

Funding agency:

Fonds National de la Recherche Luxembourg

Quantum Thermodynamics beyond the weak coupling limit

Massimiliano Esposito (collab. with Michael Galperin)

Kyoto, July 29, 2015

Introduction

Thermodynamics in the 19th century:

Thermodynamics in the 21th century:

http://www.scm.com/

$$rac{d}{dt}\mathcal{E}=\sum_{
u}\dot{\mathcal{Q}}_{
u}+\dot{\mathcal{W}}$$

<u>Outline</u>

- I) Nonequilibrium Thermodynamics: Phenomenology
- II) Weak coupling: Stochastic Thermodynamics
- III) Strong coupling: An exact identity as the second law
- IV) Strong coupling with NEGF:

A) Model and dynamics

B) Problems with conventional heat definitions

C) A new approach to Quantum Thermodynamics

Open questions

I) Nonequilibrium Thermodynamics: Phenomenology

	Zeroth law:	Existence of equilibrium with a well defined temperature
	First law:	$d_t U(t) = \dot{W}(t) + \sum_{\nu} \dot{Q}_{\nu}(t)$
	Second law:	$\dot{S}_i(t) = d_t S(t) - \sum_{\nu} \beta_{\nu} \dot{Q}_{\nu}(t) \ge 0$
	Third law:	$S^{eq} \to 0$ when $T \to 0$ $d_t S^{eq} \to 0$
Reversible transformation: (slow trsf. in contact with one reservoir)		$\dot{S}_i(t) = 0$, $Td_t S^{eq}(t) = \dot{Q}^{eq}(t)$ Fundamental relation of equilibrium thermodynamics $Td_t S^{eq}(t) = d_t E^{eq}(t) - \dot{W}^{eq}(t)$

II) Stochastic Thermodynamics (weak coupling)

Esposito, Stochastic thermodynamics under coarse-graining, PRE 85, 041125 (2012)

Van den Broeck and Esposito, Ensemble and Trajectory Thermodynamics: A Brief Introduction, Physica A 418, 6 (2015)

i are the eigenenergies of the system

Microscopically derived Markovian Quantum Master Equation

+ rotating wave approx

$$\dot{p}_i = \sum_j w_{ij} p_j = \sum_j \left(w_{ij} p_j - w_{ji} p_i \right)$$

 $w_{ij} = \sum_{\nu} w_{ij}^{(\nu)}$ Different reservoirs $T^{(\nu)} \mu^{(\nu)}$

5

Local detailed balance:

$$\frac{w_{ij}^{(\nu)}}{w_{ji}^{(\nu)}} = \exp\left(-\frac{(\epsilon_i - \epsilon_j) - \mu^{(\nu)}(n_i - n_j)}{k_b T^{(\nu)}}\right)$$

Energy Particle number Shannon entropy

$$E = \sum_{i} \epsilon_{i} p_{i}$$
, $N = \sum_{i} n_{i} p_{i}$, $S = \sum_{i} [-k_{b} \ln p_{i}] p_{i}$

Matter conservation

$$d_t N = \sum_{\nu} I_N^{(\nu)}$$

Energy and Matter currents

$$I_E^{(\nu)} = \sum_{i,j} w_{ij}^{(\nu)} p_j(\epsilon_i - \epsilon_j)$$
$$I_M^{(\nu)} = \sum_{i,j} w_{ij}^{(\nu)} p_j(n_i - n_j)$$

<u>1st law</u>: (energy conservation)

$$\dot{Q}^{(\nu)} = I_E^{(\nu)} - \mu^{(\nu)} I_M^{(\nu)}$$

$$d_t E = \dot{W} + \dot{W}_c + \sum_{\nu} \dot{Q}^{(\nu)}$$

Mechanical work

Chemical work

$$\dot{W} = \sum_{i} p_{i} d_{t} \epsilon_{i}$$
$$\dot{W}_{c} = \sum_{\nu} \mu^{(\nu)} I_{M}^{(\nu)}$$

