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Reversible transport
JMRP, PRE (1998). Reversible ratchets as Brownian particles in an adiabatically changing periodic potential. 
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which, using the solution of Eq. ~12! and setting x50, re-
produces Eq. ~7!. We see that the correction Ṙ(t)•wW , al-
though vanishing in the adiabatic limit, gives a nonzero frac-
tion of particles f crossing x50 during the interval @0,T# .
This proof resembles the derivation of the well-known Ber-
ry’s phase @22# in quantum mechanics.
Before going on with a concrete example, I would like to

stress an important property of Eq. ~7!. From this equation, it
follows that no transport of particles occurs if one slowly
modulates a potential or, more generally, if one slowly
switches between two potentials VA(x) and VB(x) in the
following way: V(x ,t)5r(t)VA(x)1@12r(t)#VB(x), with
r(t)P@0,1# periodic in time. This particular case is, remark-
ably, the only one which has been significantly studied to
date @2,3,10–13,15#, and it turns out that the efficiency of
these flashing ratchets, when considered as engines, has been
found to be very low @21# ~see, however, Ref. @19#!.
In order to have a reversible ratchet, the cycle must be a

process along a loop. A first and rather trivial example con-
sists of a well or a barrier around a point x5a within the
interval @0,1# . If the parameter a is moved from 0 to 1, due
to the periodic boundary conditions, we have a cycle with f
different from zero. This example has been studied before by
Landauer and Büttiker in the context of reversible computa-
tion @23#. The application of Eq. ~7! reproduces their expres-
sion for the current @Eq. ~6.8! in Ref. @23##. However, in this
model we are actually pushing the particles in a given direc-
tion, and, therefore, it cannot be considered as a genuine
ratchet.
We can obtain a less trivial system if the potential de-

pends on two parameters and these parameters change adia-
batically along a loop. As an example of such a reversible
ratchet, I consider the potential of Fig. 1, which depends on
two parameters V1 and V2. If these parameters are changed
following the path described in the same figure, then a trans-
port of particles is induced towards the positive x direction.
In Fig. 2, I plot the shape of the potential at the four points of
Fig. 1. The way this ratchet works is apparent from this
figure, and one can see that a transport of particles to the
right is always induced. In Fig. 3, the net fraction of particles
f crossing the boundaries of the interval to the right in a
period, calculated with Eq. ~7!, has been plotted as a function
of the width a of the barriers or wells of the potential. For

infinite large barrier and wells (V!`), the fraction f is
equal to one for any value of a between 0 and 1

2, as is evident
from Fig. 2: at step 2, the particle is within the well with
probability one, as it is at steps 3 and 4; then it must cross
x50 with probability one when moving from 3 to 4 and it
can never jump back.
In summary, the existence of reversible ratchets has been

proven. Moreover, I have presented a thermodynamic differ-
ential given by Eq. ~8!, which is not exact in the space of
parameters R of the potential. This is a nontrivial result in
the field of equilibrium thermodynamics, and it opens the
possibility of developing a complete thermodynamics of pe-
riodic potentials, including adiabatic changes of temperature,
chemical potential, and other thermodynamic functions.
There is a corollary of the theorem, which is important for

Brownian motors or noise-induced transport. From the above
results, it is clear that, in order to have transport, the change
of the potential must be driven, not only slowly, but also in a
given direction. Therefore, if this change is driven by a
noise, i.e., if R fluctuates along a given path in the parameter
space, we cannot have adiabatic transport unless the noise
were biased toward a given direction. If, for instance, R is

FIG. 1. Graphical representation of the reversible ratchet de-
scribed in the text: the potential depends on two parameters, V1 and
V2, which are the height of two barriers or wells ~left!, and they
adiabatically change along the path depicted on the right (V being
the half side of the square!.

FIG. 2. Shape of the potential at the numbered steps of the
adiabatic process plotted in Fig. 1.

FIG. 3. Net fraction of particles f crossing x50 to the right,
calculated using Eq. ~7!, as a function of the width a of barriers or
wells, for different values of the maximum height V .
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pends on two parameters and these parameters change adia-
batically along a loop. As an example of such a reversible
ratchet, I consider the potential of Fig. 1, which depends on
two parameters V1 and V2. If these parameters are changed
following the path described in the same figure, then a trans-
port of particles is induced towards the positive x direction.
In Fig. 2, I plot the shape of the potential at the four points of
Fig. 1. The way this ratchet works is apparent from this
figure, and one can see that a transport of particles to the
right is always induced. In Fig. 3, the net fraction of particles
f crossing the boundaries of the interval to the right in a
period, calculated with Eq. ~7!, has been plotted as a function
of the width a of the barriers or wells of the potential. For

infinite large barrier and wells (V!`), the fraction f is
equal to one for any value of a between 0 and 1

2, as is evident
from Fig. 2: at step 2, the particle is within the well with
probability one, as it is at steps 3 and 4; then it must cross
x50 with probability one when moving from 3 to 4 and it
can never jump back.
In summary, the existence of reversible ratchets has been

proven. Moreover, I have presented a thermodynamic differ-
ential given by Eq. ~8!, which is not exact in the space of
parameters R of the potential. This is a nontrivial result in
the field of equilibrium thermodynamics, and it opens the
possibility of developing a complete thermodynamics of pe-
riodic potentials, including adiabatic changes of temperature,
chemical potential, and other thermodynamic functions.
There is a corollary of the theorem, which is important for

