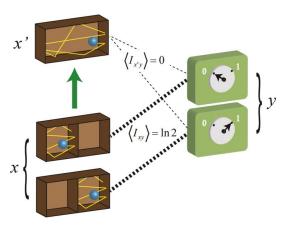
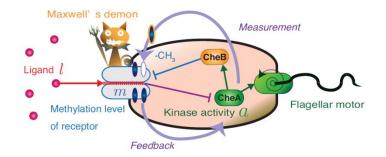
Maxwell's Demon in Biochemical Signal Transduction





Takahiro Sagawa

Department of Applied Physics, University of Tokyo

New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto

Collaborators on Information Thermodynamics

- Masahito Ueda (Univ. Tokyo)
- Shoichi Toyabe (Tohoku Univ.)
- Eiro Muneyuki (Chuo Univ.)
- Masaki Sano (Univ. Tokyo)
- Sosuke Ito (Titech)
- Naoto Shiraishi (Univ. Tokyo)
- Sang Wook Kim (Pusan National Univ.)
- Jung Jun Park (National Univ. Singapore)
- Kang-Hwan Kim (KAIST)
- Simone De Liberato (Univ. Paris VII)
- Juan M. R. Parrondo (Univ. Madrid)
- Jordan M. Horowitz (MIT)
- Jukka Pekola (Aalto Univ.)
- Jonne Koski (Aalto Univ.)
- Ville Maisi (Aalto Univ.)

Outline

Introduction

Review of previous results

- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction

Today's main part!

• Summary

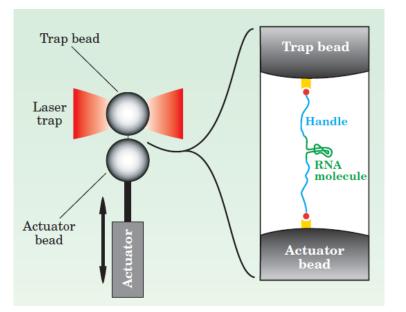
Outline

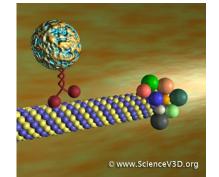
- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

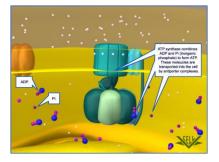
Thermodynamics in the Fluctuating World

Thermodynamics of small systems with large heat bath(s)

Thermodynamic quantities are fluctuating!





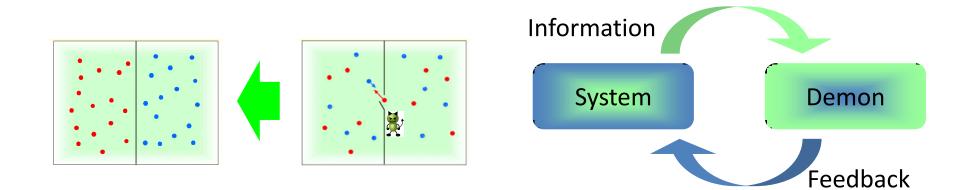


✓ Second law

 $\langle W \rangle \geq \Delta F$

✓ Nonlinear & nonequilibrium relations

Information Thermodynamics



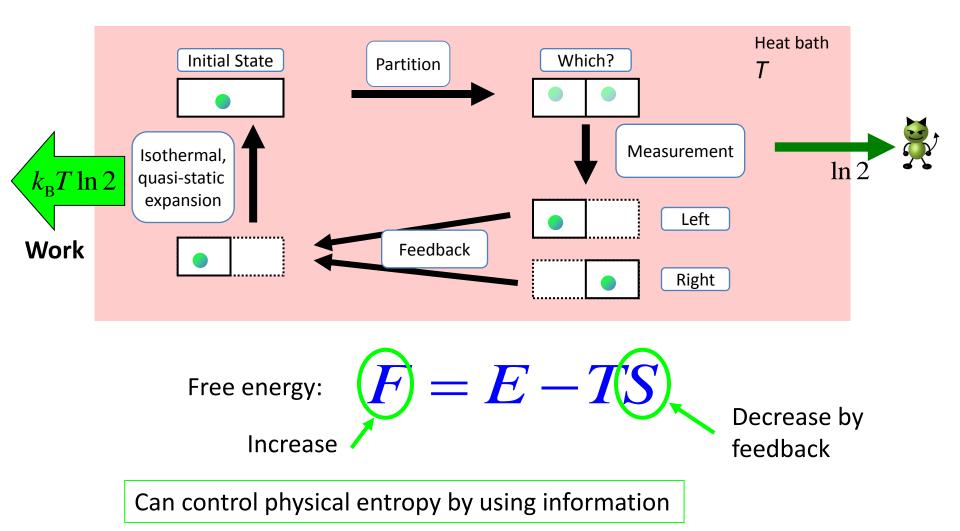
Information processing at the level of thermal fluctuations

- ✓ Foundation of the second law of thermodynamics
- ✓ Application to nanomachines and nanodevices

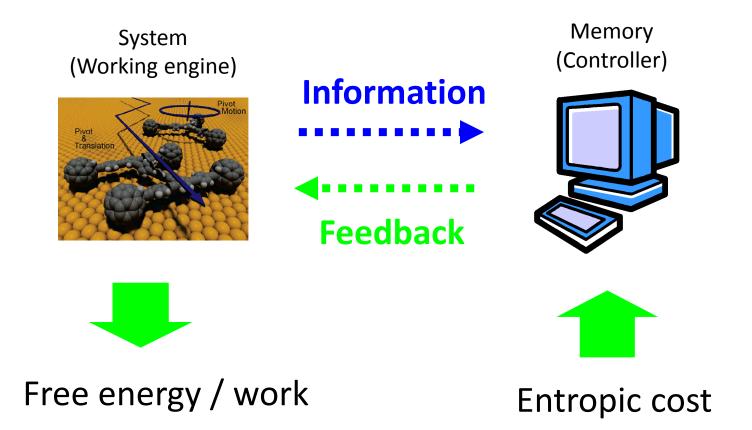
Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

L. Szilard, Z. Phys. 53, 840 (1929)

Szilard Engine (1929)



Information Heat Engine



 ✓ Can increase the system's free energy even if there is no energy flow between the system and the controller