<u>2nd law</u>: (non-conservation of entropy)

$$\dot{S}_{\mathbf{i}} = d_t S - \sum_{\nu} \frac{\dot{Q}_{\nu}}{T_{\nu}} \ge 0$$

$$\dot{S}_{\mathbf{i}} = \frac{k_b}{2} \sum_{\nu,i,j} \left(w_{ij}^{(\nu)} p_j - w_{ji}^{(\nu)} p_i \right) \ln \frac{w_{ij}^{(\nu)} p_j}{w_{ji}^{(\nu)} p_i} \ge 0$$

• Oth law:
$$\dot{S}_{i} = 0$$
 iff $w_{ij}^{(\nu)} p_{j} = w_{ji}^{(\nu)} p_{i}$

(detailed balance = equilibrium)
$$p_i^{eq} = \exp\left\{-\frac{\epsilon_i - \mu n_i - \Omega^{eq}}{k_b T}\right\}$$

<u>3rd law</u>: $T \to 0$ $S^{eq} \to 0$

Stochastic thermodynamics for open quantum systems also works for:

Rapid periodic driving (Floquet theory + weak coupling)

$$\frac{w_{ij}^{(\nu,l)}}{w_{ji}^{(\nu,l)}} = \exp\left(-\frac{(\epsilon_i - \epsilon_j) - \mu^{(\nu)}(n_i - n_j) - l\omega}{k_b T^{(\nu)}}\right)$$

i: quasienergies of the system Mech. work due to driving

"Stochastic thermodynamics of rapidly driven systems", Bulnes Cuetara, Engel & Esposito, New J. Phys. **17**, 055002 (2015)

"Strong couping" with polaron transformation

Non-additive in the reservoirs

$$\frac{\gamma_{12,+n_{\alpha}}^{\alpha}(-\omega)}{\gamma_{21,-n_{\alpha}}^{\alpha}(+\omega)} = e^{-\beta_{\alpha}(\omega-\mu_{\alpha}+n_{\alpha}\cdot\Omega)}e^{\beta_{\mathrm{ph}}n_{\alpha}\cdot\Omega}$$

"Single electron transistor strongly coupled to vibration: counting statistics and fluctuation theorem", Schaller, Krause, Brandes & Esposito, New J. Phys. **15**, 033032 (2013)

"Thermodynamics of the polaron master equation at finite bias", Krause, Brandes, Esposito & Schaller, J. Chem. Phys. **142**, 134106 (2015) Res1 Res2

III) An exact identity (strong coupling)

Entropy production as correlation between system and reservoir Esposito, Lindenberg, Van Den Broeck, New J. Phys. **12**, 013013 (2010)

$$H(t) = H_s(t) + \sum_{\nu} (H_{\nu} + V_{\nu}(t))$$

Single assumption:
$$\begin{cases} \rho(0) = \rho_s(0) \prod_{\nu} \rho_{\nu}^{eq} \\ \rho_{\nu}^{eq} = \exp\left(-\beta_{\nu} H_{\nu}\right)/Z_{\nu} \end{cases}$$

<u>lst law:</u>

$$\Delta U(t) = W(t) + \sum_{\nu} Q_{\nu}(t)$$

$$\Delta_i S(t) = \Delta S(t) - \sum_{\nu} \beta_{\nu} Q_{\nu}(t)$$
$$= D[\rho(t)||\rho_s(t) \prod_{\nu} \rho_{\nu}^{eq}] \ge 0$$
$$D[\rho||\rho'] \equiv \operatorname{Tr}\rho \ln \rho - \operatorname{Tr}\rho \ln \rho'$$

Entropy: $S(t) = -\text{Tr}_s \rho_s(t) \ln \rho_s(t)$

Energy: $U(t) = \langle \left(H_s(t) + \sum_{\nu} V_{\nu}(t)\right) \rangle_t$

Heat:
$$Q_{\nu}(t) = \langle H_{\nu} \rangle_{0} - \langle H_{\nu} \rangle_{t} = \int_{0}^{t} d\tau \operatorname{Tr} \left(H_{s}(t) + V_{\nu}(t) \right) \dot{\rho}(t)$$

