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Overview 

!   Introduction 
!   Active liquids 
!   Self-propelled disks 
 

!   “Experimental” realization 
!   Walking grains and In-silico extrapolation  
 
=>Self propelled disks exhibit a transition to polar collective motion 
 

!    Models and Theoretical description 
!   Where does the alignment come from ? What is the alignment ? 
!   How does it compare to the Vicsek alignment rule ? 
!   Are the differences significant ? 
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Active liquids 

!   A commonly accepted definition of an active fluid : 
  
!   Out of equilibrium fluid composed of particles the motion 

of which results from the dissipation of the energy 
received homogeneously at the scale of each particle. 
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Transition to collective motion : the Vicsek Model 

17/08/15 

 

!   Over damped, Self Propelled Point Particles, V = V0 n 
!   Noisy Alignment with neighbors (within some range)  
!   Diffusive Noise 
 

⇒ Discontinuous transition to collective motion 
⇒  fast domain growth leading to high-density/high order 

solitary bands/sheets (2D/3D) 
⇒ Giant density fluctuations in the homogeneous polar state 

PRE, 77(4), 6113 2008. 
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!   Binary interaction version 
 
 
 

!   Boltzmann equation (molecular chaos) 

!   Hydrodynamics equations  

Continuous description Bertin, Droz, Grégoire, J. Phys. A: Math. Theor. 42 (2009)  
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The underlying expectation ... 

onasinglemastercurvesolelyparameterizedbytheparticlefraction,
w‘,awayfromtheband:Ps,t ðÞ~1{w?=ws,t ðÞ.Asitturnsout,this
relationcorrespondstoparticle-numberconservationinasystem
wheredensityandpolarizationwavespropagatesteadilyatavelocity
v0(ref.22andSupplementaryMethods).Thisobservationunambigu-
ouslydemonstratesthatthebandstatecorrespondstoagenuinesta-
tionaryflockingphaseofcolloidalactivematter.

Onfurtherincreasingtheareafractiontomorethanw0<2310
22

,
transientbandseventuallycatchupwiththemselvesalongtheperiodic
directionandformahomogeneouspolarphase(Fig.2dandSupp-
lementaryVideo4)inwhichthevelocitydistributioncondensesona
singleorientationofmotion(Fig.4a,tobecontrastedwiththeperfectly

isotropicdistributionforfractionslessthanwcinFig.1b).Conversely,
therollerpositionsareweaklycorrelated,asevidencedbytheshapeof
thepair-distributionfunction,whichissimilartothatfoundinlow-
densitymolecularliquids(Fig.4b).Wealsoemphasizethatthedensity
fluctuationsarenormalatallscales(Fig.4c).Thisisexperimental
observationofapolar-liquidphaseofactivematter.Theexistenceof
apolar-liquidphasewastheoreticallyestablishedyethadnotbeen
observedinanypriorexperimentinvolvingactivematerials.Until
now,collectivemotionhasbeenfoundtooccurintheformofpatterns
withmarkeddensity,orientationalheterogeneitiesorboth

7,10,13,14,16
.

Furthermore,incontrastwiththepresentobservations,giantdensity
fluctuationsareconsideredtobeagenericfeatureoftheuniaxially
orderedstatesofliquidscomprisingself-propelledparticles

2,3,17
.We

resolvethisapparentcontradictionbelowandquantitativelyexplain
ourexperimentalobservations.

Fromatheoreticalperspective,themainadvantageofferedbythe
rollersisthattheirinteractionsareclearlyidentified.Weshowin
SupplementaryMethodshowtoestablishtheequationsofmotionof
Quinckerollersinteractingthroughelectrostaticandfar-fieldhydro-
dynamicinteractions.Theytakeacompactformbothfortheposition
riandtheorientationp̂ioftheithparticle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heffri{rj,p̂i,p̂j
!"

Herep̂imakesananglehiwiththexaxis,andadotdenotesatime
derivative.Indilutesystems,theparticleinteractionsdonotaffecttheir
propulsionspeed,yettheelectricfieldandflowfieldcompetetoalign
thep̂iwiththem.Thiscompetitionresultsinaneffectivepotential,Heff,
forthep̂i.Atleadingorderina/r

Heffr,pi,pj
!"

~ArðÞp̂i
.p̂jzBrðÞp̂i

.̂r

zCrðÞp̂i
.2r̂r̂{I ðÞ.p̂j

whereA(r)isapositivefunctionandthuspromotesthealignmentof
theneighbouringrollers,Iistheidentitymatrix,r̂r̂istheouterproduct
ofr̂withitself,andadotdenotestensorcontraction.Importantly,Ais
dominatedbyahydrodynamicinteraction,whicharisesfromahydro-
dynamic-rotletsingularityscreenedoverdistancesoftheorderofthe
chamberheight

23
.ThefunctionB(r)isalsoshortrangedandaccounts
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Is it reasonable ?  
Alignment Phases Giant density fluct. 

Rolling colloids with (hydro origin) Iso -> polar bands 
-> hom. polar phase 

No 

Actin filaments with (steric origin) Iso -> polar clusters  
-> polar bands ? 

irrelevant 

Bacteria with (steric origin) Iso -> polar clusters irrelevant 
Walking disks A priori without Iso -> polar clusters irrelevant 

Janus colloids ? (hydro origin) Iso -> apolar active 
clusters 

No 

Surfing colloids ? (hydro origin) Iso -> apolar active 
clusters 

No 

To date, not a single experimental system follows the Vicsek scenario 

u  Is it because of “complicated” but irrelevant factors ? 

u  Or more deeply the microscopic dynamics does not yield effectively to Vicsek-
like alignment and the associated transition scenario? 
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Self-propelled disks 

  
!   The simplest active particle with hard core repulsion 
!   Standard hard or soft repulsion 
!   No shape anisotropy 
!   No explicit alignment rule 

 
!   2 positional +1 orientational degrees of freedom  

    (+ their time derivative) 
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (
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)

An isolated self-propelled particle converges to

its stationary state where velocity v and polarity n̂ are parallel.

