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“Summit” of equilibrium Statistical Mechanics (Feynman)

Pcan = Z_l G_BHS

Should follow from microcanonical formalism for isolated systems
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General framework

e Model: Isolated system (macroscopic, finite, bath(s) incorporated)

Hamiltonian H, eigenvalues Ej, eigenvectors |n)

System states p(t) (mixed or pure)
Observables A = AT, expectation values Tr{p(t)A}

e Evolution: standard QM, no further approximation/postulate/hypothesis:

p(t) = U p(O)U) |, Uy := exp{—iHt/h} =

Tr{p(t)A} = 3 e~ WBm=Enlt/l (m|p(0)|n) (n| Alm)

Theorem: Any p(t) returns arbitrarily “near” to p(0) !
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Pmic -= P/D (microcanonical ensemble)
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e Focus on E, € [E, E 4+ AFE] (energy window)

Without loss of generality: n=1,...,D

For systems with f degrees of freedom:

D ~ 10°()

D
Defs.: P:= Y |n)(n| projector onto energy shell H

n=1

Pmic -= P/D (microcanonical ensemble)

e Focus on p(0) with ppn(0) =0 if E, &€ [E, E+ AF]

= p(t) = Pp(t)P for all t = Tr{p(t)A} = Tr{p(t)PAP}

= Without loss of generality A = PAP

e.g. f~ 1023

— focus on restrictions of A, p(t), H, ... to H from now on.

e Task: Show for arbitrary p(0) : H — H that Tr{p(t)A} — Tr{pmicA}



Range and resolution of A

A = measurement device with range A4 (finite number of eigenvalues)

Expectation values Tr{p(t)A} can only be determined with some finite

accuracy 04 (resolution limit)

Assumption: |6A/A4 “reasonable”, say > 1020

A 4 (range)
— |

0A (resolution)




Technical conditions: generic H

1. Non-degeneracy condition: FE,, = FE, unless m =n

2. Non-resonance condition:

Em — En#ZE; — Ep unless m=j and n=~k (or m=n and j = k)

e “quantum ergodicity” and “quantum mixing” (?7)
e Originally due to von Neumann, by now commonly accepted

e \Weaker conditions still ok
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Key point of von Neumann’s approach

Consider unitary trafo U between eigenvectors of H and A

Key assumption: the actual U is “typical’” among all possible U : H — H

Formalization: up(X) := fraction (normalized Haar measure)

of all U exhibiting property X

(eigenvalues of H and A kept fixed, eigenbases related via U)

Key assumption: If ug;(X) < 1 then it is “overwhelmingly unlikely”

that the actual H and A will exhibit property X

e Common lore of random matrix theory.

e NO randomness in the real system.
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Consider: | B(T) :={t € [0,T] : | Tr{p(t)A}—Tr{pmicA}| > 54 |

Theorem: For any € > 0 there exists a T;,,;, so that for all T' > T,
2
po (BEL> ) <6 exp{_(ggg (24) +21nD}

independently of p(0)

Recall: D ~ 109, f ~ 1023, 4/A4 > 10720 = choose e.g. e = D~1/2

= For the overwhelming majority of times t € [0,T] and
“almost all” U, the system “looks” as if p(t) = pmic

e Inital relaxation included in B(T)

e Recurrences of Tr{p(t)A} included in B(T)

e Same backward in time

e Already quite small f will do !
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e Already contained in v. Neumann, Z. Phys. 57, 30 (1929)
e Closely related to ‘‘typicality phenomena’:

Goldstein, Lebowitz, Tumulka, Zanghi, PRL 96, 050403 (2006)
Popescu, Short, Winter, Nat. Phys. 2, 754 (2006)

Sugita, Nonlinear Phenom. Complex Syst. 10, 192 (2007)
Sugiura, Shimizu, PRL 108, 240401 (2012)



Related Works

von Neumann, Z. Phys. 57, 30 (1929),

[English translation by Tumulka, Eur. Phys. J. H 35, 201 (2010)],
approximating all relevant observables (‘“macro-observers’) by com-
muting operators with very high-dimensional common eigenspaces.

Pauli and Fierz, Z. Phys. 106, 572 (1937),
assuming #eigenspaces < D/(In D)? (proof ok ?)

Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghi, PRE 81,
011109 (2010), assuming that one of those eigenspaces (the “equili-
brium subspace’) is overwhelmingly large compared to all the others.