Brownian motors or noise-induced transport. From the above
results, it is clear that, in order to have transport, the change
of the potential must be driven, not only slowly, but also in a
given direction. Therefore, if this change is driven by a
noise, i.e., if R fluctuates along a given path in the parameter
space, we cannot have adiabatic transport unless the noise
were biased toward a given direction. If, for instance, R is

FIG. 1. Graphical representation of the reversible ratchet de-
scribed in the text: the potential depends on two parameters, V1 and
V2, which are the height of two barriers or wells ~left!, and they
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FIG. 2. Shape of the potential at the numbered steps of the
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FIG. 3. Net fraction of particles f crossing x50 to the right,
calculated using Eq. ~7!, as a function of the width a of barriers or
wells, for different values of the maximum height V .
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Fig. 3. – a) Irreversible ratchet: numerical results for the e�ciency of the ratchet consisting of the
potential in fig. 1 a) modulated by z(t) = cos2(⇡t/T ) as a function of the external force F and for
di↵erent values of the period T : T= 0.00125 (�), 0.025 ( ), 0.05 (⇧), 0.25 (⇥), and 0.5 ( ). b) Reversible
ratchet: numerical and analytical results for the e�ciency of the ratchet described in fig. 2 for V = 5
a = 0.2 as a function of ↵ ⌘ FT and for di↵erent values of the period T : T= 1 (⇥), 2 (⇧), 10 ( ),
40 (�). The thick solid line is the analytical result given by eq. (14) in the limit T !1 and F ! 0.
Note that ⌘ is an increasing function of T in the reversible ratchet b) as opposite to the irreversible
case a).
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which is a positive quantity. Combining the above expressions, one finds for the e�ciency

⌘ =
F�

Ein
=
F (�0 � µ̄FT )
�0F + b/T

=
�0↵� µ̄↵2

�0↵+ b
, (14)

where ↵ ⌘ FT . This expression is exact in the limit T ! 1, F ! 0. Notice that, even for
large T , the irreversible contribution, b/T , to Ein is of the same order as �0F .
In a given system, i.e. for a set of parameters �0, µ̄ and b, the maximum e�ciency is

reached for ↵ = (b/�0)[
p
1 + �20/(µ̄b)� 1] and its value is given by

⌘max = 1� 2
hp
z(1 + z)� z

i
(15)

with z = bµ̄/�20. Equation (15) clearly shows how the term b in the denominator of eq. (14)
prevents the system from reaching an e�ciency equal to one. Fortunately, as we will see
in a particular example below, using strong potentials one can get arbitrarily close to 100%
e�ciency.
To check the validity of the above theory and to stress the di↵erences between reversible

and irreversible ratchets, we have studied in detail one example of each class.
As an example of irreversible ratchet, consider the modulation of the potential in fig. 1a),

i.e. V (x; t) = cos2(⇡t/T )V (x) with V (x) given by eq. (5). In this case, �0 is zero and the
above theory cannot be applied. We have numerically integrated the Smoluchowski equation,
eq. (7), using an implicit scheme with �t = 10�5, �x = 0.002, 0.005, and the Richardson
extrapolation method to correct inaccuracies coming from the finite �x. The e�ciency has
been obtained using eqs. (4), (6), (8) and the results, as a function of F and for di↵erent values

Efficiency:
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Fig. 2. – Graphical representation of the reversible ratchet described in the text: the potential in a)
depends on two parameters, V1 and V2, which are the height/depth of two barriers/wells and they
change along the path depicted in b), V being the maximum height/depth of the barriers/wells. In c),
the shape of the potential at the four labelled points is shown.

With the above expressions, the e�ciency of the system, ⌘ = Eout/Ein, can be found
analytically for T large and weak external force, where ⌘ is expected to be high. The integrated
flow � and the input energy Ein can be obtained by solving eq. (7) perturbatively up to first
order of Ṙ(t) and inserting the solution in eqs. (6) and (8). This procedure is similar to that
carried out in ref. [12] for the particular case F = 0. For the integrated flow one finds

� = �0 � µ̄FT , (9)

where µ̄ is the average mobility of the system:

µ̄ =
1

T

Z
T

0

dt

Z+(R(t))Z�(R(t))
(10)

and �0 is the integrated flow for F = 0 [12]:
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dR ·

Z 1

0
dx

Z
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with

⇢±(x;R) ⌘
e

±V (x;R)

Z±(R)
; Z±(R) ⌘

Z 1

0
dx e±V (x;R) .

In eq. (11) the contour integral runs over the closed path {R(t) : t 2 [0, T ]} in the space of
parameters of the potential. The term proportional to T in eq. (9) arises because the force F
induces a non-zero current which is present along the whole process. As a consequence, the
stopping force is Fstop = �0/µ̄T . Therefore, in order to design a motor in the adiabatic limit,
it is necessary to take simultaneously the limits T !1 and F ! 0, with ↵ ⌘ FT finite.
Observe that the above expressions are useless if �0 = 0. In ref. [12], we have called

reversible ratchets those systems exhibiting transport in the adiabatic limit, i.e. with �0 6= 0.
This is satisfied by potentials V (x;R) depending on two or more parameters such as the one
depicted in fig. 2, which is a modification of the example discussed in [12]. From now on, we
restrict our analytical calculations to reversible ratchets, although we also present numerical
results for an irreversible ratchet below.
The input energy given by eq. (6), up to first order on F and 1/T , is

Ein = �0F + b/T (12)
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Reversible transport
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Hidden pumps (Esposito & JMRP. PRE 2015)

�t  A pump biases a transition, i.e., 
creates an effective force.