(

b

)

A single binary “scatterin
g event” can consist of many hard-

disk elastic collisions. (

c

)

Stable phases in the absence of noise.

Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a

discontinuous transition.

phases in the low density limit. To do so we proceed in

three steps. (i) We perform molecular dynamics of the

model equations for purely elastic interactions, with and

without noise: In the absence of noise, the system exhibits

a strongly first order transition from the isotropic to the

collective motion phase (see Fig. 1c). Above a finite level

of noise, the transition becomes second order – a tricritical

point exists. This establishes the phase behaviour which

we will explain from theoretical considerations. (ii) We

analyze the model equations on the grounds of the Boltz-

mann equation, by making use of a recently proposed ob-

servable hp · �pi [5] which quantifies the non-conservation

of momentum due to particle interaction. The advantage

of this observable is that it allows to span the bridge from

the microscopic dynamics, in particular binary collisions

such as depicted in Fig. 1b, to macroscopic order param-

eters. From a direct numerical sampling of all possible

binary scattering events, we obtain an excellent quantita-

tive prediction of our numerical findings. (iii) We scruti-

nize the very peculiar dynamics of a collision between two

self propelled disks and explain the specific shape of the

scattering function that was obtained numerically in (ii).

We further find that recollisions are not necessary for the

observed alignment, contrary to our previous belief.
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The model consists

of N hard disks in a square box of size L⇥L, with periodic

boundary conditions. The density is ⇢ = N/L
2 . Particles,

being self-propelled, relax to a stationary speed v0. As

units of length and time we choose the diameter d0 of the

particles and d0/v0, respectively. A particle i has coordi-

nates ri, velocity vi, and a body axis given by the unit

vector n̂i (see Fig. 1a). Between collisions, it evolves ac-

cording to the equations

d
dt
ri = vi,

(1a)

⌧v
d
dt
vi =

n̂i � vi,
(1b)

⌧n
d
dt
n̂i =

(

n̂i ⇥ ˆvi)⇥ n̂i.
(1c)

The competition between the self-propulsion n̂ and the vis-

cous damping �v in Eq. (1b) lets the velocity relax to n̂

on a timescale ⌧v.
Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on

a timescale ⌧n. Interactions between particles are elastic

hard-disk collisions which change v but not n̂. After such

a collision, v and n̂ are not collinear, and the particles un-

dergo curved trajectories which are either interrupted by

another collision (Fig. 1b), or the particles reach their sta-

tionary state, where v =

n̂ and the trajectory is straight

at a speed v0 = 1

(Fig. 1a). The final direction of v (equal

to that of n̂) depends on the parameter

↵ =

⌧n/⌧v,

(2)

which can be understood as the persistence of the po-

larity n̂. Linearizing the evolution equations around the

stationary state, one can show that the final polar an-

gle is given by the weighted average of the initial angles,

(

✓n +

↵✓v)/(1
+

↵). When ↵ ⌧ 1

, n̂ is practically
always

directed along v.

On top of the deterministic trajectories given by the

Eqs. (1), we add some angular noise by the following pro-

cedure. Given a time step �t ! 0

, we rotate vi and n̂i

by the same angle ⌘i(t),
distributed normally with zero

mean and variance 2

D�t, where the constant D � 0

fixes

the level of the angular noise. Noises of different particles

are statisticall
y independent. We choose �t much smaller

than all other timescales in the dynamics. The relevant

parameter to characterize
the angular noise is then D/�,

where � =

4

⇢/⇡ is the characteristi
c scattering rate of the

system, which is proportional to the density [5].
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We now es-

tablish the phase behaviour of the model for N particles.

MD simulations were performed at ⌧v =

4

with N =

1

0

0

0

or N =

4

0

0

0

, focusing on the dilute regime ⇢ ⌧ 1

(see

below for a discussion of the effect of ⌧v). We are thus

left with two microscopic parameters, namely ↵ and D/�.

Also, the system size is chosen not too large, in order to

keep the system spatially homogeneous, which we have

checked by visual inspection. We measured the order pa-

rameter  (t) =
��P ivi(t)

��/N , which is of order 1

/
p
N for

the isotropic state and close to unity for the polar state.

Let us first look at the case without angular noise,

D/� =

0

. We initialized simulations from random iso-

tropic conditions and waited for the isotropic state to even-

tually destabilize. When a stationary state was reached,

we started to average the order parameter over time, h i.

As shown in Fig. 1c, we found the isotropic state to be

stable at low values of ↵, whereas it becomes unstable

at larger values, in favour of a polar state. Between the

two phases, an abrupt discontinuous transition takes place

at ↵⇤. Quite remarkably, in the whole polar phase the dy-

namics converges to  =

1

, where particles are all strictly

parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  =

1

is stable for all ↵ > 0

, in particular also when ↵ < ↵⇤. In

Fig. 2a, we show again the (now rescaled) order parameter
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Experiments : Vibrated polar disks 
!   Goals : 

!   A well controlled 2D experiment 
!   Particles,  

!  Hard disk interactions  
!  NO a priori alignment 

!   Polar self propulsion 
 

!   Achieved with : 
!   A well controlled vibration set-up 
    (square air bearing slide) (f=115Hz) 
!   Specifically designed walkers 
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Individual motions of SPP vs. ISO:	

Varying the natural control parameter Γ in the range 2.8<Γ<3.8 : 

 
 
 
 
 
 
 
 

!   SPP move along their polarity with an almost constant velocity V0  
    The angular exponential diffusion (noise) increases linearly with Γ 

               => Persistence length: ξ = V0/Dθ	


 
!   By comparison ISO particles behave as standard diffusive particles 
!   Interactions : Hard core repulsion / No built-in alignment 
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Collective behaviors (Φ=0.47, Γ=2.7) 
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… collective motion and polar ordering 
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Pierre Illien Simulation de disques durs auto-propulsés avec bruit actif
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Figure 8 – Schéma d’une particule et notations utilisées

• Fdecel = −αF0v est un terme de dissipation, d’amplitude proportionnelle à F0. De façon
analogue au bruit, la quantité de mouvement perdue par dissipation est d’autant plus
importante que la propulsion est forte.

