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Thermodynamics in the Fluctuating World 

Thermodynamics of small systems with large heat bath(s) 

 Second law W F 

 Nonlinear & nonequilibrium relations 

Thermodynamic quantities are fluctuating! 



Information Thermodynamics 

Information processing at the level of thermal fluctuations 

 Foundation of the second law of thermodynamics 
 

 Application to nanomachines and nanodevices 

System Demon 

Information 

Feedback 

Review:  J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015). 



Szilard Engine (1929) 

Heat bath 

T 

 

Initial State Which? Partition 

Measurement 

Left 

Right 

Feedback 

ln 2

F E TS Free energy: 
Decrease by 
feedback Increase 

Isothermal, 
quasi-static  
expansion B ln 2k T

Work 

Can control physical entropy by using information 

L. Szilard, Z. Phys. 53, 840 (1929) 



Information Heat Engine 

Memory 
(Controller) 

System 
(Working engine) 

 Can increase the system’s free energy even if there is 
no energy flow between the system and the controller 

Information 

Feedback 

Entropic cost Free energy / work 



Experimental Realizations 

• With a colloidal particle 
Toyabe, TS, Ueda, Muneyuki, & Sano, Nature Physics (2010) 

 
Efficiency: 30% 
 
Validation of  

 

• With a single electron 
Koski, Maisi, TS, & Pekola, PRL (2014) 

 
Efficiency: 75% 
 
Validation of 
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Mutual Information 
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Ex. Binary symmetric channel 
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Entropy Production 

System S 

Heat bath B 

(inverse temperature β) 

Heat Q 

Entropy production 
in the total system: QSS  SSB

Change in 
the Shannon 
entropy of S 

If the initial and the final states are canonical distributions:  FWS  SB

Free-energy difference 

W Work 

Averaged heat 
absorbed by S 

Stochastic dynamics of system S  (e.g., Langevin system) 



Stochastic Entropy Production 

Qss  SSB

Stochastic entropy production along a trajectory of the system from time 0 to τ 

System 
(phase-space point  x) 

Heat bath 
(inverse temperature β) 

Q 

If the initial and the final states are canonical distributions:  FWs  SB

W Work 

SS Ss 

],[ln],[S txPtxs ]0),0([]),([ SSS xsxss  

],[ txP : probability distribution at time t 



Integral Fluctuation Theorem and Jarzynski Equality 

1SB 
 s

e

Integral fluctuation theorem 

for any initial and final distributions 

0SB s

The second law of thermodynamics (Clausius inequality) 

QS  S

FW 

Seifert, PRL (2005), … 

Second law can be expressed by an equality with full cumulants 

 FWs  SB
FW ee   

Jarzynski equality Jarzynski, PRL (1997)  



Outline 

• Introduction 

• Information and entropy 

• Information thermodynamics: a general framework 

• Paradox of Maxwell’s demon 

 

• Thermodynamics of autonomous information processing 

• Application to biochemical signal transduction 

 

• Summary 



Setup 

System Y Heat bath B System X Heat bath B 

Time evolution of X  
under the influence of Y with 
initial and final correlations 



Special Cases: Measurement and Feedback 

Measurement Feedback 

X: Engine 
Y: Memory 

X: Memory 
Y: Engine 



Stochastic Entropy and Mutual Information 

XXXB Qss 

Entropy increase in XB 
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Decomposition of Entropy Production 

Iss  XBXYB

Total entropy production in XYB 

XXXB Qss 
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Fluctuation Theorem 

1XYB 
 s

e

Integral fluctuation theorem 

TS and M. Ueda, Phys. Rev. Lett. 109, 180602 (2012). 

1XB 
 Is

e

Second law 0XYB s

Is  XB

Iss  XBXYB



Special Case 1: Feedback Control 

III  rem

1
)( remXB 

 IIs
e

Feedback: Control protocol depends 
on the measurement outcome 

X: Engine 
Y: Memory 

remXB IIs 

ITkFW Bext  F : equilibrium free energy 



Special Case 2: Measurement 

II 

1XB 
 Is

e

X: Memory 
Y: Engine 

Is  XB



Minimal Energy Cost for Measurement 

Is  XB

Change in the 
nonequilibrium free 
energy of only X 

TS and M. Ueda, Phys. Rev. Lett. 109, 180602 (2012). 