Work: $W = \langle H(t) \rangle_{t} - \langle H(0) \rangle_{0} = \int_{0}^{t} d\tau \operatorname{Tr} \left(\dot{H}_{s}(t) + \sum_{\nu} \dot{V}_{\nu}(t) \right) \rho(t)$

See also Reeb & Wolf, New J. Phys. 16, 103011 (2014)

Problems

• $\frac{d}{dt}\Delta_i S \equiv \dot{S}_i(t) = d_t S(t) - \sum_{\nu} \beta_{\nu} \dot{Q}_{\nu}(t)$ can be negative at finite N as well as at infinite N!

No zeroth law "build in" the dynamics

Entropy production as correlation between system and reservoir, Esposito, Lindenberg, Van Den Broeck,

New J. Phys. 12, 013013 (2010)

$$H = \frac{\Delta}{2}\sigma_z + H_r + \lambda\sigma_x R$$

No third law because no equilibrium entropy

Entropy Production in Quantum Brownian Motion, Pucci, Esposito, Peliti, J. Stat. Mech. (2013) P04005

IV) NEGF (strong coupling)

A) Model and dynamics

Externally driven single level quantum dot strongly coupled to Fermionic reservoirs

Contour System Green's functions:

$$G(\tau_1, \tau_2) = -i \left\langle T_c \, \hat{d}(\tau_1) \, \hat{d}^{\dagger}(\tau_2) \right\rangle \longrightarrow \begin{array}{c} t = (t_1 + t_2)/2 & \text{Fourier} & t \\ s = t_1 - t_2 & \text{trsf} & E \end{array}$$

Equations of motion

$$\begin{pmatrix} i \frac{\overrightarrow{\partial}}{\partial t_1} - H_S(t_1) \end{pmatrix} G^{s_1 s_2}(t_1, t_2) = \sigma^z_{s_1 s_2} \delta(t_1 - t_2) + \sum_{s_3} \int dt_3 \, \Sigma^{s_1 s_3}(t_1, t_3) \, s_3 \, G^{s_3 s_2}(t_3, t_2) \\ G^{s_1 s_2}(t_1, t_2) \left(-i \frac{\overleftarrow{\partial}}{\partial t_2} - H_S(t_2) \right) = \sigma^z_{s_1 s_2} \delta(t_1 - t_2) + \sum_{s_3} \int dt_3 \, G^{s_1 s_3}(t_1, t_3) \, s_3 \, \Sigma^{s_3 s_2}(t_3, t_2)$$

Self-energies (effect of the reservoirs)

$$\left[\Sigma_{\nu}(\tau,\tau')\right]_{mm'} = \sum_{k\in\nu} V_{mk}(t) g_k(\tau,\tau') V_{km'}(t'), \qquad g_k(\tau,\tau') \equiv -i\langle T_c \,\hat{c}_k(\tau) \,\hat{c}_k^{\dagger}(\tau') \rangle$$

$$F(t_1, t_2) = \int dt_3 F_1(t_1, t_3) F_2(t_3, t_2) \longrightarrow F(t, E) = F_1(t, E) \exp\left(\frac{1}{2i} \left[\overleftarrow{\partial}_t \overrightarrow{\partial}_E - \overleftarrow{\partial}_E \overrightarrow{\partial}_t\right]\right) F_2(t, E)$$

Slow driving: expanded to second order
"Gradient expansion" 11

B) Problems with conventional heat definitions

Esposito, Ochoa, Galperin, On the nature of heat in strongly coupled open quantum systems, arXiv:1408.3608 to be replaced soon

$$\dot{Q}_{\nu,\alpha} = J_{\nu,\alpha} - \mu_{\nu} I_{\nu} \qquad I_{\nu} = -\text{Tr}\{\hat{N}_{\nu} d_{t}\hat{\rho}\} \\ J_{\nu,\alpha} = -\text{Tr}\{(\hat{H}_{\nu} + \alpha \hat{V}_{\nu})d_{t}\hat{\rho}\}$$