• Fcoll représente l’interaction de type sphères dures quand plusieurs particules sont présentes
dans le système.

• Fenv est une force modélisant l’influence de l’environnement de la particule, et qui contient
une partie aléatoire due à l’agitation thermique et une partie dissipative (“viscosité” du
bain environnant). On choisit de négliger cet effet.

L’équation donnant l’évolution de la vitesse de la particule est donc :

m
dv

dt
= −αF0v!"""""""#""""""""$

friction

+ F0n%
moteur

+F0 (ε∥ηn + ε⊥η′ e⊥)!"""""""""""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""""""""""""$
bruit actif

Cette équation se réécrit :

dv

dt
= −αF0

m
v + F0

m
[(1 + ε∥η)n + ε⊥η′ e⊥] .

En multipliant chaque membre par α, et en définissant v
′ = αv et l’échelle de temps τv =

m

αF0
:

dv′
dt
= −v

′
τv
+ 1

τv
[(1 + ε∥η)n + ε⊥η′ e⊥]

Dans la suite, on note v
′ ≡ v.

2.2 Evolution de l’orientation

On suppose que l’angle ϕ que fait l’orientation n avec l’axe x obéit à une équation du type :

Jϕ̈ = Caccel +Cdecel +Ccoll +Cenv

où J est le moment d’inertie de la particule. Par souci de simplicité, on suppose que la dynamique
de ϕ est suramortie : on néglige donc le terme inertiel d’ordre deux. Comme précédemment, on
néglige le couple Cenv dû à l’environnement de la particule. On suppose par ailleurs que les
collisions entre particules n’ont pas d’influence sur l’angle ϕ. On peut finalement supposer que
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le vecteur n obéit à une dynamique du premier ordre. Comme ∣n∣ = 1, il existe un vecteur Ω

orthogonal à n (voir fig. 8) tel que :
dn

dt
=Ω × n

On souhaite que Ω soit tel que n relaxe vers v, on peut donc le choisir colinéaire au produit
vectoriel n×v. Puis, en notant v̂ = v/∣v∣, on souhaite que Ω soit tel que si v̂ ⋅n > 0 (resp. v̂ ⋅n < 0),
alors n relaxe vers v̂ (resp. −v̂) avec un temps caractérisique τϕ (l’alignement est alors qualifié de
“nématique”, par opposition à l’alignement “ferromagnétique” proposé dans le modèle de Vicsek,
voir section 1.3). Le vecteur :

Ω =
n ⋅ v̂
τϕ
(n × v̂)

remplit ces conditions 1, de telle sorte que la dynamique de n est finalement donnée par :

dn

dt
=

n ⋅ v
τϕv2

[n × (v ×n)] (1)

Le système d’équations simulé est donc :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dv

dt
= − v

τv
+ 1

τv
[(1 + ε∥η)n + ε⊥η′ e⊥]

dn

dt
=

n ⋅ v
τϕv2

[n × (v × n)]
(2)

Le problème initial a finalement été réduit à un problème à trois degrés de liberté (v, ϕ, ψ) et à
quatre paramètres (τv, τϕ, ε∥ et ε⊥).

2.3 Equations subsidiaires

Les équations (2) contiennent des termes de bruit multiplicatif, à cause desquels il est difficile
d’obtenir des résultats analytiques. On s’intéresse donc dans un premier temps aux équations

subsidiaires, qui sont les équations déterministes (i.e. sans terme de bruit) associées au modèle
étudié. Elles s’écrivent : ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dv

dt
= − v

τv
+ n

τv

dn

dt
=

n ⋅ v
τϕv2

[n × (v × n)]
(3)

On souhaite écrire ces équations en terme des variables v et δ = ϕ − ψ. Pour cela, on étudie la
dynamique du vecteur v̂ :

˙̂v =
v̇

v
− v

v2

dv

dt
=

v̇

v
− v̂

2v2

dv2

dt
(4)

Par ailleurs, et en utilisant les équations (3) :

dv2

dt
= 2v ⋅ dv

dt
= −2v2

τv
+ 2

v ⋅ n
τv

L’équation (4) se réécrit alors :

˙̂v =
1

τvv
[n − (v̂ ⋅ n)v̂] = 1

τvv
(v̂ × n) × v̂ (5)

1. On remarque que tout vecteur colinéaire à Ω, dont la norme serait de la forme f(cos δ)g(sin δ)/τϕ avec f
et g changeant de signe en zéro, convient.
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étudié. Elles s’écrivent : ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dv

dt
= − v

τv
+ n

τv

dn

dt
=

n ⋅ v
τϕv2

[n × (v × n)]
(3)

On souhaite écrire ces équations en terme des variables v et δ = ϕ − ψ. Pour cela, on étudie la
dynamique du vecteur v̂ :

˙̂v =
v̇

v
− v

v2

dv

dt
=

v̇

v
− v̂

2v2

dv2

dt
(4)

Par ailleurs, et en utilisant les équations (3) :

dv2

dt
= 2v ⋅ dv

dt
= −2v2

τv
+ 2

v ⋅ n
τv

L’équation (4) se réécrit alors :

˙̂v =
1

τvv
[n − (v̂ ⋅ n)v̂] = 1

τvv
(v̂ × n) × v̂ (5)

1. On remarque que tout vecteur colinéaire à Ω, dont la norme serait de la forme f(cos δ)g(sin δ)/τϕ avec f
et g changeant de signe en zéro, convient.
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bands” and a possibly direct transition from disorder to
a “Toner-Tu” [9–11, 25] collectively moving phase.