IsEW  XXX 

Engine Y 

Heat bath B 

Memory X 

Heat bath B 

Work 
XW

XE
Energy 
change 

Information is not free 

Additional energy cost 
to obtain information 



General Principle of Information Thermodynamics 

1XB 
 Is

e

Is  XB

1XB 
 Is

e

Is  XB

Measurement: 

Unified formulation of measurement and feedback 

TS and M. Ueda, PRL 109, 180602 (2012). 
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remXB IIs 

Feedback: 
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What compensates for the entropy decrease here? 

Problem 

Memory Heat bath System Heat bath 

2lnSB sFor Szilard engine, 



Conventional Arguments 

Erasure process 
(From Landauer principle) Bennett  

& 
Landauer 

Measurement 
process 

Brillouin 

Widely accepted since 1980’s 



Total Entropy Production 

Is  XB
0XYB s

Is

Qss





XB

XXYXYB 

If the mutual information is taken into account,  
the total entropy production is always nonnegative  
for each process of measurement or feedback. 

Total entropy production in XYB 

Equality: thermodynamically reversible 



What compensates for the entropy decrease here? 

Revisit the Problem 

Memory Heat bath System Heat bath 

2lnSB sFor Szilard engine, 

Mutual-information change compensates for it. 

02ln2lnSBSMB  Iss



Key to Resoluve the Paradox 

• Maxwell’s demon is consistent with the 
second law for measurement and feedback 
processes individually 

– The mutual information is the key 

 

• We don’t need the Landauer principle to 
understanding the consistency 
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• Second law & fluctuation theorem 
Allahverdyan, Dominik  & Guenter, J. Stat. Mech. (2009) 
Hartich, Barato, & Seifert, J. Stat. Mech. (2014) 
Horowitz & Esposito, Phys. Rev. X (2014) 
Horowitz & Sandberg, New J. Phys. (2014) 
Shiraishi & Sagawa, Phys. Rev. E (2015) 
Ito & Sagawa, Phys. Rev. Lett. (2013) 

 

 

• Models of autonomous Maxwell’s demons 
Mandal & Jarzynski, PNAS (2012) 
Mandal, Quan, & Jarzynski, Phys. Rev. Lett. (2013) 
Strasberg, Schaller, Brandes, & Esposito Phys. Rev. Lett. (2013) 
Horowitz, Sagawa, & Parrondo, Phys. Rev. Lett. (2013) 
Shiraishi, Ito, Kawaguchi & Sagawa, New J. Phys. (2015) 

 

Thermodynamics of  
Autonomous Information Processing 

Toward deeper understanding of information nanomachines 



Two Approaches 

• “Transfer entropy” approach 

Applicable to non-Markovian dynamics 

 Second law is weaker in Markovian dynamics 

 

 

• “Information flow” approach 

Not applicable to non-Markovian dynamics 

 Second law is stronger in Markovian dynamics 

But we derived a stronger version!  (Poster by Ito) 

Ito & Sagawa, Phys. Rev. Lett. (2013) 

Second law: Allahverdyan, Dominik  & Guenter, J. Stat. Mech. (2009) 
                      Hartich, Barato, & Seifert, J. Stat. Mech. (2014) 
                      Horowitz & Esposito, Phys. Rev. X (2014) 
                      Horowitz & Sandberg, New J. Phys. (2014) 
Fluctuation theorem: Shiraishi & Sagawa, PRE (2015) Poster by Shiraishi 



Transfer Entropy 
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Directional information flow  
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Conditional mutual information 

T. Schreiber, PRL 85, 461 (2000) 

Directional information transfer between two systems 



Many-body Systems with  
Complex Information Flow 

Sosuke Ito & TS, PRL 111, 180603 (2013). 