 $\begin{array}{ll} \alpha = 0 & \mbox{the interaction is part of the system} \longrightarrow \mbox{this is the standard definition} \\ \alpha = 1/2 & \mbox{equal sharing of the interaction between reservoir and system} \\ \alpha = 1 & \mbox{the interaction is part of the reservoir} \end{array}$

Reversible heat: $\dot{Q}_{\alpha}^{(1)} = \frac{d}{dt} \left(\int \frac{dE}{2\pi} f A^{(0)} \left[(E - \mu) + (1 - 2\alpha)(E - \varepsilon) \right] \right) \quad f$: Fermi distribution $- \int \frac{dE}{2\pi} f \left(A^{(0)} d_t \varepsilon + (1 - \alpha) \left[\operatorname{Re} G^{r(0)} \partial_t \Gamma + A^{(0)} \partial_t \Lambda \right] \right)$

Retarded GF: $G^{r(0)}(t, E) = [E - \varepsilon(t) - \Sigma^{r}(t, E)]^{-1}$ • Lamb shift Retarded self-energy: $\Sigma^{r}(t, E) = \Lambda(t, E) - i\Gamma(t, E)/2$ • Broadening

Spectral function: $A^{(0)}(t, E) = -2 \operatorname{Im} G^{r(0)}(t, E) = \frac{\Gamma(t, E)}{(E - \varepsilon(t) - \Lambda(t, E))^2 + (\Gamma(t, E)/2)^2}$ 12

Reversible heat has to be an exact differential:

$$\frac{\partial^2 Q_{\alpha}^{(1)}}{\partial \varepsilon \, \partial u} = \frac{\partial^2 Q_{\alpha}^{(1)}}{\partial u \, \partial \varepsilon}$$

This is only true if $\alpha = 0$!

We can obtain entropy by integrating: $d_t S^{eq} = \dot{Q}_0^{(1)}/T$

$$S^{eq} = \int \frac{dE}{2\pi} A \left(-f \ln f - [1 - f] \ln[1 - f] \right) \longrightarrow \text{Energy resolved Shannon form} \\ + \int \frac{dE}{2\pi} A f \frac{(E - \varepsilon)}{T} + \int \frac{dE}{2\pi} A \ln[1 - f] \left(\partial_E \Lambda + \frac{E - \varepsilon - \Lambda}{\Gamma} \partial_E \Gamma \right) \\ \underbrace{\frac{\langle \hat{V}_{\nu}(t) \rangle_{eq}}{2T}} \text{Zero in wide band approx.}$$

Problems with third law: When $T \to 0 \implies S^{eq} \to \infty$

C) A new approach to quantum thermodynamics

Quantum thermodynamics: A nonequilibrium Green's function approach Esposito, Ochoa & Galperin, Phys. Rev. Lett. **114**, 080602 (2015).

Equation of motion for the population of the level $\phi(t, E)$:

 $\{E - \varepsilon(t) - \Lambda(t, E); A(t, E) \phi(t, E)\} + \{\operatorname{Re} G^{r}(t, E); \Gamma(t, E) \phi(t, E)\} = \mathcal{C}(t, E)$

 $\{f_1; f_2\} \equiv \partial_E f_1 \partial_t f_2 - \partial_t f_1 \partial_E f_2$

Retarded Green's functions: $G^{r}(t, E) = [E - \varepsilon(t) - \Sigma^{r}(t, E)]^{-1}$

Self-energy:

$$\Sigma^{r}(t,E) = \Lambda(t,E) - i\Gamma(t,E)/2 \qquad \Sigma^{r}(t_{1},t_{2}) = -i\sum_{\nu=L,R}\sum_{k\in\nu}V_{k}^{\nu}(t_{1})\stackrel{*}{V}_{k}^{\nu}(t_{2}) \theta(t_{1}-t_{2})e^{-i\varepsilon_{k}(t_{1}-t_{2})}$$
Lamb shift Broadening