Experimental Realizations

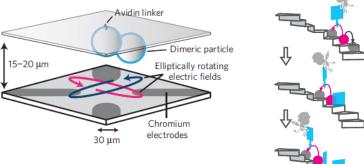
• With a colloidal particle Toyabe, TS, Ueda, Muneyuki, & Sano, Nature Physics (2010)

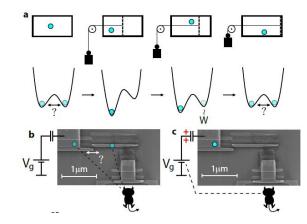
Efficiency: 30% Validation of $\left\langle e^{-\beta(W-\Delta F)} \right\rangle = \gamma$

• With a single electron Koski, Maisi, TS, & Pekola, PRL (2014)

Efficiency: 75%

Validation of
$$\left\langle e^{-\beta(W-\Delta F)-I} \right\rangle = 1$$





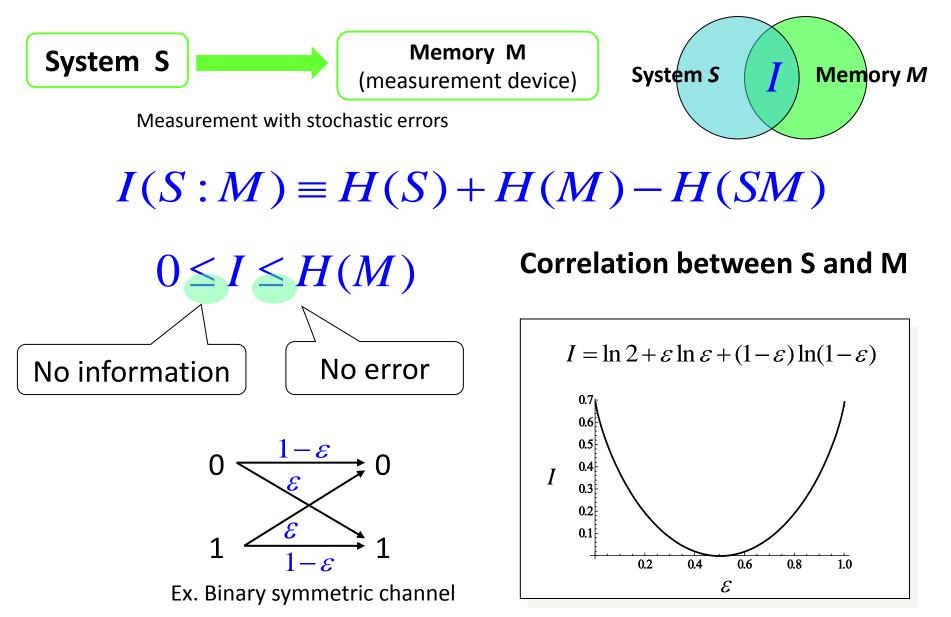
Outline

- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

Shannon Information

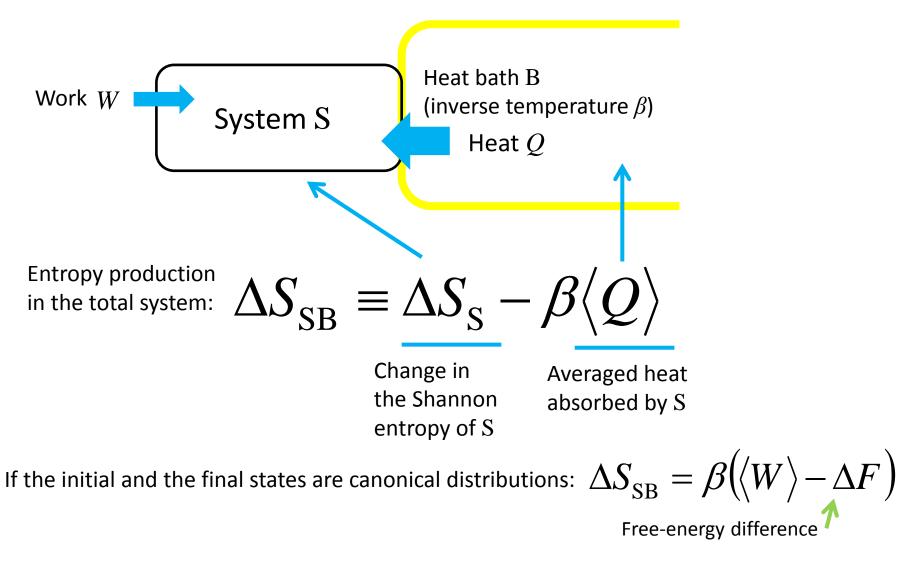


Mutual Information

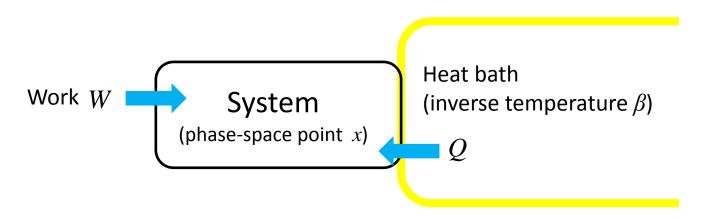


Entropy Production

Stochastic dynamics of system S (e.g., Langevin system)



Stochastic Entropy Production



Stochastic entropy production along a trajectory of the system from time 0 to τ

$$\Delta s_{\rm SB} \equiv \Delta s_{\rm S} - \beta Q$$

$$\Delta s_{\rm S} \equiv s_{\rm S}[x(\tau),\tau] - s_{\rm S}[x(0),0] \qquad s_{\rm S}[x,t] \equiv -\ln P[x,t]$$

$$\left\langle \Delta s_{\rm S} \right\rangle = \Delta S_{\rm S} \qquad P[x,t] : \text{probability distribution at time } t$$

If the initial and the final states are canonical distributions: $\Delta s_{
m SB}=etaig(W-\Delta Fig)$

Integral Fluctuation Theorem and Jarzynski Equality

Integral fluctuation theorem

$$\langle e^{-\Delta s_{\rm SB}} \rangle = 1$$

Seifert, PRL (2005), ...