The polar disks (Fig. 1a,b) are vibrated between two
plates. Rather than modeling their full three-dimensional
dynamics, we describe their e↵ective two-dimensional
motion. The main new features of the model, dictated by
the experimental system, is twofold: (i) the dynamics of
the particle’s intrinsic polarity with respect to their veloc-
ity is explicitly described, and (ii) no explicit alignment
rules are employed, but collisions are explicitly modeled.
Building on experimental observations, notably that sin-
gle particles move backward for significant time periods
with their velocity essentially antiparallel to their direc-
tor, we were led to the following model: Particle i is
subject to a noisy acceleration along its polarity axis n

i

(with anisotropic, intrinsic, “active” noise, respecting the
particle’s polar symmetry), balanced by an e↵ective lin-
ear friction term along its velocity v

i = d
dtr

i, with r

i de-
noting the particle’s coordinates. Particles i and j with
|ri�r

j | < d, where d is the particle diameter, interact by
means of a pairwise, inelastic, repulsive interaction force
F

ij
✏ , yielding the equation:

d

dt
v

i = [µ + ⌘k]n
i + ⌘?n

i
? � �v

i +
X

j

F

i,j
✏ , (1)

where µ and � are constants giving rise to a station-
ary speed v = µ/�, n

i
? is a unit vector perpendicular to

n

i, ⌘k,? represent Gaussian distributed white noises with
zero mean, i.e. h⌘k,?(t)⌘k,?(t0)i = 2Dk,?�(t � t0), where
Dk,? denotes the corresponding di↵usion constant. The

interaction force F

i,j
✏ is given by the established spring

dash-pot model [49, 50], which, for hard particles de-
pends only a single parameter, the restitution coe�cient
✏ (details see Supplementary Material). Eq. (1) must
be complemented by one governing the polarity of parti-
cles, which were observed to remain anti-aligned to the
velocity during episodes of backward motion. In other
words, when ↵i = \(vi,ni), the angle between veloc-
ity and polarity, is acute, frictional interactions with
the vibrating plate are assumed to rotate n

i towards v

i,
while for |↵i| > ⇡/2, n

i rotates towards �v

i. We thus
propose the following equation for the polarity angle �i

(ni = (cos�i, sin�i)):

d

dt
�i = ⇣ sin↵i sign(cos↵i), (2)

where ⇣ characterizes the strength of the coupling be-
tween polarity and velocity, a parameter expected to be
rather small given the observed persistence of n even as
v changes sign abruptly.

To make contact with the experimental results, we
rescale time t ! t/⌧0, with ⌧0 the inverse of the vibra-
tion frequency f = 115 Hz [1, 2]. Length is measured
in particle diameters d: x ! x/d. Our model possesses
six parameters, µ, �, ⇣, Dk, D?, and ✏. At fixed ex-
perimental vibration amplitude �, one parameter can be

FIG. 2. (color online) (a) PDF of v|| and (b) PDF of the
angle ↵ = \(n(t),�r(t + ⌧)), for selected values of the time
increment ⌧ . In both graphs, experimental data are indicated
with symbols, while model data are illustrated with lines.

eliminated by matching the typical experimental speed
with the model’s v = µ/�. In the following, we use the
experimental data gathered at the vibration amplitude
� = 2.7, where the most ordered regimes have been ob-
served, and for which v = 0.025 [1, 2].

We first analyze the single-particle dynamics in or-
der to test the overall quality of the model and to esti-
mate the remaining four parameters (e.g. �, ⇣, Dk, D?;
the restitution coe�cients ✏ only a↵ects particle interac-
tions). To find the best-matching set of parameters, we
consider the following two quantities: the angular di↵u-
sion constant D� and the ratio of the displacement fluctu-
ations parallel and perpendicular to the polarity (defini-
tions see [51]). Scanning the four dimensional parameter
space, we select a best-matching parameter set for which
both quantities agree with the experimental value within
an accuracy of typically ±30%, that is approximately
equal to the imprecision arising due to di↵erent prepara-
tions of the experimental setup (see Supplementary Ma-
terial). Within this accuracy we find a parameter set
for which the model captures quantitatively the observed
experimental particle dynamics (see Supplementary Ma-
terial for details). Using these parameters, we compare
the distributions of the parallel displacements normal-
ized by ⌧ , denoted as vk(⌧) = �rk/⌧ (definition of �rk
see [51]), and of the angle ↵(⌧) = \(n(t), r(t+ ⌧)� r(t))
to those recorded experimentally. We find a very good
agreement for all values of ⌧ considered (Fig. 2). Note
that, as expected, the particles exhibit backward motion
for significant time periods (tails in the negative sector
in Fig. 2a, and peaks at ±⇡ in Fig. 2b).

We now turn to binary collisions for which the resti-
tution coe�cient ✏ must be chosen. The following re-
sults are presented for ✏ = 0.4, but we observed that
changing ✏ in the range ±30% does not influence signif-
icantly the binary collisions . Experiments have discov-
ered that one “encounter” typically involves many succes-
sive collisions, where the particles bounce back without
turning their polarity much, so that they quickly collide

+ Mapping the model on the experimental system via the one particle dynamics 

+ slightly inelastic collisions 
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experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do ex-
ist nearby, constituting the first report of long-range ori-
entational order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of
the model varying � and the packing fraction � in square
domains of linear size L = 200 with periodic boundary
conditions (Fig. 4c). For � . 0.6, varying �, we observe
the usual phenomenology of models with (e↵ective) po-
lar alignment like the Vicsek model [7, 12, 18, 20, 24]
: immediately below the transition, the particles spon-
taneously segregate in high-density high-order “bands”
traveling in a low-density disordered sea (Fig. 4d). Fur-
ther away from the transition, these nonlinear structures
disappear, leaving a statistically-homogeneous Toner-Tu
phase with its characteristic giant number fluctuations
and long-range correlations [9–11, 25]. However, we de-
tected, for large enough packing fractions, narrow dis-
ordered channels (see Fig. 4d, 4) for small noise values
(green circles in Fig. 4c). These “inverse bands”, not
found in dilute or point-like particle models, seem to co-
exist with the Toner-Tu phase. We believe that the in-
creased frequency of collisions at large packing fractions
trigger the emergence of these inhomogeneous structures.

Interestingly, for � � 0.6 we could not observe bands
(Fig. 4c). This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage,
however we cannot conclude, due to numerical limita-
tions, whether this feature remains in the limit of large
system sizes and asymptotically large times: the width
of the bands increases with increasing � (cf. Fig. 4d) so
that their disappearance might just be a finite-size e↵ect.
However, the longitudinal density profile around � ⇡ 0.6
turns out to be rather flat, with an overall rather low
order (as low as h it ⇡ 0.2 for � = 0.6 and � = 1.4).
They may thus be of di↵erent nature from the Vicsek-
like, sharp, well-ordered bands found at low �, and could
cease to exist asymptotically at a packing fraction below
the rise of jamming and crystallization e↵ects.

