical mechanics argument:
third virial (three body terms) � second virial (two-body term).
Rigorously true for 2dϕ . 1
Re-summation of virial series (in the metastable liquid state) gives a pole at 2dϕ ∼ ed .
Glass transition is around 2dϕ ∼ d Percus, Kirkwood

Keep only ideal gas + second virial term (as in TAP equations of spin glasses):

−βF [ρ(x)] =
∫

dxρ(x)[1− log ρ(x)] + 1
2

∫
dxdyρ(x)ρ(y)[e−βv(x−y) − 1]

Solve δF [ρ(x)]
δρ(x)

= 0 to find minima of F [ρ(x)]

Exact∗ solution for d =∞ is possible, using your favorite method (we used replicas)

∗Exact for theoretical physics, not rigorous for the moment
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Additional material

Why replicas? (no quenched disorder!)

{X2
i }

{ri}

E

{Ri}

supercooled liquid energy

basin

glass

{X1
i }

{X3
i }

Gibbs measure split in many glass states

Fg = −kB T
∫

dR e−βH[R]

Z
log Z [X |R] Z [X |R] =

∫
dXe−β′H[X ]+β′ε

∑
i (Xi−Ri )2

Need replicas to average the log, self-induced disorder

[Franz, Parisi, J. de Physique I 5, 1401 (1995)]

[Monasson, PRL 75, 2847 (1995)]
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Additional material

Critical exponents of jamming

A short technical detour on the computation of exponents:

In the replica language the Gardner phase is decribed by the Parisi fullRSB structure
unexpected analogy between HS in d →∞ and the SK model!

[Wyart, PRL 109, 125502 (2012)]

[Muller, Wyart, arXiv:1406.7669]

Order parameter is ∆(y) for y ∈ [1, 1/m], the overlap probability distribution

Coupled Parisi equation for ∆(y) and a function P(y , f ), probability of the forces

At jamming, m→ 0, y ∈ [1,∞)

Scaling solution at large y : ∆(y) ∼ y−1−c and P(y , f ) ∼ yap(f yb)

a, b and c are related to κ, γ and θ

Equation for p(t) in scaling limit: boundary conditions give scaling relations for a, b, c

One free exponent is fixed by the condition of marginal stability of the fullRSB solution

[Charbonneau, Kurchan, Parisi, Urbani, FZ, arXiv:1310.2549]
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