Goldstein, Lebowitz, Tumulka, Zanghi, Eur. Phys. J. H 35, 173 (2010):
Misunderstandings and rehabilitation of von Neumann's work.

Deutsch, PRA 43, 2046 (1991); Reimann NJoP 17, 055025 (2015):
U generated via H = Hy + V with random matrices V (banded, sparse etc.)



Eigenstate thermalization hypothesis (ETH)

Deutsch, PRA 43, 2046 (1991);
Srednicki, PRE 50, 888 (1994);
Rigol, Dunjko, Olshanii, Nature 452, 854 (2008)

Here:
ETH not required but actually fulfilled by all non-exceptional U’s

Similarly to (but now for general A’s):

Goldstein, Tumulka, AIP Conference Proceedings 1332, 155 (2011)
Rigol, Srednicki, PRL 108, 110601 (2012)
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Disequilibrium requires fine tuning

So far: unitary trafos U between eigenvectors of H and A
= conclusions independent of p(0), i.e. valid for all p(0)

Now: unitary trafos W between eigenvectors of p(0) and A

Theorem: For any given t > 0 (including t = 0)

uw (I Tr{p(t) A}~ Tr{pmicA}| > 64 ) < (B4

independently of H [PRL 115, 010403 (2015)]

Recall: D~ 109(/) fx~1023, 64/Ay > 10720 =

e Given p(t), most A appear equilibrated [Bocchieri & Loinger, Phys. Rev.

111, 668 (1958)]
e Given A, most p(t) look like p,,;c [~ canonical typicality ]

= Disequilibrium requires fine tuning of p(0) relatively to A

= Statements about most p(0) useless for equilibration
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Consider unitary trafos U between eigenvectors of H and A.

Theorem: For most U and t one cannot distinguish Tr{p(t)A}
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e Many common A’'s must be untypical (“almost conserved’).

e Most of those exceptional A’'s still thermalize (for any p(0)).



Typical temporal relaxation (work in progress)

p(0) kept fixed relatively to A = Tr{p(0)A} arbitrary but fixed.
Consider unitary trafos U between eigenvectors of H and A.

Theorem: For most U and t one cannot distinguish Tr{p(t)A}
from Tr{pp;cA} + F(t) (Tr{P(O)A} _Tr{PmicA}>

. 2 _
F(t) = | S |7 = F0)=1, 0< F(t) <1, F() < ™5™

e Typical relaxation non-exponential and very fast.
e Many common A’'s must be untypical (“almost conserved’).

e Most of those exceptional A’'s still thermalize (for any p(0)).

Closely related works:

Cramer, NJoP 14, 053051 (2012)

Goldstein, Hara, Tasaki, PRL 111, 140401 (2013); NJoP 17, 045002 (2015)
Monnai, J. Phys. Soc. Jpn. 82, 044006 (2013)

Malabarba, Garcia-Pintos, Linden, Farrelly, Short, PRE 90, 012121 (2014)



Comparison with experiment

Trotzky, Chen, Flesch, McCulloch, Schollwock, Eisert, and Bloch,
Probing the relaxation towards equilibrium in an isolated strongly
correlated 1D Bose gas, Nature Physics 8, 325 (2012)
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Further examples (numerical)

Thon et al., Appl. Phys. A 78, 189 (2004): Fig. 8

Bartsch and Gemmer, PRL 102, 110403 (2009): Fig. 1b

Rigol, PRL 103, 100403 (2009): Fig. 1

Rigol, PRA 80, 053607 (2009): Figs. 1,2

Khatami et al. PRA 85, 053615 (2012): non-exponential decay
Gramsch and Rigol, PRA 86, 053615 (2012): non-exponential decay

Investigations of Loschmidt echo (fidelity, nondecay probability, ...)






Further example
[ Bartsch and Gemmer, PRL 102, 110403 (2009) |

0 0 _
H=Hy+\V, D=6000, E ~E{ =833.10"5 (h=1)
olm|V|n)g normally distributed, independent complex random variables
A= 2.5.10"3 (“strong perturbation”)

p(0) = [v(0))(x»(0)| random with Tr{p(0)A} ~ 0.2

T | | T
0.2 —

— present theory

0.15+— — 3 numerical realizations

01

observable

0.05—

time