 The idea:  design a protocol such 
that, at some coarse-grain level 
(hidden pump), the dynamics of the 
network is identical to that of an 
autonomous Markovian system.

The original motivation:   To compare 
chemical motors and Maxwell demons 
(Horowitz, Sagawa, JMRP. PRL 2013).

Chemical vs. information motors
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Transport is induced in a system if detailed balance is broken. This can be achieved biasing
certain transitions with a “fuel” or out-of-equilibrium chemical species. A di↵erent and intriguing
strategy is to bias transitions using feedback control, i.e., some sort of Maxwell demon that allows
or forbids transitions depending on the state of the system. Here we present two Brownian motors
that exhibits exactly the same dynamics but operate, respectively, according to the aforementioned
mechanisms. The comparison between these chemical and information motors allows us to elucidate
the nature of the interaction between information and physical systems.

“Information is physical”. Under this premise, Lan-
dauer laid the first brick of the so-called thermodynam-
ics of computation. A single-bit memory, no matter its
physical nature, is a system that can adopt two states,
0 or 1, stable for a long period of time. As a conse-
quence, manipulating the state of the memory has ther-
modynamic consequences and limitations. Since the sem-
inal work of Landauer, the study of memories as bistable
systems has been comprehensive. The thermodynamic
costs of erasure [1], copying [2, 3], proofreading [3], and
measurement-and-erasure [4, 5] have been analyzed in de-
tail. On the other hand, there are few results on how a
memory interacts with a physical system [6]. One could
think that this interaction has nothing special: once the
memory is modeled as a bistable system, it is not hard to
build theoretical or experimental setups where the mem-
ory is coupled to another physical system.

In this Letter we show that this is not the case. In or-
der to get a complete picture of what is information from
a physical point of view, we also have to consider the spe-
cific features of the interaction between an information
device and a physical system. In short, this interaction
must be able to create relatively long-life correlations be-
tween the device and the system. To illustrate this idea
we analyze the minimal model of a chemical motor (see
Fig. 1), in which a particle moves in periodic potentials
against a constant force F , using some type of “fuel”.
The periodic potential switches between two configura-
tions (upper and lower in Fig. 1). Each configuration con-
sists of infinite barriers that confine the particle within a
box of length l = 1. We assume that the particle has only
two possible spatial states, R and L. Then, switching the
potential amounts to switch spatial states R $ L. The
energy di↵erence between state R and L, within the box,
is �E = Fl/2. We consider standard isothermal Marko-
vian dynamics and use energy units such that kT = 1.
Notice that the switches do not need any energy supply,
since the state R in the lower potential has the same
energy as the state L in the upper potential.

R
L

R
L

R
R

L

L

�E

L

R

R

L

spatial diffusion

chemistry
/demon

FIG. 1: The generic motor studied in this Letter. A Brownian
particle moves in a periodic potential of period l against a
force F = 2�E/l. The motion occurs because the potential
switches between two configurations (upper and lower) and
the rate of “correct” switches (green arrows in the figure)
exceeds the rate of “wrong” ones (red arrows). The switching
can be induced either by chemical fuel (chemical motor) or
by a demon (information motor).

The motor works if the reaction R ! L is more likely
that the reversal L ! R (green and red arrows in Fig. 1,
respectively). This might be accomplished by coupling
the transitions to an out-of-equilibrium pair of chemical
species A, B:

R + A $ L + B; �µ = µA � µB > 0 (1)

The resulting kinetic-di↵usion scheme corresponds to the
minimal tight-coupled chemical motor, extensively used
to model protein motors and pumps (A being ATP and
B, ADP). If �µ > �E, a current J is generated against
the spatial force, performing a work per unit of time Ẇ =
J�E, consuming free energy at a rate Ḟ

in

= J�µ, and
producing and entropy per unit of time

Ṡ(chem.mot.) = J(�µ � �E) � 0 (2)

This entropy production rate vanishes only in the re-
versible limit, �E = �µ, attained when the motor stalls.
For simplicity, we will assume along the paper that spa-
tial di↵usion is much faster than the chemical transitions.
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work corresponding to the energy transferred to the system by
the external agent,

δWdr =
∑

i

pidEi =
∑

i

pi

dEi

dt
dt, (4)

the nonconservative work corresponding to the energy trans-
ferred to the system by the nonconservative forces,

δWnc =
∑

i<j

JijFij dt, (5)

and the heat corresponding to the energy transferred from the
reservoir to the system which, using Eq. (2), can be written as

δQ =
∑

i

Eidpi − δWnc = −kT
∑

i<j

Jij ln
wij

wji

dt. (6)

The second law expresses the fact that the change in the total
entropy or entropy production (i.e., the sum of the change in the
system Shannon entropy S = −k

∑
i pi ln pi plus the change

in the entropy of the reservoir −δQ/T ) is always nonnegative
δStot ! 0:

δStot = dS − δQ

T
=

∑

i<j

δS
ij
tot, (7)

where

δS
ij
tot = kJij ln

wijpj

wjipi

dt ! 0 (8)

is the nonnegative edge entropy production expressed as a flux
times a force [1,2]. The total entropy production may also be
rewritten as

T δStot = δWdr + δWnc − dF = δWnc −
∑

i<j

δFij , (9)

where F = E − T S =
∑

i pi(Ei + kT ln pi) is the nonequi-
librium free energy of the system whose change can in turn be
split as

dF = δWdr +
∑

i<j

δFij , (10)

with

δFij ≡ Jij

[
Ei − Ej + kT ln

pi

pj

]
dt. (11)

