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Introduction

Model Inference:
Finding the probability distribution reproducing

the data system statistics.
Useful for characterizing the behavior of

systems of many, strongly correlated, units:
neurons, proteins, virus, species distribution, bird flocks

but...

which distribution?

Maximum Entropy (MaxEnt) Inference:
Search for the largest entropy distribution satisfying a set of

constraints.
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Introduction

Example: pairwise Ising Model

Given binary units data-set of B configurations of N units:{
{σi(b)}Ni=1

}B

b=1

Find the MaxEnt model reproducing single and pairwise
correlations:

〈σi〉MODEL = 〈σi〉DATA ≡
1
B
∑

b σi(b)

〈σiσj〉MODEL = 〈σiσj〉DATA ≡
1
B
∑

b σi(b)σj(b)
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Introduction

Example: pairwise Ising Model

Given binary units data-set of B configurations of N units:{
{σi(b)}Ni=1

}B

b=1

Find the MaxEnt model reproducing single and pairwise
correlations:

〈σi〉MODEL = 〈σi〉DATA ≡
1
B
∑

b σi(b)

〈σiσj〉MODEL = 〈σiσj〉DATA ≡
1
B
∑

b σi(b)σj(b)

Finely tune the parameters {h, J} of the
pairwise Ising model:

Ph,j(σ) = exp
{∑

i hiσi +
∑

ij Jijσiσj

}
/Z[h, J]
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Introduction

In vivo Pre-Frontal Cortex Recording:
97 experimental sessions of:

Peyrache et al. Nat. Neurosci. (2009)
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σi(b) = 1 if neuron i spiked during time-bin b

Ask to reproduce neurons firing rates and correlations.

Schneidman et al. Nature 2006; Cocco, Monasson,PRL (2011)
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Introduction

Ising Model Inference

⇒

⇒

⇒

σi(b) = 1 if neuron i spiked during time-bin b

Ask to reproduce neurons firing rates and correlations.

97 × 3 couplings network sets (97 × {PRE, TASK , POST})

Schneidman et al. Nature 2006; Cocco, Monasson,PRL (2011)
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Learning related coupling Adjustement

A =
∑

i,j:JTASK,JPOST,0

sign
(
JTASK
ij − JPRE

ij

)
·

(
JPOST
ij − JPRE

ij

)
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Maximal Entropy Models and the Vanilla (standard) Learning Algorithm

General MaxEnt

Given a list of D observables to reproduce {Σa(σ)}Da=1

(generic functions of the system units)

Find the MaxEnt model parameters {Xa}
D
a=1

PX(σ) = exp
{∑

a XaΣa(σ)
}
/Z[X]

reproducing the observables averages:

〈Σa〉DATA ≡ Pa = Qa[X] ≡ 〈Σa〉X
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Equivalent to log-likelihood maximization:

X∗ = arg maxX

[
logL[ X ]

]
≡ arg maxX

[
X · P − log Z[X]

]
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Maximal Entropy Models and the Vanilla (standard) Learning Algorithm

Equivalent to log-likelihood maximization:

X∗ = arg maxX

[
logL[ X ]

]
≡ arg maxX

[
X · P − log Z[X]

]
in fact:

∇alogL[ X ] = d
dXa

[
X · P − log Z[X]

]
= Pa −Qa[X]

Cannot be solved analytically. Ackley, Hinton and Sejnowski
(Vanilla Gradient):

Xt+1 = Xt + δXVG
t ; δXVG

t = α(P −Q[Xt])

If 0 < Pa < 1 for all a = 1, . . .D, the problem is well posed:

X∗ exists and is unique and the dynamics converges

(for infinitesimally small α)
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Maximal Entropy Models and the Vanilla (standard) Learning Algorithm

A 2-dimensional example:
logL[u, v] = − a

2 (u − u∞)2
−

b
2 (v − v∞)2

Vanilla Gradient:

δuVG
t ∼ (1 − α a)−t

⇒ α < 2/a; δvVG
t ∼ (1 − α b)−t

⇒ α < 2/b

Newton Method:

δuVG
t ∼ (1 − α)−t

⇒ α < 2; δvVG
t ∼ (1 − α)−t

⇒ α < 2

α = 1 ⇒ convergence in one step!
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Approximated Newton Method

