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Reversible transport

JMRP, PRE (1998). Reversible ratchets as Brownian particles in an adiabatically changing periodic potential.

An overdamped Brownian particle in
a driven periodic potential:

(t) = —V'(z; A(t)) + £(2)

Quasistatic limit;

: 1 .
At) = 0= p(x,t) = o= A

Z(A(1))

Zero current, BUT...




Reversible transport

Integrated current:

Not an exact differential

Total work:

W = /5W

SW(t) = —kT [v/\lnz (A(t ))} M) dt

Exact differential




Reversible transport
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Reversible transport
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In a flashing ratchet with an asymmetric potential |=0

Time asymmetry is not enough to induce reversible transport




Adiabatic PUIMPS (astumian, PRL 2003)

An auxiliary state a

modulated Eq = o0
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H i d d e n p U m pS (Esposito & JMRP. PRE 2015)

The original motivation: To compare

chemical motors and Maxwell demons
(Horowitz, Sagawa, JMRP. PRL 201 3).
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¢ A pump biases a transition, i.e.,
creates an effective force.

¢ The idea: design a protocol such
that, at some coarse-grain level
(hidden pump), the dynamics of the
network is identical to that of an
autonomous Markovian system.
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Markovianity at the coarse grained level:
¢ A cyclic protocol with period At < 1/w;_,;

time * =
SEEEE e = ¢ In each cycle a small amount of probability
= W el is transferred.
| Ay makesa | ,
cycle in every At | Low entropy production:

—e ¢ Protocol must be slow compared to the

kinetics of the hidden states:
At > (hidden rates)



Hidden pumps
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We transfer an amount of
probability from 1 to 2:
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Hidden pumps
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Hden pumps

Entropy production of the
coarse-grained description:

Ft = nE 5 T
all links

Real entropy production:

TSiot = — Z 51%@;‘ > 0

all links but 12

It is even possible to have zero entropy
production with finite current!




Hidden variables

Entropy production:

p(x,y; 2,y {})
St ——h p(xay;xlay/;{)\t})ln e e N
(g) i A ae
(z’,y")

~ = time reversal

Coarse grained entropy production:

Marginal probability distribution
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X}{\oﬁc} | g — U (overdamped systems + no magnetic fields)
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& No hidden driving.



Hden pumps

Entropy production of the
coarse-grained description:

Ft = nE 5 T
all links

Real entropy production:

TSiot = — Z 51%@;‘ > 0

all links but 12

It is even possible to have zero entropy
production with finite current!




Hidden pumps
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Carnot cycles

Temperature
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*Martinez, Roldan, Dinis, Petrov, JMRP, Rica. Brownian Carnot engine. arXiv:1412.1282v3 (2015).



Carnot cycles

Hoppenau, Granger, Dinis, JMRP

Temperature
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Carnot cycles
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Conclusions

¢ Driven systems apparently perform much better
than autonomous systems.

¢ Time asymmetry is not enough to have reversible
transport.

< Most likely reversible trajectories have finite
power.
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