Note that, in the absence of nonconservative forces, Fij = 0,

T δS
ij
tot = −δFij , T δStot = −

∑

i<j

δFij . (12)

III. INDUCING POISSONIAN TRANSITIONS BY
REVERSIBLE PUMPING

We now introduce a generic reversible pumping mechanism
that transfers probability between two states in a way that
is indistinguishable from the Poissonian transitions of a
Markovian dynamics. Poissonian transitions are characterized
by the following properties: (i) the probability transferred
during a small time interval τ is wτ , where w is the rate
of the transition; and (ii) the occurrence of a transition in a
given time interval is independent from the transitions that
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FIG. 1. (Color online) Schematic representation of the reversible
pump. (a) The pump between network states 1 and 2 consists of two
intermediate states a and b with respective energies Ea and Eb, which
are modified by an external agent in a cyclic way. The agent can also
open (solid vertical bars) and close (dashed vertical bars) the barriers
connecting the network states 1 and 2 with the pump states a and b.
(b) Protocol followed by pump a (upper figure) and pump b (lower
figure). We have labeled the seven steps of the a protocol, according
to the description in the main text. Notice that the superscript
of the energies indicates the network state i, which is in contact
with the pump state a,b when Ea,b = E

(i)
a,b. The pump is reversible

if the changes in the energies Ea,b are carried out quasistatically with
respect to the time scale of the transitions between network states
and pump states and if E(2)

a and E
(1)
b are appropriately chosen [see

Eqs. (17) and (18)]. The opening and closing of the barriers can be
done instantaneously without compromising the reversibility of the
process.

occurred in the past. When considering a pump induced by
a periodic driving of very small period τ (this condition will
be made more precise below) and transferring a probability
wτ during each cycle, then the pump will mimic Poissonian
transitions, since the transitions that occurred in a given cycle
are independent of those occurring in the other ones.

To be precise, consider the setup depicted in Fig. 1(a). The
system is made of observable states 1,2,3, . . . (3,4, . . . not
shown in the figure) and two hidden states a,b connecting
states 1,2. The transition rates satisfy local detailed balance
Eq. (2). The transitions between a,b and 1,2 can be turned on
and off by an external agent without any expenditure of work
(this can be achieved for instance for Arrhenius rates wij =
#ij e

βEj by instantaneously raising and lowering the energy
barriers #ij = #ji) and do not involve any nonconservative
forces Fij = 0. The external agent also controls the two
energies Ea and Eb. The operations performed by the external
agent are cyclic and of period τ chosen to be much shorter than
any time scale between the observable states, i.e., τwij ≪ 1
for i,j = 1,2,3, . . . .

We first describe the process along path 1 − a − 2 where
the energy Ea and the barriers between a and 1 and between a
and 2 are modulated. The protocol starts with the two barriers
closed and an energy Ea = E(0)

a ≫ E1,E2, and proceeds as
follows [see Fig. 1(b)]: (a) the barrier 1 − a is opened;
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ỹ = y

No hidden driving.

(overdamped systems + no magnetic fields)

Entropy production:

Coarse grained entropy production:

p(x, x0; {�t}) =
X

y,y0

p(x, y;x0
, y

0; {�t})

Marginal probability distribution

One can prove:

Two 

ass
umptio

ns!

Stot = k
�

(x,y)
(x�,y�)

p(x, y; x�, y�; {�t}) ln
p(x, y; x�, y�; {�t})
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�Ḟij � 0

Real entropy production:

Entropy production of the 
coarse-grained description:
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where we used Eq. (11) with dt = τ for the last
equality.

IV. COARSE-GRAINED VERSUS REAL
ENTROPY PRODUCTION

We now turn to the comparison between the real entropy
production of the full network, which includes the pumping
states and the coarse-grained entropy production obtained
by just considering the dynamics on the observable states.
For simplicity, we assume no nonconservative force besides
the effective force F eff

21 emerging at the coarse-grained level.
Examples with nonconservative forces will be provided in the
applications. We consider pumping cycles of duration τ much
smaller than the characteristic time of the dynamics of the
coarse-grained network.

At the coarse-grained level of description, the observed
states are not driven and the only nonconservative force is the
effective one induced by the pump. The total work in a cycle
is therefore δWnc = J12F

eff
12 τ and, using Eq. (9), the entropy

production per cycle reads

T δS
(cg)
tot = J12F

eff
12 τ −

∑

i<j

δFij ! 0, (24)

where the sum runs over the observable states i,j = 1,2,3, . . .
and δFij is given by Eq. (11) with dt = τ .

On the other hand, in the full network all forces are
conservative. Using Eqs. (9) and (23), the true entropy
production is given by

T δStot = δWdr − dF = δF12 − dF ! 0. (25)

When calculating the differential dF over a cycle of the pump
operation, the contributions to F from the hidden states a,b
vanish since they are empty at the beginning and at the end
of the cycle. Since the remaining states do not depend on the
external agent, one finds

dF = d

[
∑

i

(Ei + kT ln pi)pi

]

=
∑

i<j

δFij . (26)

Inserting Eq. (26) into Eq. (25), we get that

T δStot = −
∑

i<j ̸=2

δFij ! 0. (27)

Comparing this result with Eq. (12), we observe that the link
1 − 2 does not contribute to the entropy production, confirming
the reversibility of the pumping mechanism.