The same happens for the MaxEnt inference:

logL[X ≈ X∗] ≈ logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)

χab[X] ≡ −∂
2logL[X]
∂Xa∂Xb

= 〈ΣaΣb〉X − 〈Σa〉X〈Σb〉X
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Approximated Newton Method

The same happens for the MaxEnt inference:

logL[X ≈ X∗] ≈ logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)

χab[X] ≡ −∂
2logL[X]
∂Xa∂Xb

= 〈ΣaΣb〉X − 〈Σa〉X〈Σb〉X

Vanilla Gradient: δXVG
t = α ∇logL[Xt−1]

δXµ
t ≡

∑
a Vµ

a δXa,t ∼ (1 − α λµ)−t

Newton Method1: δXNM
t = α χ−1[Xt−1] ∇logL[Xt−1]

δXµ
t ≡

∑
a Vµ

a δXa,t ∼ (1 − α)−t

VERY SLOW: expensive estimation & inversion of χ[X]

1(here equivalent to Amari98 Natural Gradient)
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χab[X∗] ≈ χ ab ≡ 〈ΣaΣb〉DATA − 〈Σa〉DATA〈Σb〉DATA
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Approximated Newton Method

However, for the Ising model we can approximate:

χab[X∗] ≈ χ ab ≡ 〈ΣaΣb〉DATA − 〈Σa〉DATA〈Σb〉DATA

Approximated Newton (AN) Method:

δXAN
t = α χ −1

∇logL[Xt−1]
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Approximated Newton Method

However, for the Ising model we can approximate:

χab[X∗] ≈ χ ab ≡ 〈ΣaΣb〉DATA − 〈Σa〉DATA〈Σb〉DATA

Approximated Newton (AN) Method:

δXAN
t = α χ −1

∇logL[Xt−1]

Remarks on χ[X∗] ≈ χ :

equivalent to say that an Ising distribution properly
describes data.
states that the model Fisher is close to the observables
co-variance.
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Approximated Newton Method

As the algorithm works iteratively, it requires an

early-stop condition

idea: stop the algorithm when

Q[X] is statistically compatible with P

using the P-covariance χ /B

ε
(

P , Q[X]
)
≡

B
2D

∑
ab(Pa −Qa)

(
χ −1

)
ab

(Pb −Qb)

quantifies the distance between Q[X] and P in the χ /B metric.
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Approximated Newton Method

As the algorithm works iteratively, it requires an

early-stop condition

idea: stop the algorithm when

Q[X] is statistically compatible with P

using the P-covariance χ /B

ε
(

P , Q[X]
)
≡

B
2D

∑
ab(Pa −Qa)

(
χ −1

)
ab

(Pb −Qb)

quantifies the distance between Q[X] and P in the χ /B metric.

For two i.i.d data-sets: ε
(

P , P′
)
≈ 1

⇒ we stop the algorithm as soon as ε < 1
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Approximated Newton Method

APPROXIMATED NEWTON ALGORITHM:

1 Initialization:
(a) Chose X0 and compute Q[X0] and ε0 = ε

(
P , Q[X0]

)
(b) Then set α0 = 1 and M = min( 2B

ε0
,B) MCMC samplings
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Approximated Newton Method

APPROXIMATED NEWTON ALGORITHM:

1 Initialization:
(a) Chose X0 and compute Q[X0] and ε0 = ε

(
P , Q[X0]

)
(b) Then set α0 = 1 and M = min( 2B

ε0
,B) MCMC samplings

2 Iterate the following step:
(a) update the Xt
(b) estimate Q[Xt] with M = min( 2B

εt−1
,B) MCMC samplings

(c) compute εt = ε
(

P , Q[Xt]
)
,

(d1) εt < εt−1: accept the update and increase α
(d2) εt > εt−1: discard the update, lower α and re-estimate Q[Xt].
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Approximated Newton Method

APPROXIMATED NEWTON ALGORITHM:

1 Initialization:
(a) Chose X0 and compute Q[X0] and ε0 = ε

(
P , Q[X0]

)
(b) Then set α0 = 1 and M = min( 2B

ε0
,B) MCMC samplings

2 Iterate the following step:
(a) update the Xt
(b) estimate Q[Xt] with M = min( 2B

εt−1
,B) MCMC samplings

(c) compute εt = ε
(

P , Q[Xt]
)
,

(d1) εt < εt−1: accept the update and increase α
(d2) εt > εt−1: discard the update, lower α and re-estimate Q[Xt].