for any initial and final distributions

Second law can be expressed by an **equality** with full cumulants

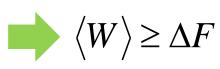
The second law of thermodynamics (Clausius inequality)

$$\left< \Delta S_{\rm SB} \right> \ge 0$$
 $\Delta S_{\rm S} \ge \beta \langle Q \rangle$

Jarzynski equality

Jarzynski, PRL (1997)

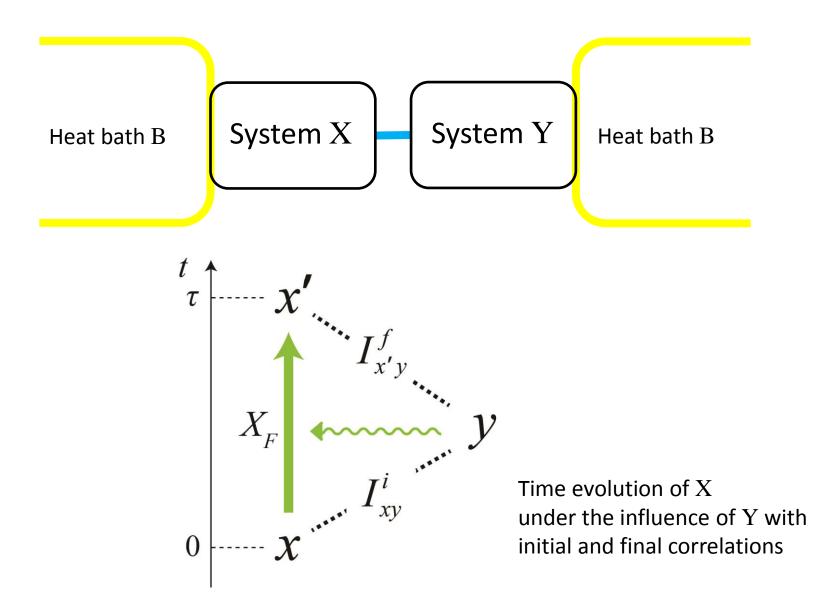
$$\Delta s_{\rm SB} = \beta (W - \Delta F) \quad \Longrightarrow \quad \left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$



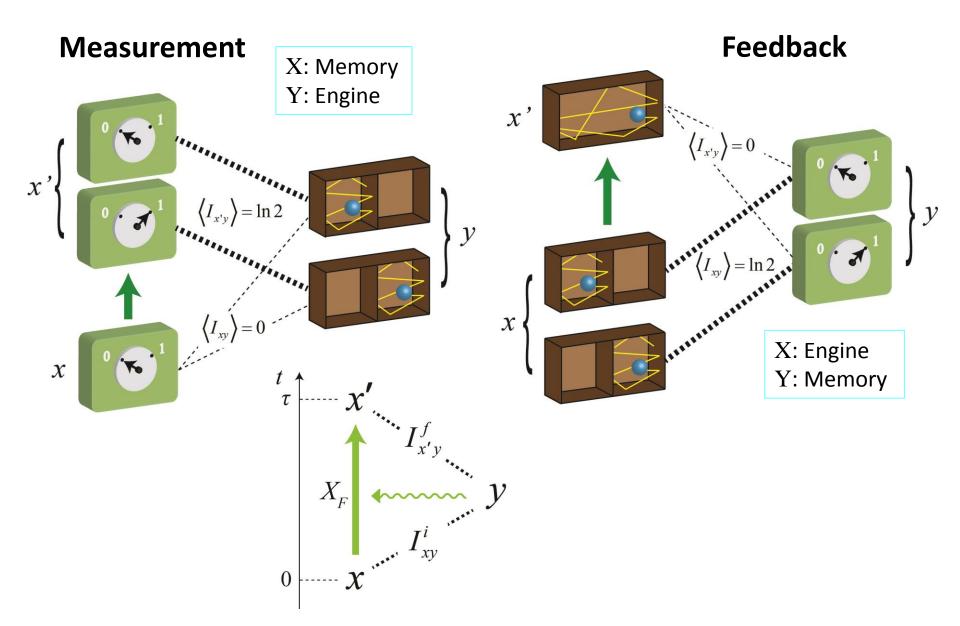
Outline

- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

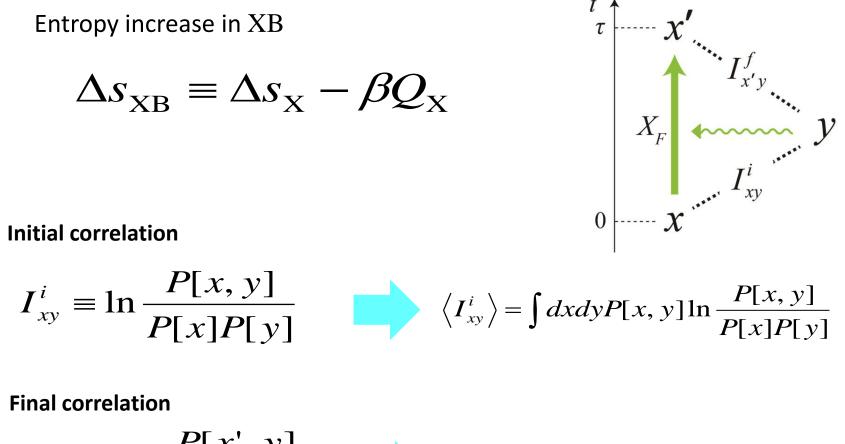
Setup



Special Cases: Measurement and Feedback

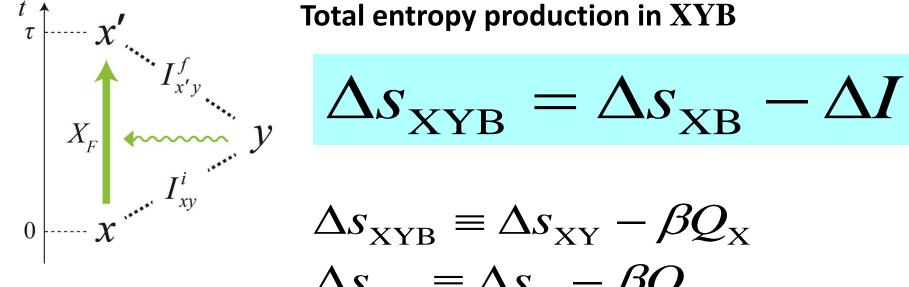


Stochastic Entropy and Mutual Information



$$I_{x'y}^{f} \equiv \ln \frac{P[x, y]}{P[x']P[y]} \qquad \langle I_{x'y}^{f} \rangle = \int dx' dy P[x', y] \ln \frac{P[x', y]}{P[x']P[y]}$$