Our second important result is that the true entropy
production overestimates the coarse-grained one:

δS
(cg)
tot ! δStot. (28)

This result follows from comparing Eq. (24) with Eq. (27)
using the inequality

kT J12 ln
w12p2

w21p1
dt = J12F

eff
12 dt − δF12 ! 0. (29)

Of special interest is the entropy production rate when
the system reaches a stationary state. In this case, dF = 0
in Eq. (9), and the entropy production in the coarse-grained
network is given by the nonconservative work, whereas the

real entropy production is proportional to the driving work
Eq. (23). The respective entropy production rates are

T Ṡ
(cg)
tot ≡ T

δS
(cg)
tot

τ
= J21 F eff

21 , (30)

T Ṡtot ≡ T
δStot

τ
= δF12

τ
= δWdr

τ

= J21

[
E2 − E1 + kT ln

p2

p1

]
. (31)

Note that Ṡtot may vanish even for a finite current J21 (an
example is provided below).

The driving protocol that we have introduced to pump
reversibly between a pair of observable states can be designed
for any system with preassigned effective rates w21,w12 and
operating in the stationary regime. Indeed, the choice of w21
and w12 determines the effective force F eff

21 via Eq. (21), and
along with the rest of the Markov chain, also determines the
stationary values of p1 and p2. From these stationary values
we set E(2)

a and E
(1)
b using Eq. (18) and we set E(1)

a and E
(2)
b

using Eq. (15). It should be clear that our procedure can be
easily generalized to systems with pumps located between
several pairs of observable states and/or to systems with
nonconservative forces besides the ones induced by the pumps.
Some examples of this are provided below.

V. APPLICATIONS

A. Pump embedded in a conservative network

As a first example, we consider a system of N states
i = 1,2, . . . ,N connected as a ring [see Fig. 2(a)]. The states
energies are all zero Ei = 0, no nonconservative forces act on
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FIG. 2. (Color online) Three examples. The thick colored link
indicates the presence of a hidden pump inducing a force F eff in
the direction of the black arrow. The examples are (a) a ring with a
pump connecting two network states, 1 and 2; (b) a kinetic network
that produces high free-energy molecules A from low free-energy
molecules B (#µ = µA − µB > 0); (c) a ring with pumps at every
link, working against a uniform force Fext.
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where we used Eq. (11) with dt = τ for the last
equality.

IV. COARSE-GRAINED VERSUS REAL
ENTROPY PRODUCTION

We now turn to the comparison between the real entropy
production of the full network, which includes the pumping
states and the coarse-grained entropy production obtained
by just considering the dynamics on the observable states.
For simplicity, we assume no nonconservative force besides
the effective force F eff

21 emerging at the coarse-grained level.
Examples with nonconservative forces will be provided in the
applications. We consider pumping cycles of duration τ much
smaller than the characteristic time of the dynamics of the
coarse-grained network.

At the coarse-grained level of description, the observed
states are not driven and the only nonconservative force is the
effective one induced by the pump. The total work in a cycle
is therefore δWnc = J12F

eff
12 τ and, using Eq. (9), the entropy

production per cycle reads

T δS
(cg)
tot = J12F

eff
12 τ −

∑

i<j

δFij ! 0, (24)

where the sum runs over the observable states i,j = 1,2,3, . . .
and δFij is given by Eq. (11) with dt = τ .

On the other hand, in the full network all forces are
conservative. Using Eqs. (9) and (23), the true entropy
production is given by

T δStot = δWdr − dF = δF12 − dF ! 0. (25)

When calculating the differential dF over a cycle of the pump
operation, the contributions to F from the hidden states a,b
vanish since they are empty at the beginning and at the end
of the cycle. Since the remaining states do not depend on the
external agent, one finds

dF = d

[
∑

i

(Ei + kT ln pi)pi

]

=
∑

i<j

δFij . (26)

Inserting Eq. (26) into Eq. (25), we get that

T δStot = −
∑

i<j ̸=2

δFij ! 0. (27)

Comparing this result with Eq. (12), we observe that the link
1 − 2 does not contribute to the entropy production, confirming
the reversibility of the pumping mechanism.

Our second important result is that the true entropy
production overestimates the coarse-grained one:

δS
(cg)
tot ! δStot. (28)

This result follows from comparing Eq. (24) with Eq. (27)
using the inequality

kT J12 ln
w12p2

w21p1
dt = J12F

eff
12 dt − δF12 ! 0. (29)

Of special interest is the entropy production rate when
the system reaches a stationary state. In this case, dF = 0
in Eq. (9), and the entropy production in the coarse-grained
network is given by the nonconservative work, whereas the

real entropy production is proportional to the driving work
Eq. (23). The respective entropy production rates are

T Ṡ
(cg)
tot ≡ T

δS
(cg)
tot

τ
= J21 F eff

21 , (30)

T Ṡtot ≡ T
δStot

τ
= δF12

τ
= δWdr

τ

= J21

[
E2 − E1 + kT ln

p2

p1

]
. (31)

Note that Ṡtot may vanish even for a finite current J21 (an
example is provided below).

The driving protocol that we have introduced to pump
reversibly between a pair of observable states can be designed
for any system with preassigned effective rates w21,w12 and
operating in the stationary regime. Indeed, the choice of w21
and w12 determines the effective force F eff

21 via Eq. (21), and
along with the rest of the Markov chain, also determines the
stationary values of p1 and p2. From these stationary values
we set E(2)

a and E
(1)
b using Eq. (18) and we set E(1)

a and E
(2)
b

using Eq. (15). It should be clear that our procedure can be
easily generalized to systems with pumps located between
several pairs of observable states and/or to systems with
nonconservative forces besides the ones induced by the pumps.
Some examples of this are provided below.