To summarize, we have built a simple yet quantita-
tively faithful model for the dynamics of the vibrated
polar disks studied in [1, 2]. This model constitutes one
of the first in which the dynamics of the particle’s intrin-
sic polarity with respect to their velocity is taken into
account [54, 55]. An adequate description of the granular
system of vibrated discs requires to account for the po-
larity as a slow variable compared to the velocity, which
can change fast due collisions with the plate or neighbor-
ing particles. Our in silico study has shown that in the
original experiments the most ordered state reached was
in fact in the region of the transition to collective motion,
slightly on the disordered side. However, asymptotically-
ordered regimes do exist nearby. The new features of the
phase diagram, i.e. the emergence of “inverse bands” in
the low noise regimes of su�ciently dense systems and

FIG. 4. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2=Dk/D

�=2.7
k =D?/D

�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

the possibility of a direct transition from disorder to a
collectively-moving Toner-Tu-like phase, deserve further
investigations. In particular, this last point, if confirmed
in the future, might reopen the debate about the possi-
bility of a continuous transition to collective motion since
the structures “responsible” for its discontinuous charac-
ter —the bands— would then not exist.

3

FIG. 2. (color online) Scatter graph ✓
in

� ✓
out

for the experi-
ment (a), and our model (b). Values of the impact parameter
b are indicated by the color bar. PDF of the duration ⌧

col

(c),
and the extension `

col

(d) of a collision.

quickly collide again. These encounters last for a finite
time and take place over some finite spatial extension.
It was found experimentally that they are well delimited
using the following criterion: an encounter starts when
two particles get closer than some threshold collision dis-
tance, i.e. |ri � r

j |  dc = 1.7, and their polarities point
“inwards”, i.e. |(ri + n

i) � (rj + n

j)|  |ri � r

j | [2].
An encounter ends either when particles are separated
by more than dc, or their polarities point “outwards”. In
the following we have applied the same criterion in our
model. Fig. 2 depicts the results of a scattering study
for the experimental setup and our model. Thousands of
binary encounters (hereafter called collisions for simplic-
ity) were recorded, and the outgoing relative angle ✓out of
the two particles plotted against their incoming relative
angle ✓in, the impact parameter b 2 [0, 1] [51] is shown as
color code (Fig. 2a,b). The model data shows a striking
agreement with the results measured in the experiments:
most collisions actually leave the polarities unchanged
(✓out ' �✓in), and a minority of them align the particles
almost perfectly (✓out ' 0). We estimated the fraction
of polar aligned events [53], finding 0.14 for the model
and 0.18 for the experiment. The model also matches
the distribution of head-on (b ⇡ 0) and glancing (b ⇡ 1)
collision events. We further determined the PDF of the
duration of collisions ⌧col, as well as that of their spatial
extension `col, given by the center of mass displacement.
The model reproduces the observed exponential distribu-
tion of ⌧col quantitatively, while it fails to reproduce the
roughly algebraic decay of `col (but nevertheless gives a
correct mean extension). To what degree this is an ac-
tual discrepancy between model and experiment remains
to be clarified. In fact, the very existence of an algebraic

FIG. 3. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2=Dk/D

�=2.7
k =D?/D

�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

decay for the experimental data can be questioned due
to the small number of collisions with large extensions.

Finally, we performed simulations using the same
flower-shaped geometry, and number of particles (N =
890) as in the experiment [1, 2]. For the parameter val-
ues matching the single particle dynamics and binary
collisions (for vibration amplitude � = 2.7), we observe
fairly large, polar aligned, moving clusters [54]. How-
ever, the order parameter  (t) = 1

M(t) |
P

i2ROI n
i|, with

M(t) denoting the number of particles currently located
within the central “region of interest” (ROI) of radius
10, is typically smaller than in the experiment — even
after choosing ✏ = 0.4, a value which optimizes order in
the model (Fig. 3a). However, when comparing the cor-
responding videos, the discrepancy between model and
experiment could be related to the fact that clusters in
the model have a slightly larger tendency to move at the
border of the ROI, instead of directly crossing it. The
e↵ective packing fraction observed in the ROI is found
to be very close to that of the experiment (� ' 0.39,
whereas the nominal packing fraction is 0.47), indicating
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experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do ex-
ist nearby, constituting the first report of long-range ori-
entational order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of
the model varying � and the packing fraction � in square
domains of linear size L = 200 with periodic boundary
conditions (Fig. 4c). For � . 0.6, varying �, we observe
the usual phenomenology of models with (e↵ective) po-
lar alignment like the Vicsek model [7, 12, 18, 20, 24]
: immediately below the transition, the particles spon-
taneously segregate in high-density high-order “bands”
traveling in a low-density disordered sea (Fig. 4d). Fur-
ther away from the transition, these nonlinear structures
disappear, leaving a statistically-homogeneous Toner-Tu
phase with its characteristic giant number fluctuations
and long-range correlations [9–11, 25]. However, we de-
tected, for large enough packing fractions, narrow dis-
ordered channels (see Fig. 4d, 4) for small noise values
(green circles in Fig. 4c). These “inverse bands”, not
found in dilute or point-like particle models, seem to co-
exist with the Toner-Tu phase. We believe that the in-
creased frequency of collisions at large packing fractions
trigger the emergence of these inhomogeneous structures.

Interestingly, for � � 0.6 we could not observe bands
(Fig. 4c). This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage,
however we cannot conclude, due to numerical limita-
tions, whether this feature remains in the limit of large
system sizes and asymptotically large times: the width
of the bands increases with increasing � (cf. Fig. 4d) so
that their disappearance might just be a finite-size e↵ect.
However, the longitudinal density profile around � ⇡ 0.6
turns out to be rather flat, with an overall rather low
order (as low as h it ⇡ 0.2 for � = 0.6 and � = 1.4).
They may thus be of di↵erent nature from the Vicsek-
like, sharp, well-ordered bands found at low �, and could
cease to exist asymptotically at a packing fraction below
the rise of jamming and crystallization e↵ects.