Decomposition of Entropy Production

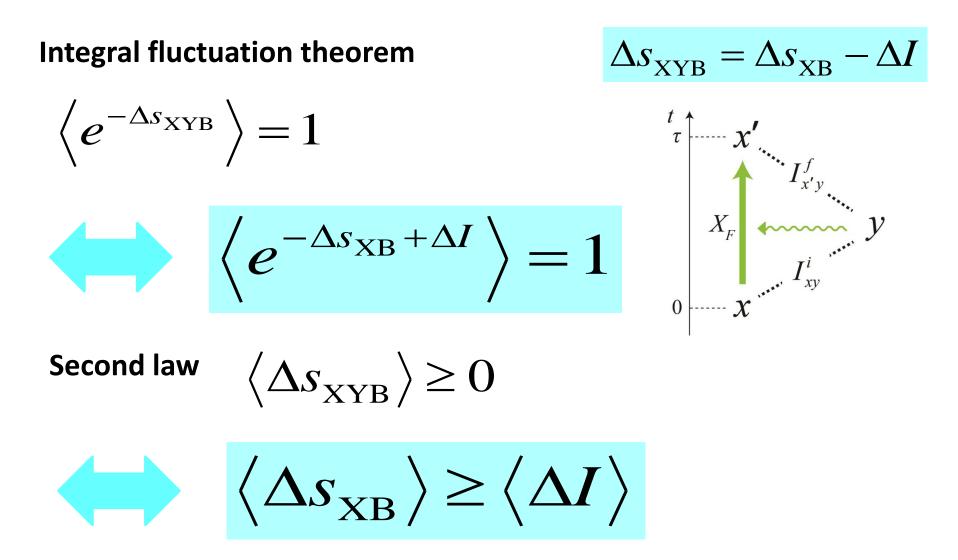


Total entropy production in XYB

 $\Delta s_{\rm XYB} \equiv \Delta s_{\rm XY} - \beta Q_{\rm X}$ $\Delta s_{\rm XB} \equiv \Delta s_{\rm X} - \beta Q_{\rm X}$ $\Delta I \equiv I_{x'y}^{f} - I_{xy}^{i}$

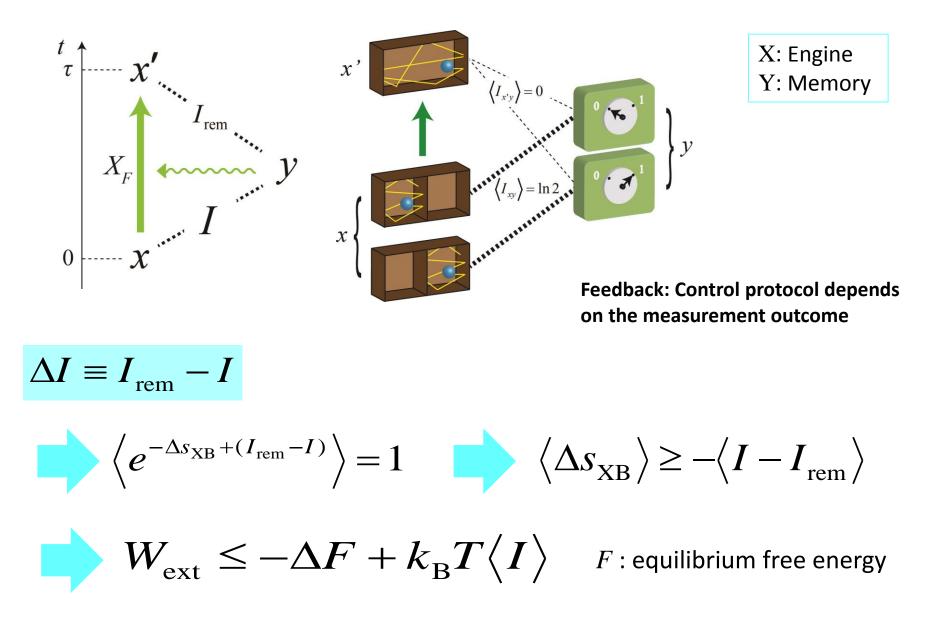
$$\Delta s_{XY} = \Delta s_{X} + \Delta s_{Y} - \Delta I$$
$$= \Delta s_{X} - \Delta I$$

Fluctuation Theorem

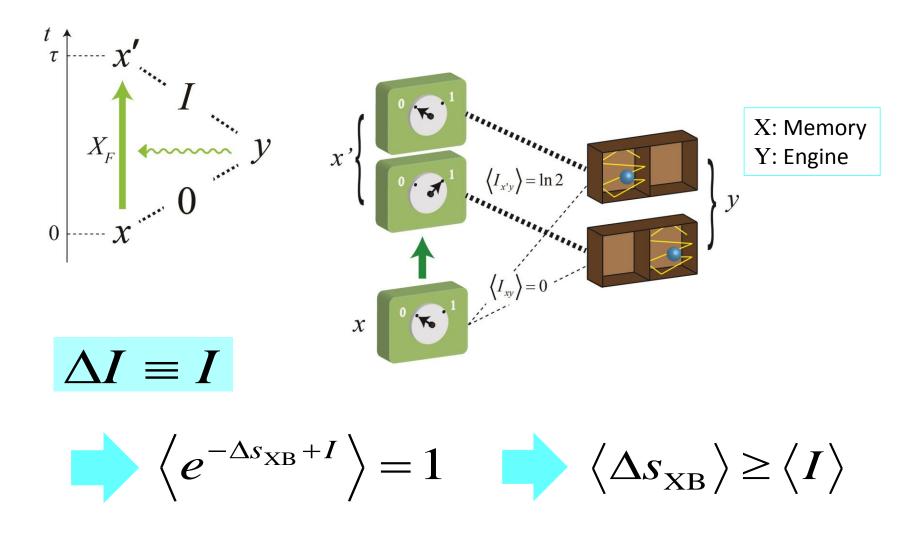


TS and M. Ueda, Phys. Rev. Lett. **109**, 180602 (2012).