V. APPLICATIONS

A. Pump embedded in a conservative network

As a first example, we consider a system of N states
i = 1,2, . . . ,N connected as a ring [see Fig. 2(a)]. The states
energies are all zero Ei = 0, no nonconservative forces act on
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FIG. 2. (Color online) Three examples. The thick colored link
indicates the presence of a hidden pump inducing a force F eff in
the direction of the black arrow. The examples are (a) a ring with a
pump connecting two network states, 1 and 2; (b) a kinetic network
that produces high free-energy molecules A from low free-energy
molecules B (#µ = µA − µB > 0); (c) a ring with pumps at every
link, working against a uniform force Fext.
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FIG. 3. (Color online) Numerical solution of the reversible syn-
thetase. Comparison for the example of Fig. 2(b) between the
coarse-grained entropy production Ṡ

(cg)
tot given by Eq. (39), the entropy

production of the ideal reversible pump Ṡtot given by Eq. (40), and
the entropy production calculated numerically Ṡ

(num)
tot for ! ≃ 400 and

τ = 0.01 in units of energy kT = 1 and time 1/w
pump
21 = 1. The pump

is built to produce high chemical potential A molecules #µ = µA −
µB = 0.5 and a pump force F eff

21 = 2.5. The reaction rates producing
A range from wreac

21 = 0–10 and from wreac
12 = wreac

21 e−β#µ ≃ 0–6.065.
Given these parameters, the protocol followed by the energies of the
internal states Ea,Eb is fully determined, as explained in the main
text. The protocol for the energies and barriers is depicted in the inset.

kT ln(wpump
12 τ ) = F eff

21 − ln τ ≃ 7.1. We then fix the energies
after step (d) according to Eq. (18) to E(2)

a = E(1)
a − ln(p1/p2)

and E
(1)
b = E

(2)
b − ln(p2/p1), which depend on the specific

value of wreac
21 . For instance for wreac

21 = 1, we get that E(2)
a ≃

5.67 and E
(1)
b = 6.04. Finally, we set the time scale of the

internal transitions in the pump by fixing the value of the open
barriers !ii ′ (i = 1,2 and i ′ = a,b). In our numerical solution
we open and close the barriers using linear ramps ranging
from 400 to 0. The protocol for the energies and barriers
is depicted in the inset of Fig. 3. The entropy production
of the system Ṡ

(num)
tot obtained by full numerical integration

(black points connected by blue lines) is depicted in Fig. 3.
It approaches, but still differs from, the entropy production of
the ideal reversible pump Ṡtot (red curve) and is clearly below
the coarse-grained entropy production Ṡ

(cg)
tot (black curve). The

irreversibility in the pump causing the discrepancy between
Ṡ

(num)
tot and Ṡtot mainly occurs at the end of step (b) and the

beginning of step (f).

C. A reversible rotatory motor

Our final example is a N -state ring with energies Ei = 0.
Each edge contains a hidden pump generating a force F eff

i+1,i =
Feff (clockwise) and is subjected to a constant external torque
Fext (counterclockwise) operating against the pumps [see
Fig. 2(c)]. If all the pumps are identical, then the stationary
state is uniform pi = 1/N and the (clockwise) current reads

J = J21 = w21

N
[1 − e−β(Feff−Fext)]. (41)

It is positive for Feff > Fext, meaning that the pumps generate
a finite-speed rotation against the torque.

As in the previous example, the coarse-grained entropy
production can be derived by adding to Eq. (30) the non-
conservative work performed on the N edges of the motor
δWnc = −NJFextτ :

T Ṡ
(cg)
tot = NJ (Feff − Fext). (42)

It is a nonnegative quantity that only vanishes at zero power
J = 0. The calculation of the real entropy production is more
subtle since, contrary to what happens for the synthetase, the
external force Fext affects the internal transitions of the pumps,
1 − a, 1 − b, 2 − a, . . .. The actual energy of site i is zero
because the effect of the torque is borne by the external force.
However, the work performed by the driving in the pump
between site i and i + 1 is given by Eq. (23) replacing Ei+1 −
Ei by Fext and pi = pi+1. The total driving work obtained by
summing over the N pumps is therefore

δWdr = NJFextτ, (43)

and the real entropy production rate in the stationary regime
vanishes,

Ṡtot = δWdr

τ
+ δWnc

τ
= 0. (44)

Remarkably, this motor is able to operate reversibly against
any external torque Fext.

VI. DISCUSSION

We have proposed a reversible time-dependent driving
mechanism (called reversible pump) that can be inserted
between any two states of a kinetic network. When coarse
grained, this pump gives rise to a forward and backward
Poissonian rate between the two states. The ratio of these
effective rates satisfies a local detailed balance displaying an
emergent nonconservative force. Remarkably, these pumps can
always be engineered in such a way to operate reversibly when
inserted in any steady-state kinetic network.

We found that, contrary to common belief, the coarse-
grained Markovian kinetics generated by our pumps exhibits
an entropy production that is always larger than the real one.
We exploit this fact to propose several “hyperefficient” setups
that produce finite currents (and thus finite entropy production)
at the coarse-grained level while the real entropy production
vanishes.

The origin of this surprising phenomenon is that coarse
graining the driving affects the symmetry of the system
under time reversal. Entropy production is a measure of the
probabilistic distinguishability between a process and its time
reversal [16,24,35]. To define the time-reversed process one
must consider the time-reversed driving. But if the information
concerning the driving is lost during the coarse graining
procedure, as is the case here, the time-reversal operation
at the coarse-grained level does not relate anymore to the
real time-reversal operation at the underlying level. A similar
phenomenon may occur if hidden variables that are odd
under time reversal are considered, such as velocity, angular
momentum, or magnetic moment [27,28]. In fact, an external
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where we used Eq. (11) with dt = τ for the last
equality.