Characterize the dynamics by Bayesian networks 

Time 

Node: Event 
Arrow: Causal relationship 



Second Law on Bayesian Networks 

S. Ito & T. Sagawa, PRL  111, 180603 (2013) 


l

lIII trinifin

Iini : Initial mutual information between X and other systems 

Ifin : Final mutual information between X and other systems 

Itr
l : Transfer entropy from X  to other systems 

: Entropy production in X and the bath 

 XBS

XBS

Time 



Information Flow VS Transfer Entropy 

Infinitesimal transition of  
coupled Langevin system 
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Toward Biological Information Processing 

Mutual information is experimentally accessible 
  ex. Apoptosis path: Cheong et al. Science (2011). 

What is the role of information in living systems? 

Our finding:  
Relationship between information and the robustness of adaptation 

There is no explicit channel coding inside living cells; 
 Shannon’s second theorem is not straightforwardly applicable 

Application of information thermodynamics 

Barato, Hartich & Seifert, New J. Phys. 16, 103024 (2014). 
Sartori, Granger, Lee & Horowitz, PLoS Compt. Biol. 10, e1003974 (2014). 
Ito & Sagawa, Nat. Commu. 6, 7498 (2015). 



E. Coli moves toward food (ligand) 

The information about ligand density is  
transferred to the methylation level of the receptor,  
and used for the feedback to the kinase activity. 

Signal Transduction of E. Coli Chemotaxis 



: stationary value of at 

 : kinase activity 
 : methylation level 
 : average ligand density 

: time constants 

Y.  Tu et al., Proc. Natl. Acad. Sci. USA 105, 14855 (2008). 
F. Tostevin and P. R. ten Wolde, Phys. Rev. Lett. 102, 218101 (2009). 
F. G. Lan et al., Nature Physics 8, 422 (2012). 
 

Adaptation Dynamics 

2D Langevin model 

 Instantaneous change of a
t 
in response to l

t
 

 Memorize l
t  
by m

t
 

 a
t
 goes back to the initial value 

Negative feedback loop: 



: Change in the conditional Shannon entropy 

: Transfer entropy 

Second Law of Information Thermodynamics 

: Robustness against the 
 environmental noise 

Upper bound of the robustness is given by the transfer entropy 

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015). 

(Weaker version with transfer entropy) 



Without feedback： 

Stationary State 

Fluctuation  (inaccuracy of 
information transmission) 
induced by environmental noise 

Transfer entropy 



If the Langevin equation is linear: 

: noise of m 

: power of the signal from a to m 

Exact Expression of Transfer Entropy 

Analogous to the Shannon–Hartley theorem 

Signal-to-noise ratio 



Input ligand signal:  a, step function.  b, sinusoidal function.  c, linear function. 

Red: robustness of adaptation 
Green: information-thermodynamic bound             

Blue: conventional thermodynamic bound 

Numerical simulation: 

Information-Thermodynamic Efficiency 

 Information thermodynamics gives a stronger bound! 
 The adaptation dynamics is inefficient (dissipative) as a conventional 

thermodynamic engine, but efficient as an information-thermodynamic engine. 



Information-Thermodynamic Figure of Merit 



Second law of information thermodynamics 

Information dItr
t 

 gives the bound of robustness Ja
t  

Comparison with Shannon’s Information Theory 

Information (channel capacity) C 
 gives the bound of achievable rate R 

Shannon’s second theorem 

Well-defined in living cells 

How to define in living cells?? 



Outline 

• Introduction 

• Information and entropy 

• Information thermodynamics: a general framework 

• Paradox of Maxwell’s demon 

 

• Thermodynamics of autonomous information processing 

• Application to biochemical signal transduction 

 

• Summary 



Summary 
• Unified framework of information thermodynamics 

 

 

• Fluctuation theorem for autonomous information processing 

 

 

• Information thermodynamics of biochemical signal transduction 

 

 

Thank you for your attention! 

S. Ito & T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013). 
Review: S. Ito & T. Sagawa, arXiv:1506.08519  (2015). 
N. Shiraishi & T. Sagawa, Phys. Rev. E 91, 012130 (2015). 

T. Sagawa & M. Ueda, Phys. Rev. Lett. 109, 180602 (2012). 
T. Sagawa & M. Ueda, New J. Phys. 15, 125012 (2013). 

Review:  
J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015). 

S. Ito & T. Sagawa, Nature Communications 6, 7498 (2015). 