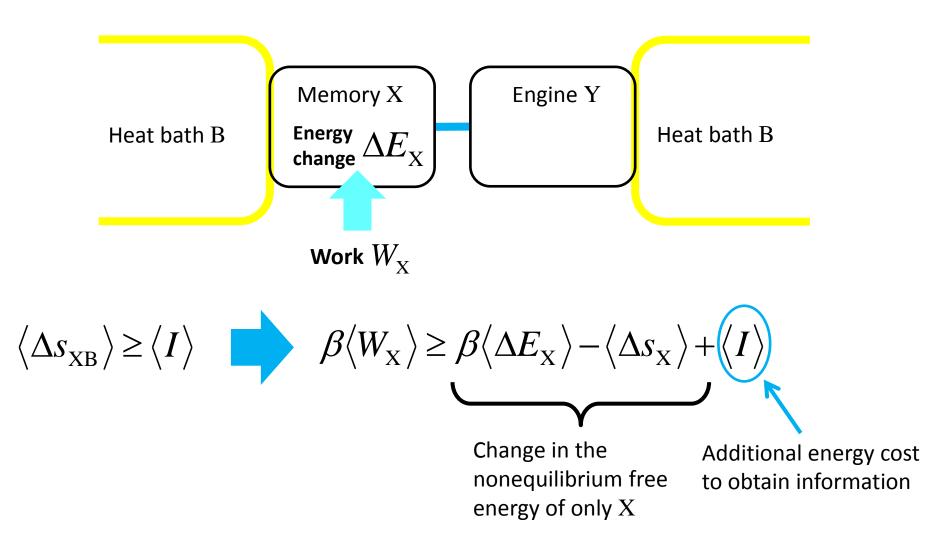
Special Case 1: Feedback Control



Special Case 2: Measurement



Minimal Energy Cost for Measurement



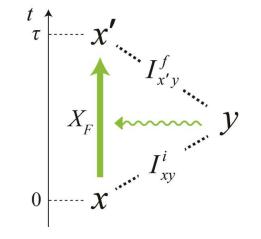
Information is not free

TS and M. Ueda, Phys. Rev. Lett. 109, 180602 (2012).

General Principle of Information Thermodynamics

$$\left\langle e^{-\Delta s_{\rm XB} + \Delta I} \right\rangle = 1$$

 $\left\langle \Delta s_{\rm XB} \right\rangle \ge \left\langle \Delta I \right\rangle$



Feedback:

Measurement:

$$\left\langle e^{-\Delta s_{\rm XB} + (I_{\rm rem} - I)} \right\rangle = 1 \qquad \left\langle e^{-\Delta s_{\rm XB} + I} \right\rangle = 1$$
$$\left\langle \Delta s_{\rm XB} \right\rangle \ge -\left\langle I - I_{\rm rem} \right\rangle \qquad \left\langle \Delta s_{\rm XB} \right\rangle \ge \left\langle I \right\rangle$$

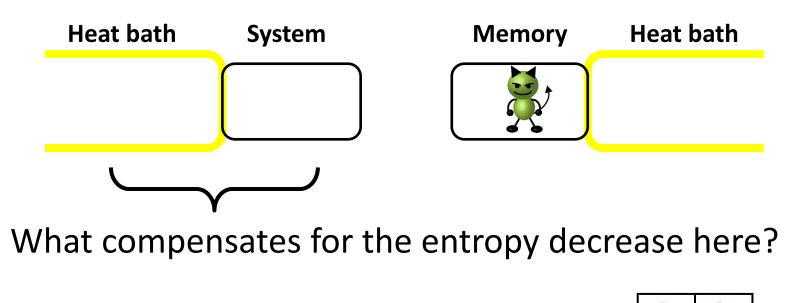
Unified formulation of measurement and feedback

TS and M. Ueda, PRL 109, 180602 (2012).

Outline

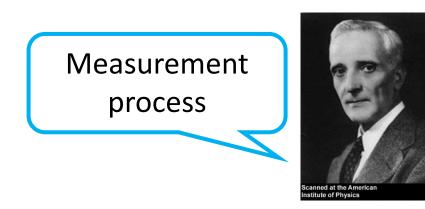
- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

Problem



For Szilard engine,
$$\langle \Delta s_{
m SB}
angle = -\ln 2$$
 .

Conventional Arguments



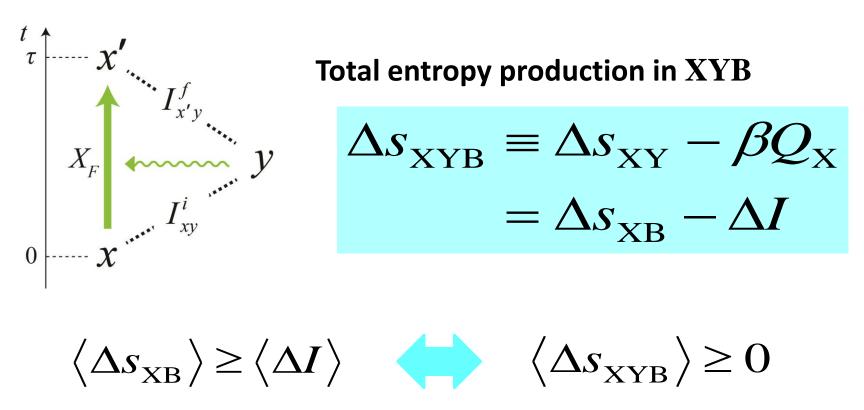
Brillouin

Erasure process (From Landauer principle)

Bennett & Landauer

Widely accepted since 1980's

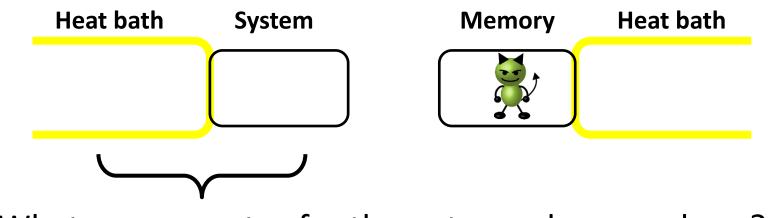
Total Entropy Production



Equality: thermodynamically reversible

If the mutual information is taken into account, the total entropy production is always nonnegative for each process of measurement or feedback.