IV. COARSE-GRAINED VERSUS REAL
ENTROPY PRODUCTION

We now turn to the comparison between the real entropy
production of the full network, which includes the pumping
states and the coarse-grained entropy production obtained
by just considering the dynamics on the observable states.
For simplicity, we assume no nonconservative force besides
the effective force F eff

21 emerging at the coarse-grained level.
Examples with nonconservative forces will be provided in the
applications. We consider pumping cycles of duration τ much
smaller than the characteristic time of the dynamics of the
coarse-grained network.

At the coarse-grained level of description, the observed
states are not driven and the only nonconservative force is the
effective one induced by the pump. The total work in a cycle
is therefore δWnc = J12F

eff
12 τ and, using Eq. (9), the entropy

production per cycle reads

T δS
(cg)
tot = J12F

eff
12 τ −

∑

i<j

δFij ! 0, (24)

where the sum runs over the observable states i,j = 1,2,3, . . .
and δFij is given by Eq. (11) with dt = τ .

On the other hand, in the full network all forces are
conservative. Using Eqs. (9) and (23), the true entropy
production is given by

T δStot = δWdr − dF = δF12 − dF ! 0. (25)

When calculating the differential dF over a cycle of the pump
operation, the contributions to F from the hidden states a,b
vanish since they are empty at the beginning and at the end
of the cycle. Since the remaining states do not depend on the
external agent, one finds

dF = d

[
∑

i

(Ei + kT ln pi)pi

]

=
∑

i<j

δFij . (26)

Inserting Eq. (26) into Eq. (25), we get that

T δStot = −
∑

i<j ̸=2

δFij ! 0. (27)

Comparing this result with Eq. (12), we observe that the link
1 − 2 does not contribute to the entropy production, confirming
the reversibility of the pumping mechanism.

Our second important result is that the true entropy
production overestimates the coarse-grained one:

δS
(cg)
tot ! δStot. (28)

This result follows from comparing Eq. (24) with Eq. (27)
using the inequality

kT J12 ln
w12p2

w21p1
dt = J12F

eff
12 dt − δF12 ! 0. (29)

Of special interest is the entropy production rate when
the system reaches a stationary state. In this case, dF = 0
in Eq. (9), and the entropy production in the coarse-grained
network is given by the nonconservative work, whereas the

real entropy production is proportional to the driving work
Eq. (23). The respective entropy production rates are

T Ṡ
(cg)
tot ≡ T

δS
(cg)
tot

τ
= J21 F eff

21 , (30)

T Ṡtot ≡ T
δStot

τ
= δF12

τ
= δWdr

τ

= J21

[
E2 − E1 + kT ln

p2

p1

]
. (31)

Note that Ṡtot may vanish even for a finite current J21 (an
example is provided below).

The driving protocol that we have introduced to pump
reversibly between a pair of observable states can be designed
for any system with preassigned effective rates w21,w12 and
operating in the stationary regime. Indeed, the choice of w21
and w12 determines the effective force F eff

21 via Eq. (21), and
along with the rest of the Markov chain, also determines the
stationary values of p1 and p2. From these stationary values
we set E(2)

a and E
(1)
b using Eq. (18) and we set E(1)

a and E
(2)
b

using Eq. (15). It should be clear that our procedure can be
easily generalized to systems with pumps located between
several pairs of observable states and/or to systems with
nonconservative forces besides the ones induced by the pumps.
Some examples of this are provided below.

V. APPLICATIONS

A. Pump embedded in a conservative network

As a first example, we consider a system of N states
i = 1,2, . . . ,N connected as a ring [see Fig. 2(a)]. The states
energies are all zero Ei = 0, no nonconservative forces act on
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FIG. 2. (Color online) Three examples. The thick colored link
indicates the presence of a hidden pump inducing a force F eff in
the direction of the black arrow. The examples are (a) a ring with a
pump connecting two network states, 1 and 2; (b) a kinetic network
that produces high free-energy molecules A from low free-energy
molecules B (#µ = µA − µB > 0); (c) a ring with pumps at every
link, working against a uniform force Fext.
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The first example is a simple one dimen-

sional model of an Carnot engine with an one

particle gas (fig. 2). We assume the parti-

cle to be inside of an cylinder with an mov-

able piston. The piston moves with constant

speed u. At the piston, the particle is always

reflected elastically. During this reflections,

it’s velocity is canged from v to �(v � 2u)

and the work �W = �2u(v � u) is trans-

ferred from the particle to the piston. During

the adiabatic strokes the particle is reflected

elastically at the opposite wall of the cylinder

as well. During the isothermal strokes it ther-

malizes at this wall and get an new random

velocity drawn from the probability density

p(v) = �v exp(�� v2

2

), that is independent of
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the previous particle velocity. The exchange

of heat during this refection is given by the

change of the particle’s kinetic energy.