To summarize, we have built a simple yet quantita-
tively faithful model for the dynamics of the vibrated
polar disks studied in [1, 2]. This model constitutes one
of the first in which the dynamics of the particle’s intrin-
sic polarity with respect to their velocity is taken into
account [54, 55]. An adequate description of the granular
system of vibrated discs requires to account for the po-
larity as a slow variable compared to the velocity, which
can change fast due collisions with the plate or neighbor-
ing particles. Our in silico study has shown that in the
original experiments the most ordered state reached was
in fact in the region of the transition to collective motion,
slightly on the disordered side. However, asymptotically-
ordered regimes do exist nearby. The new features of the
phase diagram, i.e. the emergence of “inverse bands” in
the low noise regimes of su�ciently dense systems and

FIG. 4. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2=Dk/D

�=2.7
k =D?/D

�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

the possibility of a direct transition from disorder to a
collectively-moving Toner-Tu-like phase, deserve further
investigations. In particular, this last point, if confirmed
in the future, might reopen the debate about the possi-
bility of a continuous transition to collective motion since
the structures “responsible” for its discontinuous charac-
ter —the bands— would then not exist.
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(ii) a continuous time model of hard discs obeying Vicsek
aligning rules, actually an event-driven implementation
of the BDG model [11, 13], and (iii) a model of inelastic
hard discs, noiseless, but with geometrical collision rules.
In all cases not only the transition point is very well pre-
dicted, but the ansatz also works surprisingly well, even
far in the ordered phase. All detailed derivations are
provided in the Supplementary Materials.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, and
one can safely assume that particles have a constant
speed v

0

. For spatially homogeneous states, the one par-
ticle distribution thus reduces to the density probability
f(✓, t) of having a particle with velocity v

0

ê(✓) at time t,
with ê(✓) the unit vector of polar angle ✓. This distribu-
tion evolves according to self-di↵usion and binary scat-
tering events. Note that a scattering event can be rather
complex, involving for instance successive re-collisions, as
in systems of hard discs [40]. Collisions are then corre-
lated and should be considered as part of the same scat-
tering event, so that the molecular chaos hypothesis may
hold. A scattering event [Fig. 1(left)] is specified by the
incoming angles ✓

1

and ✓
2

of the two particles or, equiv-
alently, the incoming half-angle ✓̄ = Arg(ei✓1 + ei✓2) and
the incoming angular separation � = ✓

1

�✓
2

. Additional
scattering parameters, such as the impact parameter or
some e↵ective noise, are collectively noted as ⇣. From
now on, we shall again call “collision” a given scattering
event, keeping in mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1

N

P
i a(✓i). Each self-di↵usion event

changes A into A0 such that N(A0 � A) = �a
di↵

(✓, ⌘),
where ⌘ is some noise described by the probability den-
sity P⌘(⌘). Each scattering event changes , A into A0

such that N(A0 � A) = �a, where �a depends a priori
on all collisional parameters. Assuming molecular chaos
and averaging these balance equations over all di↵using
and scattering events in a small time interval, then tak-
ing the continuous time limit, one obtains the evolution
equation

dA

dt
= ��f [�a] + �

di↵

Z
2⇡

0

d✓

Z
d⌘ P⌘(⌘)f(✓, t) �adi↵, (1)

�f [�a] =

Z
2⇡

0

d✓̄

Z ⇡

�⇡
d�

Z
d⇣K(�, ⇣)f(✓

1

, t)f(✓
2

, t) �a, (2)

where the normalized scattering rate K(�, ⇣) is inde-
pendent of ✓̄ because of global rotational invariance.
We define h. . . i

0

= 1

2⇡

R ⇡
�⇡d�

R
d⇣K(�, ⇣)(. . . ) and re-

quire h1i
0

= 1 which defines the interaction rate scale
�. For discs like particles with an interaction range

scattering
b, d0, �

p1

p2

p0
1

p0
2

�1

�2

�

p = p1 + p2

p
0 = p

0
1
+ p

0
2

�p = p0�p

backward forward

FIG. 1. Left: Scattering of two particles. Right: Criterion for
stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
isotropic phase is unstable.

d
0

, and an impact parameter �d
0

 b  d
0

, one hasR
d⇣K(�, ⇣) = ⇡

4d0

R d0

�d0
db |sin(�/2)| and � = 4⇢d

0

v
0

/⇡,
with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision (fig. 1-right), we apply Eq. (1) to the average
momentum written in polar coordinates P =  ê(✓P ).
When the scattering rules have a mirror symmetry (no
chirality), the radial component of the kinetic equation
reads:

d 

dt
= ��f

h
(p̂ · �p) cos ✓̄

i
�D , (3)

with D a di↵usion constant set by P⌘ [44], while ✓P
is constant and has been set to 0. The same proce-
dure can be followed to write the kinetic equation of
the squared momentum, the balance equation of which
is N

�
P02 �P2

�
= 2P · �p+ 1

N �p · �p, and find:

d 2

dt
= 2��f

h
P · �p+

1

2N
�p · �p

i
� 2D

�
 2 � 1

N

�
. (4)

The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
parameter  in the following way:

f (✓) =
e cos ✓

2⇡I
0

()
, with

I
1

()

I
0

()
=  , (5)

2

I. KINETIC EQUATIONS FOR SPATIALLY HOMOGENEOUS ACTIVE SYSTEMS

We consider the one-particle density probability f(✓, t) of having a particle with polar angle ✓ at time t. We have
explicitly discarded the spatial dependance, thus considering only spatially homogeneous systems. The distribution
is normalized,

R

d✓f(✓, t) = 1, and the average momentum is given by

P(t) =

Z

d✓f(✓, t)ê(✓). (1)

We shall also consider the scalar order parameter

 (t) = |P(t)|. (2)

The evolution of f(✓, t) is supposed to be given by the spatially homogeneous Boltzmann equation
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from scratch, paying particular attention to the description of the (steady) isotropic state.
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This average evolves through a self-di↵usion process and a scattering process.
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where P
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(⌘) is an arbitrary probability distribution of the noise ⌘.