Spectral function:
$$A(t, E) = -2 \operatorname{Im} G^{r}(t, E) = \frac{\Gamma(t, E)}{\left(E - \varepsilon(t) - \Lambda(t, E)\right)^{2} + \left(\Gamma(t, E)/2\right)^{2}}$$

Energy resolved particle current: $\mathcal{C}_{\nu}(t,E) = \mathcal{C}_{\nu}^{+}(t,E) - \mathcal{C}_{\nu}^{-}(t,E) \quad \left\{ \begin{array}{l} \mathcal{C}_{\nu}^{+}(t,E) = A(t,E)\Gamma_{\nu}(t,E)f_{\nu}(E)\left[1 - \phi(t,E)\right] \\ \mathcal{C}_{\nu}^{-}(t,E) = A(t,E)\Gamma_{\nu}(t,E)\phi(t,E)\left[1 - f_{\nu}(E)\right]^{14} \end{array} \right.$ Renormalized spectral function:

n: $\mathcal{A}(t, E) = A(1 - \partial_E \Lambda) + \Gamma \partial_E \operatorname{Re} G^r \ge 0$

is positive and normalized

Energy resolved quantities!

$$\mathcal{S}(t) = \int \frac{dE}{2\pi} \mathcal{A}(t, E) \phi(t, E)$$

$$\mathcal{E}(t) = \int \frac{dE}{2\pi} \mathcal{A}(t, E) E \phi(t, E)$$

$$\mathcal{S}(t) = \int \frac{dE}{2\pi} \mathcal{A}(t, E) \sigma(t, E) \quad \text{where} \quad \sigma(t, E) = -\phi(t, E) \ln \phi(t, E)$$

$$-[1 - \phi(t, E)] \ln[1 - \phi(t, E)]$$

Introduced in the context of the quantum Boltzmann equation by Ivanov, Knoll, and Voskresensky, Nuclear Physics A 672, 313 (2000)

$$d_t \mathcal{N}(t) = \sum_{\nu} \mathcal{I}_{\nu}(t)$$

Balance equations:

$$d_t \mathcal{E}(t) = \sum_{\nu} \dot{\mathcal{Q}}_{\nu}(t) + \dot{\mathcal{W}} + \dot{\mathcal{W}}_c \qquad \text{First law}$$
$$d_t \mathcal{S}(t) = \dot{\mathcal{S}}_i(t) + \sum_{\nu} \frac{\dot{\mathcal{Q}}_{\nu}(t)}{T_{\nu}} \qquad \text{Second law}$$

16

Heat
$$\dot{\mathcal{Q}}_{\nu} = \mathcal{J}_{\nu}(t) - \mu_{\nu} \mathcal{I}_{\nu}(t)$$
 Particle current $\mathcal{I}_{\nu}(t) = \int \frac{dE}{2\pi} C_{\nu}(t, E)$
Chemical work $\dot{\mathcal{W}}_{c} = \sum_{\nu} \mu_{\nu} \mathcal{I}_{\nu}(t)$ Energy current $\mathcal{J}_{\nu}(t) = \int \frac{dE}{2\pi} E C_{\nu}(t, E)$

 ν

Mechanical work
$$\dot{\mathcal{W}}(t) = \int \frac{dE}{2\pi} \left(-A \phi \partial_t (E - \varepsilon(t) - \Lambda) - \Gamma \phi \partial_t \operatorname{Re} G^r \right)$$

Entropy production

• Weak coupling limit $\begin{array}{c} \Gamma \to 0 \\ \hline & \\ & \\ \Lambda \to 0 \end{array}$ we recover stochastic thermodynamics $A, \mathcal{A} \to 2\pi\delta(E-\varepsilon) \\ \Lambda \to 0 \end{array}$