3 stop the algorithm when εt < 1.
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Rat retina ganglion cells

Two moving bars.
2.1h of MEA recording

B = 4.8 · 105 of ∆t = 16ms
N = 95 cells

D = 4560 parameters to infer.
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Rat retina ganglion cells

Two moving bars.
2.1h of MEA recording

B = 4.8 · 105 of ∆t = 16ms
N = 95 cells

D = 4560 parameters to infer.

Convergence time from
independent spins model

with 8 × 3.4Ghz CPUs:

TAN = 144 ± 4s

TVG(α = 0.15) = 4.2 · 104s
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Approximated Newton Method

Rat retina ganglion cells

Two moving bars.
2.1h of MEA recording

B = 4.8 · 105 of ∆t = 16ms
N = 95 cells

D = 4560 parameters to infer.

Convergence time from
independent spins model

with 8 × 3.4Ghz CPUs:

TAN = 144 ± 4s

TVG(α = 0.15) = 4.2 · 104s cij = 〈σiσj〉 − 〈σi〉〈σj〉
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Approximated Newton Method

Rat retina ganglion cells

Two moving bars.
2.1h of MEA recording

B = 4.8 · 105 of ∆t = 16ms
N = 95 cells

D = 4560 parameters to infer.

Convergence time from
independent spins model

with 8 × 3.4Ghz CPUs:

TAN = 144 ± 4s

TVG(α = 0.15) = 4.2 · 104s P(K) = Prob(
∑

i σi = K)
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Q[X] is estimated through M MCMC measurements.

Q[X] ⇒ Q[X]MC is random variable!
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X = P −Q[X]MC

→ 0 only on average,
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Q[X] is estimated through M MCMC measurements.

Q[X] ⇒ Q[X]MC is random variable!

∇logLMC
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→ 0 only on average,

Change of Framework:

Xt → Pt(X)

X , rather than converge to a fixed point,

approaches a stationary P∞(X)
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The Long-Time Limit: Stochastic Dynamics

Q[X] is estimated through M MCMC measurements.

Q[X] ⇒ Q[X]MC is random variable!

∇logLMC
X = P −Q[X]MC

→ 0 only on average,

Change of Framework:

Xt → Pt(X)

X , rather than converge to a fixed point,

approaches a stationary P∞(X)

Master Equation:

Pt+1(X′) =
∫

DX Pt(X) WX→X′(α)
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The Long-Time Limit: Stochastic Dynamics

For M� 1 and X ≈ X∗:

logL[X] ' logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)
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The Long-Time Limit: Stochastic Dynamics

For M� 1 and X ≈ X∗:

logL[X] ' logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)

1 〈∇alogLMC
X 〉 =

∑
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The Long-Time Limit: Stochastic Dynamics

For M� 1 and X ≈ X∗:

logL[X] ' logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)

1 〈∇alogLMC
X 〉 =

∑
b χ[X∗]ab (X∗b − Xb) ≈

∑
b χ ab(X∗b − Xb)

2
〈
∇alogLMC

X ∇blogLMC
X

〉
c

= χ[X]ab/M ' χ[X∗]ab/M ≈ χ ab/M

a normal approximation gives:

P(∇logLMC
X ) ' N

[
χ · (X∗ − X) ; χ /M

]
(∇logLMC

X )
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The Long-Time Limit: Stochastic Dynamics

For M� 1 and X ≈ X∗:

logL[X] ' logL[X∗] − 1
2
∑

ab(Xa − X∗a) χ[X∗]ab (Xb − X∗b)

1 〈∇alogLMC
X 〉 =

∑
b χ[X∗]ab (X∗b − Xb) ≈

∑
b χ ab(X∗b − Xb)

2
〈
∇alogLMC

X ∇blogLMC
X

〉
c

= χ[X]ab/M ' χ[X∗]ab/M ≈ χ ab/M

a normal approximation gives:

P(∇logLMC
X ) ' N

[
χ · (X∗ − X) ; χ /M

]
(∇logLMC

X )