Scattering process — At each collision involving particles 1 and 2, A is changed to A0 such that

N(A0 �A) = �a (7)
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✓̄ = Arg(ei✓1 + ei✓2) and the incoming angular separation �✓ = ✓
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. Note that �a does not depend on ✓̄ because
of global rotational invariance. Note also that �a involves two particles, it thus equals to the change in a of both
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sek like model (ii) a continuous time model of hard discs
obeying Vicsek aligning rules, actually an event-driven
implementation of the BDG model [11, 13], and (iii) a
model of inelastic hard discs, noiseless, but with geomet-
rical collision rules. In all cases not only the transition
point is very well predicted, but the ansatz also works
surprisingly well, even far in the ordered phase.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v
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,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, so
we suppose that particles are at constant speed v

0

. For
spatially homogeneous states, the one particle distribu-
tion reduces to the density probability f(✓, t) of having a
particle with velocity v
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ê(✓) at time t, with ê(✓) the unit
vector of polar angle ✓. This distribution evolves accord-
ing to self-di↵usion and binary scattering events. Note
that a scattering event can be rather complex, involving
for instance successive re-collisions, as in systems of hard
discs [40]. Collisions are then correlated and should be
considered as part of the same scattering event, so that
the molecular chaos hypothesis may hold. A scattering
event [Fig. 1(left)] is specified by the incoming angles ✓
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and ✓
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of the two particles or, equivalently, the incoming
half-angle ✓̄ = Arg(ei✓1 + ei✓2) and the incoming angular
separation � = ✓
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. Additional scattering param-
eters, such as the impact parameter or some e↵ective
noise, are collectively noted as ⇣. From now on, we shall
again call “collision” a given scattering event, keeping in
mind the above discussion.
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where ⌘ is some noise described by the probability den-
sity P⌘(⌘). At each scattering event, the balance is
N(A0 � A) = �a, where �a depends a priori on all colli-
sional parameters. Assuming molecular chaos and aver-
aging these balance equations over all di↵using and scat-
tering events in a small time interval, then taking the
continuous time limit, one obtains the evolution equa-
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FIG. 1. Left: Scattering of two particles. Right: Criterion for
stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
isotropic phase is unstable.
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with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision, we apply Eq. (1) to the average momentum
written in polar coordinates P =  ê(✓P ). When the
scattering rules have a mirror symmetry (no chirality),
the radial component of the kinetic equation reads:
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with D a di↵usion constant set by P⌘, while ✓P just dif-
fuses slowly and has been set to 0 (see Supp. Mat. for
the general case and the details of the derivation). The
same procedure can be followed to write the kinetic equa-
tion of the squared momentum, the balance equation of
which is N
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
parameter  in the following way:

f (✓) =
e cos ✓
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/

p
N ⌧ 1. The ansatz becomes

f
0

(✓) = (1 + 2 cos ✓)/2⇡, which is exact at order  . At
order  3, Eq. (6) reduces to d /dt = �(µ � ⇠ 3), with

µ = hp · �pi
0

�D/�, (9)

⇠ = h( 1
2

� cos�)p · �pi
0

. (10)

where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:

Var
0

[P] =
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1
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The

R
⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
We now come to the illustration of these mechanisms,

and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓
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and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
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and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘
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+ cos ⌘
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� |p|),
where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-

2

is supercritical or subcritical. Finally we test and illus-
trate our approach on (i) a mean-field Vicsek like model
(ii) a continuous time model of hard discs obeying Vicsek
aligning rules, actually an event-driven implementation
of the BDG model [11, 13], and (iii) a model of inelastic
hard discs, noiseless, but with geometrical collision rules.
In all cases not only the transition point is very well pre-
dicted, but the ansatz also works surprisingly well, even
far in the ordered phase. All detailed derivations are
provided in the Supplementary Materials.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
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metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
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does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision (fig. 1-right), we apply Eq. (1) to the average
momentum written in polar coordinates P =  ê(✓P ).
When the scattering rules have a mirror symmetry (no
chirality), the radial component of the kinetic equation
reads:
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with D a di↵usion constant set by P⌘ [44], while ✓P
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
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f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
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is supercritical or subcritical. Finally we test and illus-
trate our approach on (i) a mean-field Vicsek like model
(ii) a continuous time model of hard discs obeying Vicsek
aligning rules, actually an event-driven implementation
of the BDG model [11, 13], and (iii) a model of inelastic
hard discs, noiseless, but with geometrical collision rules.
In all cases not only the transition point is very well pre-
dicted, but the ansatz also works surprisingly well, even
far in the ordered phase. All detailed derivations are
provided in the Supplementary Materials.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, and
one can safely assume that particles have a constant
speed v

0

. For spatially homogeneous states, the one par-
ticle distribution thus reduces to the density probability
f(✓, t) of having a particle with velocity v

0

ê(✓) at time t,
with ê(✓) the unit vector of polar angle ✓. This distribu-
tion evolves according to self-di↵usion and binary scat-
tering events. Note that a scattering event can be rather
complex, involving for instance successive re-collisions, as
in systems of hard discs [40]. Collisions are then corre-
lated and should be considered as part of the same scat-
tering event, so that the molecular chaos hypothesis may
hold. A scattering event [Fig. 1(left)] is specified by the
incoming angles ✓
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and ✓
2

of the two particles or, equiv-
alently, the incoming half-angle ✓̄ = Arg(ei✓1 + ei✓2) and
the incoming angular separation � = ✓
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�✓
2