Here we consider the following protocol:

(1) isothermal expansion: The length of the

cylinder is increased from L = 1 to L = 2

with a piston velocity of u and a constant

wall temperature of ��1 = 1. (2) adiabatic

expansion: The length increases further at

constant speed until L = 2
p

2. (3) isothermal

compression: L deceased to L =
p

2 at con-

stant speed �
q

1

2

u and a wall temperature

of ��1 = 1

2

(4) adiabatic compression: The

length decreases further at constant speed

until L = 1. The protocol is chosen such

that the engine reaches the Carnot e�ciency

in the quasi static limit (u ! 1) and that

h�sh

tot

i = h�sc

tot

i holds.
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there is no heat exchange in this case. To describe an isothermal
compression or expansion we thermalize the particle in the
collision with the bottom of the cylinder, i.e., upon reflection
we draw a new random velocity from the distribution [12,16]

φ(v) = β v e− βv2

2 1[v > 0]. (2)

Here Boltzmann’s constant is set to unity, β denotes the
inverse temperature, and the indicator function 1[·] is one if the
argument is true and zero otherwise. At the bottom the particle
therefore exchanges heat with the attached reservoir but no
work is performed. The distribution (2) is chosen such that,
for a static piston, u = 0, the equilibrium Maxwell distribution
is preserved. For constant β we call the process “isothermal”,
although, for a moving piston, in particular with large u, it is
in general impossible to associate a temperature with the gas
particle.

III. ISOTHERMAL EXPANSION AND COMPRESSION

A. General analysis

In this section, we discuss an isothermal change from the
initial cylinder length L0 to the final length Lf = L0 + uT
during time T with constant speed u of the piston. At time
t = 0 the system is considered to be in thermal equilibrium,
i.e., the distribution of initial position x0 and initial velocity v0
of the particle is given by

ρ0(x0,v0) = 1
L0

√
β

2π
exp

(
−β

v2
0

2

)
1[0 < x0 < L0]. (3)

To determine the distribution of the total workW transferred
during an expansion or compression, we need to know the
times tj at which the particle hits the bottom. With the help
of (2) we may then determine its velocity and, using (1), also
the work performed at the piston. If the particle leaves the
bottom at time tj with velocity vj , it reaches the bottom again
after the time increment %tj = 2Lj/(vj − 2u). Here Lj =
L0 + utj is the length of the cylinder at time tj . The time
interval %tj not only depends on vj but, through tj , also on all
previous velocities vi,i = 0, . . . ,(j − 1), which makes further
analytical progress hard [12]. To disentangle this recursive
dependence we introduce the logarithmic time variable

τ (t) = ln
(

1 + t
u

L0

)
. (4)

For an expanding piston, the logarithmic time increases with
real time, while it decreases for a compression. The logarithmic
time increments between collisions of the particle at the bottom
are then given by

%τj =
{∞ for vj ! 2u,
τ (tj+1) − τ (tj ) = ln vj

vj −2u
otherwise. (5)

For vj ! 2u, the velocity of the particle after the collision
with the piston is 2u − vj " 0 such that the particle does
not return to the bottom at all. We therefore set %τj = ∞
for this case. Since the velocities vj after successive collisions
with the bottom are independent identically distributed random
variables, this holds true for the time increments %τj as well.
This fact will allow us to use methods from the theory of

v(2)
0

v(1)
0

v(3)
0

piston

x

L0

Lf

Tf0
t

x0

FIG. 1. (Color online) Classification of particle trajectories on the
basis of the initial position x0 and the initial speed v0. For either v0 <

v
(1)
0 or v0 > v

(3)
0 the particle reaches the bottom, x = 0, of the cylinder

[red (dark gray) sectors]. For v
(1)
0 < v0 < v

(2)
0 it neither reaches the

bottom nor the piston [yellow (light gray) sector], whereas for v
(2)
0 <

v0 < v
(3)
0 it reaches the piston but not the bottom [orange (middle

gray) sector].

continuous time random walks [21,22] to determine the desired
work distribution.

In order to find the pdf p(W ; τ ) that during a process of
duration τ = ln Lf /L0 the work W is performed we have to
distinguish three types of particle trajectories (cf. Fig. 1 for the
case of an expansion).

(i) The “null” case in which the particle neither hits the
piston nor the bottom. This happens with probability P0(τ )
that the initial velocity is between v

(1)
0 = −x0/T and v

(2)
0 =

(L0 − x0)/T + u. Since no work is performed in this case we
have for the corresponding pdf pn(W ; τ ) = δ(W )P0(τ ).

(ii) The “piston” case in which the particle reaches the
piston and performs work but does not hit the bottom. It
occurs if the initial velocity lies between v

(2)
0 and v

(3)
0 =

(2L0 − x0)/T + 2u. The corresponding pdf will be denoted
by pp(W ; τ ).

(iii) The “bottom” case in which the particle hits the bottom
at least once and therefore gets thermalized. This happens if
the initial velocity v0 is either smaller than v

(1)
0 or larger than

v
(3)
0 . We denote the pdf for this case by pb(W ; τ ).

The total probability density that work W is performed in
the time interval τ is therefore given by

p(W ; τ ) = δ(W )P0(τ ) + pp(W ; τ ) + pb(W ; τ ). (6)

The simplest case to analyze is the first one. From (3) we
find

P0(τ ) =
∫ L0

0
dx0

∫ v
(2)
0

v
(1)
0

dv0 ρ0(x0,v0)

= eτ − 1
u
√

2β

[
A erf(A) + 1√

π
e−A2 − B erf(B)

− 1√
π

e−B2 + C erf(C) + 1√
π

e−C2 − 1√
π

]
(7)

with the constants

A =
√

β

2
u, B =

√
β

2
Lf u

L0(eτ − 1)
, C =

√
β

2
u

eτ − 1
.

(8)
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Conclusions
 Driven systems apparently perform much better 

than autonomous systems.
 Time asymmetry is not enough to have reversible 

transport.
 Most likely reversible trajectories have finite 

power.
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