Revisit the Problem



What compensates for the entropy decrease here?

Mutual-information change compensates for it.

For Szilard engine, $\langle \Delta s_{\rm SB} \rangle = -\ln 2$

 $\langle \Delta s_{\rm SMB} \rangle = \langle \Delta s_{\rm SB} \rangle + \langle I \rangle = -\ln 2 + \ln 2 = 0$

Key to Resoluve the Paradox

- Maxwell's demon is consistent with the second law for measurement and feedback processes individually
 - The mutual information is the key

• We don't need the Landauer principle to understanding the consistency

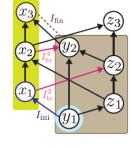
Outline

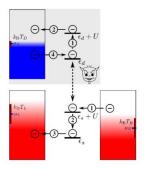
- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

Thermodynamics of Autonomous Information Processing

Second law & fluctuation theorem

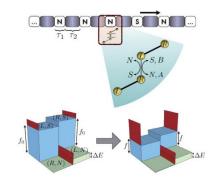
Allahverdyan, Dominik & Guenter, J. Stat. Mech. (2009) Hartich, Barato, & Seifert, J. Stat. Mech. (2014) Horowitz & Esposito, Phys. Rev. X (2014) Horowitz & Sandberg, New J. Phys. (2014) Shiraishi & Sagawa, Phys. Rev. E (2015) Ito & Sagawa, Phys. Rev. Lett. (2013)





Models of autonomous Maxwell's demons

 Mandal & Jarzynski, PNAS (2012)
 Mandal, Quan, & Jarzynski, Phys. Rev. Lett. (2013)
 Strasberg, Schaller, Brandes, & Esposito Phys. Rev. Lett. (2013)
 Horowitz, Sagawa, & Parrondo, Phys. Rev. Lett. (2013)
 Shiraishi, Ito, Kawaguchi & Sagawa, New J. Phys. (2015)



Toward deeper understanding of information nanomachines

 \rightarrow 0 0 0 0 0 0 1 0 1 1 \rightarrow

Two Approaches

- "Transfer entropy" approach
 - ✓ Applicable to non-Markovian dynamics
 - ✓ Second law is weaker in Markovian dynamics

Ito & Sagawa, Phys. Rev. Lett. (2013)

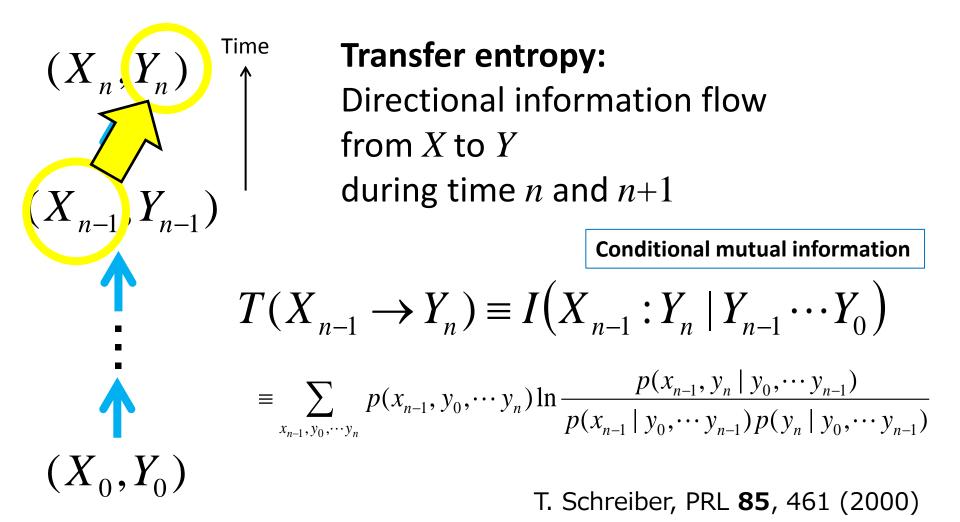
But we derived a stronger version! (Poster by Ito)

- "Information flow" approach
 - ✓ Not applicable to non-Markovian dynamics
 - ✓ Second law is stronger in Markovian dynamics

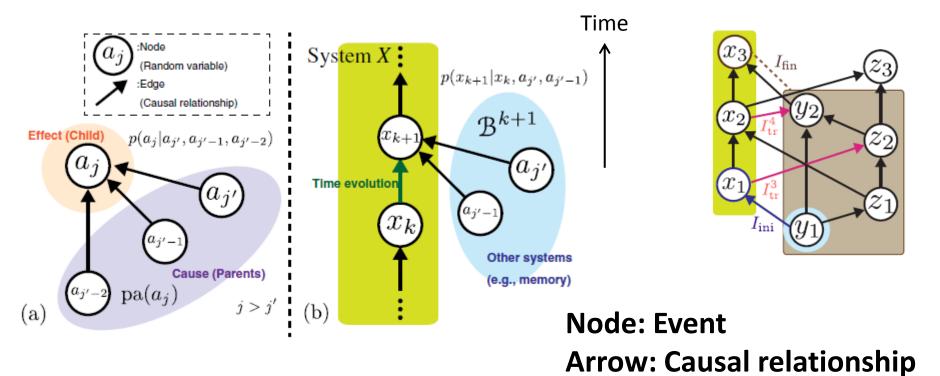
 Second law: Allahverdyan, Dominik & Guenter, J. Stat. Mech. (2009) Hartich, Barato, & Seifert, J. Stat. Mech. (2014) Horowitz & Esposito, Phys. Rev. X (2014) Horowitz & Sandberg, New J. Phys. (2014)
 Fluctuation theorem: Shiraishi & Sagawa, PRE (2015)

Transfer Entropy

Directional information transfer between two systems



Many-body Systems with Complex Information Flow



Characterize the dynamics by **Bayesian networks**

Sosuke Ito & TS, PRL 111, 180603 (2013).

