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This talk will be about exact, but not rigorous, results for

quantum quenches in integrable models.



A. Quantum Quenches in isolated systems.

B. Steady state and Generalized Gibbs Ensembles (GGE).
C. "Micro-canonical” viewpoint.

D. Integrable models and local conservation laws.

E. Failure of the "Minimal GGE"” in interacting models.

F. Quasi-local conservation laws.

G. GGE for the spin-1/2 XXZ chain.



Quantum Quenches in isolated many-particle systems

A. Consider an isolated quantum system in the thermodynamic
limit; Hamiltonian H(h) (short-ranged), h e.g. bulk magnetic field

B. Prepare the system in the ground state [{> of H(ho)

C. At time t=0 change the Hamiltonian to H(h)

D. (Unitary) time evolution [)(1)> = exp(-iH(h)t) l¢>

E. Goal: study time evolution of local (in space) observables

SOOI , DMIOUX) O2IL(H)> , <bIOX, 1) O 2y, t2)lb(1)>



Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.



Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.
Initial state |{> after the quench is a pure state
[L(1)> = exp(-iH(h)1) V> = 3, exp(=iEnt) <nlP> |n>.

Can always choose observables O that never relax, e.g.

O=0t= |1><2|+|2><]| <P(DIOIY(H)> = A cos([Ei-E2]t+v)



Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.

® It can relax locally (in space).

® Entire System: AuB
® Take A infinite, B finite
® Ask questions only about B:

Expectation values

of local ops: CWHI0s() W (1)

Physical Picture: A acts like a bath for B.



Subsystems and Reduced Density Matrices

[4> = initial (pure) state of the entire system AuB (A infinite)

Density matrix: po(t)=](t)><) (1)l

Reduced density matrix: ps(t)=tra o(t)




Nonequilibrium Steady State

For the initial states we are interested in limi— ps(t)= pa(e0)
exists for any finite subsystem B in the thermodynamic limit.

< $MI0sX)y(t)> become time-independent for all
local operators.

How to characterize the steady state?



Conservation laws

Isolated system — energy conserved [H,e "' =0

No other conserved quantities — system thermalizes

cf previous talks,

Deutsch ‘91, Srednicki ‘94,....

1
Define a Gibbs Ensemble:  pgg = g~ Pett H
Aelo

U(0)|H|P(0
fix effective temperature: e — Llim (P )‘L| (0))
— 0O

1
= lim ZTr (pgeH)

L— o0

Reduced density matrix:  paeB = Tra (pcE)

Thermalization: lim pp(t) = pce.B



Further conserved quantities: system does not thermalize

I, H] = 0 = (U()|I,|¥(t)) = const.

Define a Generalized Gibbs Ensemble: M. Rigol et. al. ‘07

1
_ — >, Aala
— & 07
PGGE Zom
fix Lagrange multipliers: e, = lim (¥(0)[1a]¥(0))
L— o0 L
.1
= lim —Tr(pccela)

Reduced density matrix: pcce,B = Tra (pace)

Non-thermal Steady State:

lirgo pB(l) = peGE.B

t—
Barthel&Schollwock ‘08
Cramer, Eisert et al ‘08



Caux&Essler 13
Cassidy, Clark & Rigol ‘11

"Microcanonical” viewpoint

Construct simultaneous eigenstate |®> of all I, such that

This macro-state is described by “particle/hole” densities



Ideal Fermi gas:

Hamiltonian in mtm space: H =Y e(p)i(p)
p
particle/hole densities: P (k) = % — (k) = <‘I’\”2(77:)!<I>>

(W(0)|n(k)[¥(0))
2T

non-equilibrium steady state:  p’(k) =

specific "representative state” in large, finite volume:

1 27T 4

O, — Il T L . P(k.) — R J

’ >L | C ( J)‘O> ’ ,O ( ]) L(kj+l _kg) y k] L
J




General integrable models:

Bound states: generally many particle species

Corresponding particle/hole densities related non-trivially:

Bethe Ansatz
equations

A+ A0 = aa) = Y [ di K3~ ) (n)
T m=1 T
known (model-specific) functions

particle densities fixed by "GTBA equations”

_ PN
pn(A)

In [, (\)] = gn(.)\) +3° / dii K\ — 1) In {1 ! }

T Mm ()
determined by “overlaps” RQZOIS

M ()




Descriptions of the stationary state

For finite sub-systems B in the thermodynamic limit

pPGGEB = 1Irp (|@){P|) = Pdiag,B

Globally they are all different.

Relaxation to GGEs has been shown in integrable models that
can be mapped to free fermions or free bosons.

What about interacting integrable models?



Local conservation laws in intfegrable models

J J

H=JY» SiSf, +5Y8Y  +AS;57,,, 1<A=coshp
J

Transfer matrix formulation (6-vertex model):

b
vertex weight
" -0 ab
(L()\))a[-} a,b: 1,2 ] O{,ﬁ :T,\L
(87
Ly = sinlhn sinh A cosh (175%)o” + cosh Asinh (USZ)GZ +sinhn (S7oT +S5T07)]

I I

W o 4 W N
auxiliary” space quantum” space



Define a transfer matrix by

FOEEN = (LSS (LS, - (L)

a1...QN a1 51 252

BB ... . B
aq
] 2 « o . e oo QN
Transfer matrices commute T(A), (1)) =0

and generate local conservation laws

r O"
n! O™

o) —




Structure:

Hamiltonian:

n) __ (n)

n—+1

N E E : E : fa1a2 O

k=1 aq1,...,a3,=0

HWY o H

Lieb ‘67, Sutherland ‘70

Baxter ‘72, ..