Oth law: At equilibrium $\phi(t,E) = f(E)$ the Fermi distribution at μ , T

• 3rd law:
$$T \to 0$$
 $\sigma^{eq}(E) \to 0$ $\mathcal{S}^{eq} \to 0$

• At nonequilibrium steady state: $\dot{S}_i(t) = -\sum \frac{Q_\nu(t)}{T_\nu} \ge 0$

Standard definitions!

$$\dot{\mathcal{Q}}_{\nu} = \mathcal{J}_{\nu}(t) - \mu_{\nu} \mathcal{I}_{\nu}(t) \quad \left\{ \begin{array}{l} \mathcal{I}_{\nu}(t) = -\mathrm{Tr} \big[\hat{N}_{\nu} d_{t} \hat{\rho}(t) \big] \\ \mathcal{J}_{\nu}(t) = -\mathrm{Tr} \big[\hat{H}_{\nu} d_{t} \hat{\rho}(t) \big] \end{array} \right.$$

• For reversible transformations: $Td_t \mathcal{S}^{eq}(t) = \dot{\mathcal{Q}}(t)$

Remark

 $\mathcal{C}_{\nu}(t,E) = C_{\nu}(t,E) - \{\Lambda_{\nu}(t,E); A(t,E) \phi(t,E)\} - \{\Gamma_{\nu}(t,E) \phi(t,E); \operatorname{Re} G^{r}(t,E)\}$ $\mathcal{A}(t,E) = A(1 - \partial_{E}\Lambda) + \Gamma \partial_{E} \operatorname{Re} G^{r} \ge 0$

$$N(t) = \int \frac{dE}{2\pi} A(t, E) \phi(t, E) \qquad N(t) = \operatorname{Tr} \left[\hat{N}_S \,\hat{\rho}(t) \right]$$
$$E(t) = \int \frac{dE}{2\pi} A(t, E) E \,\phi(t, E) \qquad E(t) = \operatorname{Tr} \left[\left(\hat{H}_S(t) + \sum_{\nu} \hat{V}_{\nu}(t)/2 \right) \hat{\rho}(t) \right]$$
$$S(t) = \int \frac{dE}{2\pi} A(t, E) \sigma(t, E)$$

$$J_{\nu}(t) = \int \frac{dE}{2\pi} E C_{\nu}(t, E) \qquad J_{\nu}(t) = -\mathrm{Tr} \left[\left(\hat{H}_{\nu} + \hat{V}_{\nu}(t)/2 \right) d_t \hat{\rho}(t) \right] + \frac{1}{2} \mathrm{Tr} \left[d_t \hat{V}_{\nu}(t) \hat{\rho}(t) \right]$$
$$I_{\nu}(t) = \int \frac{dE}{2\pi} C_{\nu}(t, E) \qquad I_{\nu}(t) = -\mathrm{Tr} \left[N_{\nu} d_t \hat{\rho}(t) \right]$$

$$d_{t}E(t) = \sum_{\nu} \dot{Q}_{\nu}(t) + \dot{W} + \dot{W}_{c} \qquad \begin{cases} \dot{W}(t) = \operatorname{Tr} \left[d_{t} \hat{H}_{S}(t) \hat{\rho}(t) \right] \\ \dot{Q}_{\nu} = J_{\nu}(t) - \mu_{\nu} I_{\nu}(t) \end{cases}$$

Special case where it works: 1 level, 1 reservoir, wide band, no driving in coupling Ludovico, Lim, Moskalets, Arrachea, Sanchez, Phys. Rev. B 89, 161306 (2014)

Open questions

Generalization to many orbitals and to interacting systems....

Beyond gradient expansion (for faster driving)....

Fluctuations....

Experiments....

Main references:

Esposito, Lindenberg, Van Den Broeck, Entropy production as correlation between system and reservoir, New J. Phys. **12**, 013013 (2010)

Esposito, Ochoa and Galperin,

Quantum thermodynamics: A nonequilibrium Green's function approach, Phys. Rev. Lett. **114**, 080602 (2015)

On the nature of heat in strongly coupled open quantum systems, arXiv:1408.3608 to be replaced soon

Thank you for your attention!