Second Law on Bayesian Networks

$$\Delta S_{\rm XB} \ge \Theta$$

$$\Theta \equiv I_{\rm fin} - I_{\rm ini} - \sum_{l} I_{\rm tr}^{l}$$

S. Ito & T. Sagawa, PRL 111, 180603 (2013)

 ΔS_{XB} : Entropy production in X and the bath I_{ini} : Initial mutual information between X and other systems I_{fin} : Final mutual information between X and other systems

 I_{tr}^{l} : Transfer entropy from X to other systems

Information Flow VS Transfer Entropy

Infinitesimal transition of coupled Langevin system

 $\dot{x}(t) = f(x(t), y(t)) + \xi_x(t)$ $\dot{y}(t) = g(x(t), y(t)) + \xi_y(t)$

 $\left< \xi_x(t) \xi_y(t) \right> = 0$: independent noise

$$x' = x(t + dt) \quad y' = y(t + dt)$$

$$x = x(t) \quad y = y(t)$$

Stronger: $\langle s(x') - s(x) - \beta Q \rangle \ge \langle I(x'; y) - I(x; y) \rangle$

Information flow

Weaker:
$$\langle s(x') - s(x) - \beta Q \rangle \ge \langle I(x'; y') - I(x; y) - I(x; y'|y) \rangle$$

Transfer entropy

$$\langle s(x'|y') - s(x|y) - \beta Q \rangle \ge - \langle I(x:y'|y) \rangle$$

Outline

- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

Toward Biological Information Processing

What is the role of information in living systems?

Mutual information is experimentally accessible ex. Apoptosis path: Cheong *et al.* Science (2011).

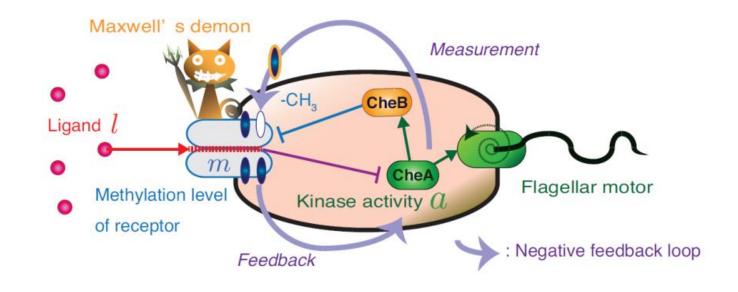
There is no explicit channel coding inside living cells; Shannon's second theorem is not straightforwardly applicable

Application of information thermodynamics

Barato, Hartich & Seifert, New J. Phys. **16**, 103024 (2014). Sartori, Granger, Lee & Horowitz, PLoS Compt. Biol. **10**, e1003974 (2014). Ito & Sagawa, Nat. Commu. **6**, 7498 (2015).

Our finding: Relationship between information and the robustness of adaptation

Signal Transduction of E. Coli Chemotaxis



E. Coli moves toward food (ligand)

The information about **ligand density** is transferred to the **methylation level** of the receptor, and used for the feedback to the **kinase activity**.

Adaptation Dynamics

2D Langevin model

Y. Tu *et al., Proc. Natl. Acad. Sci. USA* **105**, 14855 (2008).
F. Tostevin and P. R. ten Wolde, *Phys. Rev. Lett.* **102**, 218101 (2009).
F. G. Lan *et al., Nature Physics* **8**, 422 (2012).

$$\dot{a}_t = -\frac{1}{\tau^a} [a_t - \bar{a}_t(m_t, l_t)] + \xi^a_t$$

$$\dot{m}_t = -\frac{1}{\tau^m}a_t + \xi_t^m$$

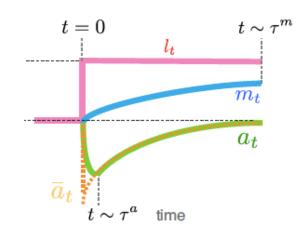
$$\langle \xi_t^x \rangle = 0 \quad \langle \xi_t^x \xi_{t'}^{x'} \rangle = 2T_t^x \delta_{xx'} \delta(t - t')$$

$$ar{a}_t(m_t,l_t)\simeq lpha m_t -eta l_t$$
 : stationary value of a_t $lpha,eta>0$

Negative feedback loop:

- ✓ Instantaneous change of a_t in response to l_t
- \checkmark Memorize l_t by m_t
- \checkmark a_t goes back to the initial value

 a_t : kinase activity m_t : methylation level l_t : average ligand density $\tau^m \gg \tau^a > 0$: time constants



Second Law of Information Thermodynamics

$$dI_t^{\mathrm{tr}} + dS_t^{a|m} \geq \frac{J_t^a}{T_t^a} dt$$

(Weaker version with transfer entropy)

 $dS_t^{a|m}:=\langle \ln p(a_t|m_t)
angle - \langle \ln p(a_{t+dt}|m_{t+dt})
angle$: Change in the conditional Shannon entropy

 $dI_t^{\mathrm{tr}} := I(a_t : m_{t+dt} | m_t)$: Transfer entropy

$$\frac{J_t^a}{T_t^a} = \frac{1}{\tau^a T_t^a} \begin{bmatrix} T_t^a - \frac{\langle (a_t - \bar{a}_t)^2 \rangle}{\tau^a} \end{bmatrix} : \text{Robustness against the} \\ \text{environmental noise} \end{cases}$$

Upper bound of the robustness is given by the transfer entropy

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015).