WVG
X→X′(α) = Prob

(
∇logLMC

X = X′−X
α

)
WAN

X→X′(α) = Prob
(
∇logLMC

X = χ · X′−X
α

)
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The Long-Time Limit: Stochastic Dynamics

Imposing Pt+1(X) = Pt(X)

PVG
∞ (X) = N

[
X∗; αM

(
2δ − α χ

)−1]
(X)

PAN
∞ (X) = N

[
X∗; α

M(2−α) χ
−1

]
(X)
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The Long-Time Limit: Stochastic Dynamics

Imposing Pt+1(X) = Pt(X)

PVG
∞ (X) = N

[
X∗; αM

(
2δ − α χ

)−1]
(X), αλµ < 2

PAN
∞ (X) = N

[
X∗; α

M(2−α) χ
−1

]
(X), α < 2

Which self-consistently defines X ≈ X∗

From P(∇logLMC
X ) = P(P −Q[X]MC)

PVG
∞ (QMC) = N

[
P; 2

M χ (2δ − α χ )−1
]
(QMC)

PAN
∞ (QMC) = N

[
P; 2

M(2−α) χ
]
(QMC)
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The Long-Time Limit: Stochastic Dynamics

Imposing Pt+1(X) = Pt(X)

PVG
∞ (X) = N

[
X∗; αM

(
2δ − α χ

)−1]
(X), αλµ < 2

PAN
∞ (X) = N

[
X∗; α

M(2−α) χ
−1

]
(X), α < 2

Which self-consistently defines X ≈ X∗

From P(∇logLMC
X ) = P(P −Q[X]MC)

PVG
∞ (QMC) = N

[
P; 2

M χ (2δ − α χ )−1
]
(QMC)

PAN
∞ (QMC) = N

[
P; 2

M(2−α) χ
]
(QMC)

Which is better? How to set the parameters?
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Properties of the Stationary Distribution

Algorithm Vs Empirical distributions
An experiment provides

empirical estimates of QEMP:

PEMP(QEMP) ' N
[
PTRUE, χEMP

]
PTRUE: result from infinitely long experiment
χEMP expected co-variance for B measurements
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Properties of the Stationary Distribution

Algorithm Vs Empirical distributions
An experiment provides

empirical estimates of QEMP:

PEMP(QEMP) ' N
[
PTRUE, χEMP

]
An inference algorithm provides

numerical estimates of QMC:

PALG
P (QMC) ' N

[
P, χALG

]
PTRUE: result from infinitely long experiment
χEMP expected co-variance for B measurements
P one-shot sampling of PEMP

An optimal inference algorithm should provide:

PALG as close as possible to PEMP.
What is the optimal χALG value?
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Kullback-Leibler distance between PEMP and PALG
P :

DKL

(
PEMP(·)||PALG

P (·)
)
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Properties of the Stationary Distribution

Kullback-Leibler distance between PEMP and PALG
P :

DKL

(
PEMP(·)||PALG

P (·)
)

χOPT = arg minχALG

∫
DP PEMP(P) DKL

(
PEMP(·)||PALG

P (·)
)

The solution and its approximation are:

χOPT = 2χEMP
≈ 2 χ /B

to compare with:

χVG = 2
M χ (2δ − α χ )−1 , χAN = 2

M(2−α) χ

AN with M(2 − α) = B reaches the optimum!

VG underfits λµ � (2 − B/M)/α and overfits λµ � (2 − B/M)/α



Approximated Newton Algorithm for the Ising Model Inference Speeds Up Convergence, Performs Optimally and Avoids Over-fitting

Properties of the Stationary Distribution

Synthetic data: Theory Vs Simulations

Bethe Lattice Ising Model
N = 10, c = 4

Jij = ±0.53,
hi = −0.14 − 2

∑
j Jij

100 independent estimations
of P and χ

through 216 sampling of PEMP

Inference with M = B
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Conclusions and Perspectives

Conclusions:
MaxEnt models are useful to describe multi-units systems
The AN learning is faster than the VG algorithm.
Within the large B approximation is possible to completely
characterize the long time behavior
The AN with α = 1 and M = B is optimal against overfitting.

Perspectives:
Improve the gaussian approximations
Test the algorithm to non-pairwise models
Generalize the class of model distributions beyond MaxEnt
Include hidden variables and the RBM framework
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