“Minimal" GGE Fagotti&Essler ‘13

GGE density matrix

PGGE —
ZGGE

exXp ( Z )\lH(l))

Can be viewed as thermal density matrix of integrable
Hamiltonian cf Kliimper& Sakai ‘02

Can use (Quantum Transfer Matrix) formalism developed

for finite fempera’rure correlators Boos, Gohmann, Boos, Miwa, Jimbo,
Klimper et al ‘'04-"10 Smirnov, Takeyama ‘06-'09

to study GGE expectation values!



Neat trick: circumvent determining {A;} by using generating function

sinh A
X, (\) = (Sinh((_”n++ M))> (=L i (L4

“Initial data” encoded in the function

W

21 (A) = ((0)[ X1 (A)[w(0))

Steady state described by system of nonlinear integral eqns.

. Initial data enters only through Q..(}).

Closed form expressions for Q..(A) for various product states.

. Numerically exact expressions for matrix-product states.

Explicit results for short-distance spin-spin

correlation functions in "minimal GGE” Fagotti et al ‘14




Comparsion fo numerics (TDMRG): Fagotti, Collura, Essler &Calabrese ‘14
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Failure of the "Minimal GGE”

Caux&Essler 13 "Quench Action” approach to non-equilibrium
dynamics in integrable models.

Wouters et al 14 stationary state for quenches from Neel and
Poszgay et al 14 Majumdar-Ghosh initial states.

Results for spin-spin correlators are different from Minimal GGE!
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What is going on?

» There must be additional conservation laws! FHLE
> GGE concept fails! several groups



Quasi-local conservation laws

Commuting family of transfer matrices is in fact much larger:

b
R R (L ()‘))aﬁ’ a,b=1,...,2s+1
o, f=T,1
Q

Lo(A) = —

Snh7 [sinh A cosh (775”‘)00 + cosh A sinh (nSz)az + sinh n (S_O'+ + S+0_)}

where now S* act on a spin-s representation of SU(2),

+ —1 __ z z +7 + — Smh(ﬁiﬁ)
ST, 8T =257, , [8%, 5T =£57, [z = sinh 7
S*|n) = nln) , §%[n) = y/[s + 1 £ nlyls F nlgln = 1) n——8,...,8

s=1/2 reduces to previously considered case.



Define a 2-parameter family of transfer matrices by

TS()\)Bl"'BN _ (ﬁs)a&az (ﬁs)azag (LS)CLN&I

o1...0(N a1 51 agfo " " anBN
By ... B
A1 = a1
o] Qo N
Transfer matrices commute  [ts(\),7s/ (1)) = O

Generating function for conservation laws:

[ sinh((s %)77 2y (TN (0
XS(A)—< ')> SRRV AR

"2



Conservation laws: Hn+l) — 1 0" X (N _
S ol oM™ s(M), s

For s=1/2 these are local in the sense previously defined.
For s>1/2 these are quasi-local:

H§2)1 _ Zf(Z) g1 592 f(S) gt 502 0-?4?12

123~ g 741

(4) Q1 Q2 O3 Oy
+fa1a2a3a40-j O-j—|—10-j+20-j—|—3 T

félf)@,,,ak decay sufficiently fast with k s.t.
conservation laws are extensive



Recall that our Hilbert space has dimension 2"

Inner product on the space of operators:

(A,B) = (A'B) , (A) =2""Tr(A)

An operator Q is quasi-local if

1) (@—-(Q),Q—-(Q) xN

(2) (Q,Br) asymptotically independent of N for all Bx that
act non-trivially only on Kk sites



"Complete” Generalized Gibbs Ensemble

Density maftrix:

— ex )\S nH(n)
poc = p( > )

As,n ixed by initial conditions

(U (0)|Hs™ | (0)) 1

- _ L (n >)
R N = m oy (p GG M,




We have shown that

1. Initial conditions fix a unique steady state
(2P0 =1,2, ..
(H"s with higher s fix hole densities of longer strings)

Set of conservation laws is complete!

2. Explicit determination of the steady state requires

2 (A) = (T(0)] X (A)[W(0))

At the moment possible for simple (low entanglement) initial
states and s not too large (say 100 for product states).



3. For simple initial states we can calculate short-distance
spin-spin correlation functions in the steady-state to
extremely high precision.



Conclusions

. Have constructed the GGE describing the steady state after a
quench to an interacting, intfegrable model, the XXZ chain.

. Involves quasi-local conservation laws (QLCL).

. There are many more QLCL than the “traditional” local ones.
. Construction readily generalizable to other integrable models.

. Notion of “truncated GGE" appears to remain viable.

Fagotti&Essler ‘13



"Diagonal Ensemble”

energy eigenstates:  H|i,) = E, |1, )

densi’ry matrix: Pdiag — Z| ‘wn |2 ‘¢n><wn‘