Stationary State

$$\langle (a_t - \bar{a}_t)^2 \rangle \ge \tau^a T_t^a \left[1 - \frac{dI_t^{\text{tr}}}{dt} \right]$$

Fluctuation (inaccuracy of information transmission) induced by environmental noise

Transfer entropy

Without feedback:
$$\langle (a_t - ar{a}_t)^2
angle \geq au^a T_t^a$$

Exact Expression of Transfer Entropy

If the Langevin equation is linear:

$$dI_t^{\rm tr} = \frac{1}{2} \ln \left(1 + \frac{dP_t}{N_t} \right)$$

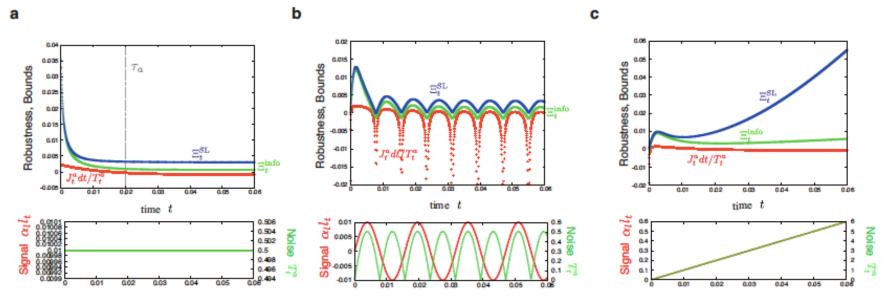
Signal-to-noise ratio

$$dP_t := rac{(
ho_t^{am})^2 V_t^a}{(au^m)^2} dt \;\;$$
 : power of the signal from a to m

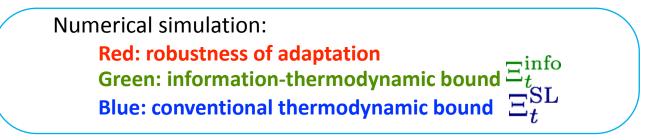
$$N_t := 2T_t^m$$
 : noise of m $V_t^x := \langle x_t^2 \rangle - \langle x_t \rangle^2$ $ho_t^{am} := rac{\langle a_t m_t
angle - \langle a_t
angle \langle m_t
angle}{\sqrt{V_t^a V_t^m}}$

Analogous to the Shannon–Hartley theorem

Information-Thermodynamic Efficiency



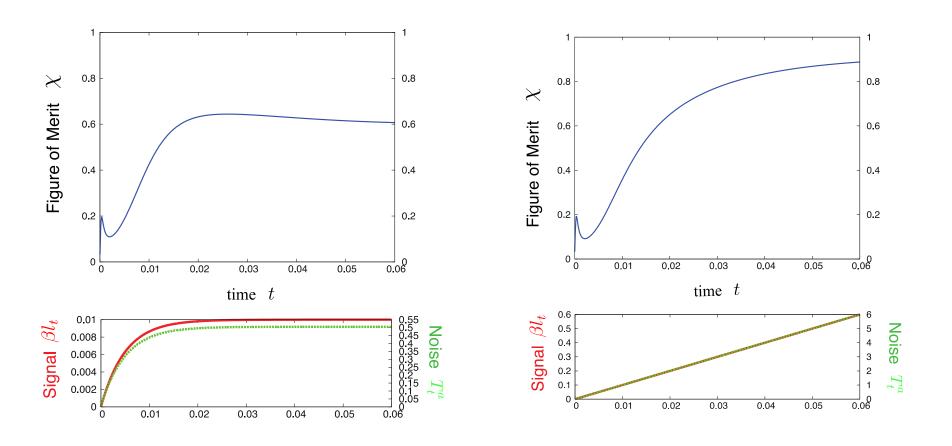
Input ligand signal: a, step function. b, sinusoidal function. c, linear function.



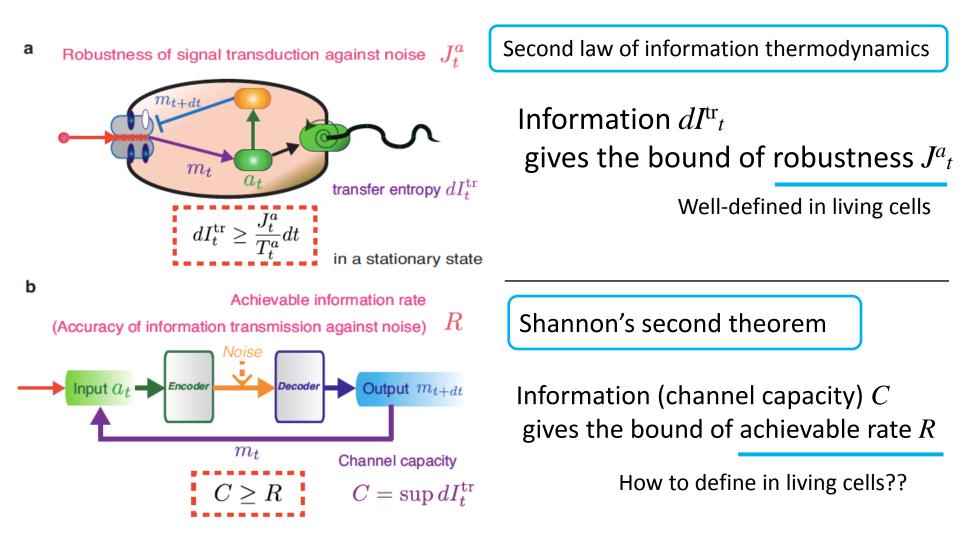
- ✓ Information thermodynamics gives a stronger bound!
- The adaptation dynamics is inefficient (dissipative) as a conventional thermodynamic engine, but efficient as an information-thermodynamic engine.

Information-Thermodynamic Figure of Merit

$$\chi := 1 - \frac{\Xi_t^{\text{info}} - J_t^a dt / T_t^a}{\Xi_t^{\text{SL}} - J_t^a dt / T_t^a}$$



Comparison with Shannon's Information Theory



Outline

- Introduction
- Information and entropy
- Information thermodynamics: a general framework
- Paradox of Maxwell's demon
- Thermodynamics of autonomous information processing
- Application to biochemical signal transduction
- Summary

Summary

• Unified framework of information thermodynamics

T. Sagawa & M. Ueda, *Phys. Rev. Lett.* **109**, 180602 (2012). T. Sagawa & M. Ueda, *New J. Phys.* **15**, 125012 (2013).

• Fluctuation theorem for autonomous information processing

S. Ito & T. Sagawa, *Phys. Rev. Lett.* **111**, 180603 (2013). **Review:** S. Ito & T. Sagawa, arXiv:1506.08519 (2015).
N. Shiraishi & T. Sagawa, *Phys. Rev. E* **91**, 012130 (2015).

• Information thermodynamics of biochemical signal transduction

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015).

Review:

J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, *Nature Physics* **11**, 131-139 (2015).

Thank you for your attention!