. Additional
scattering parameters, such as the impact parameter or
some e↵ective noise, are collectively noted as ⇣. From
now on, we shall again call “collision” a given scattering
event, keeping in mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1
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FIG. 1. Left: Scattering of two particles. Right: Criterion for
stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
isotropic phase is unstable.
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metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles
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P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
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analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision (fig. 1-right), we apply Eq. (1) to the average
momentum written in polar coordinates P =  ê(✓P ).
When the scattering rules have a mirror symmetry (no
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
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ansatz one can think of. It is parameterized by the order
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flocks [? ], it was shown that such systems remain ho-
mogeneous across the transition [? ? ? ? ? ]. Also,
experimental systems of interest may have small enough
sizes such that homogeneous phases are stable. Finally,
we shall see that following this route leads us towards
a very intuitive understanding of the conditions which
particle interaction must satisfy to induce a transition
towards collective motion.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [? ? ? ]. In the low-density limit, this
transient lasts much less than the mean free flight time,
and one can safely assume that particles have a constant
speed v

0

. For spatially homogeneous states, the one-
particle distribution thus reduces to the density prob-
ability f(✓, t) of having a particle with velocity v

0

ê(✓) at
time t, where ê(✓) is the unit vector of polar angle ✓. This
distribution evolves according to self-di↵usion events and
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; it can be rather complex,
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 (t) = |P(t)| as the order parameter of the transition
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the change of momentum at the level of binary scattering.
This allows to understand collective macroscopic states,
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is specified by the incoming angles ✓
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and ✓
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of the
two particles or, equivalently, by the incoming half-angle
✓̄ = Arg(ei✓1+ei✓2) and the incoming angular separation
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. Additional scattering parameters, such as
the impact parameter, or some collisional noise, are col-
lectively noted as ⇣. A scattering event changes the
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changes the momentum by an amount N(P0 � P) =
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(✓, ⌘), where ⌘ is the self-di↵usion noise described
by the probability density P⌘(⌘). Assuming molecular
chaos and averaging these balance equations over all self-
di↵usion and scattering events in a small time interval,
then taking the continuous time limit, one obtains the
evolution equation
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose
an ansatz of the form f(✓, t) = f (t)(✓), which we con-
strain to be exact in the isotropic phase. We choose f to
be the so-called von Mises distribution [? ], the distri-
bution of random angles, uniform up to the constraint��R d✓f (✓)ê(✓)

�� =  . This distribution maximizes the
entropy functional H[f ] = �

R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of and was actually used to study
Vicsek-like models [? ? ]. It is parameterized by the
order parameter  in the following way:
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and



20 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

u  A closed form equation for the order parameter 

u  Linearized around the isotropic state 

2

sek like model (ii) a continuous time model of hard discs
obeying Vicsek aligning rules, actually an event-driven
implementation of the BDG model [11, 13], and (iii) a
model of inelastic hard discs, noiseless, but with geomet-
rical collision rules. In all cases not only the transition
point is very well predicted, but the ansatz also works
surprisingly well, even far in the ordered phase.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, so
we suppose that particles are at constant speed v

0

. For
spatially homogeneous states, the one particle distribu-
tion reduces to the density probability f(✓, t) of having a
particle with velocity v

0

ê(✓) at time t, with ê(✓) the unit
vector of polar angle ✓. This distribution evolves accord-
ing to self-di↵usion and binary scattering events. Note
that a scattering event can be rather complex, involving
for instance successive re-collisions, as in systems of hard
discs [40]. Collisions are then correlated and should be
considered as part of the same scattering event, so that
the molecular chaos hypothesis may hold. A scattering
event [Fig. 1(left)] is specified by the incoming angles ✓

1

and ✓
2

of the two particles or, equivalently, the incoming
half-angle ✓̄ = Arg(ei✓1 + ei✓2) and the incoming angular
separation � = ✓

1
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2

. Additional scattering param-
eters, such as the impact parameter or some e↵ective
noise, are collectively noted as ⇣. From now on, we shall
again call “collision” a given scattering event, keeping in
mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1
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i a(✓i). Each self-di↵usion event

changes A into A0 such that N(A0 � A) = �a
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(✓, ⌘),
where ⌘ is some noise described by the probability den-
sity P⌘(⌘). At each scattering event, the balance is
N(A0 � A) = �a, where �a depends a priori on all colli-
sional parameters. Assuming molecular chaos and aver-
aging these balance equations over all di↵using and scat-
tering events in a small time interval, then taking the
continuous time limit, one obtains the evolution equa-
tion
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FIG. 1. Left: Scattering of two particles. Right: Criterion for
stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
isotropic phase is unstable.
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with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision, we apply Eq. (1) to the average momentum
written in polar coordinates P =  ê(✓P ). When the
scattering rules have a mirror symmetry (no chirality),
the radial component of the kinetic equation reads:
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with D a di↵usion constant set by P⌘, while ✓P just dif-
fuses slowly and has been set to 0 (see Supp. Mat. for
the general case and the details of the derivation). The
same procedure can be followed to write the kinetic equa-
tion of the squared momentum, the balance equation of
which is N
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
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stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
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R
d⇣K(�, ⇣) = ⇡

4d0

R d0

�d0
db |sin(�/2)| and � = 4⇢d

0

v
0

/⇡,
with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision, we apply Eq. (1) to the average momentum
written in polar coordinates P =  ê(✓P ). When the
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be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
parameter  in the following way:

f (✓) =
e cos ✓

2⇡I
0

()
, with

I
1

()

I
0

()
=  , (5)
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :
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= �� [p · �p]�D , where (6)
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separation
between velocity vectors decreases, and |p0| > |p|. From
Fig. 1, it is easy to see that this alignment property is a
necessary condition for having p · �p > 0. It is however
not su�cient since a large enough angular deviation of
momentum can always bring p0 in the backward semi-
plane.

In the isotropic phase,  (t) has fluctuations of or-
der 1/

p
N ⌧ 1. The ansatz becomes f

0

(✓) = (1 +
2 cos ✓)/2⇡, which is exact at order  . At order  3,
Eq. (6) reduces to d /dt = �(µ � ⇠ 3), where

µ = hp · �pi
0

�D/�, (9)

⇠ = h( 1
2

� cos�)p · �pi
0

. (10)

The average h.i
0

is defined below Eq. (2). Whenever
µ > 0, the isotropic state becomes unstable. If ⇠ > 0,
the pitchfork bifurcation is supercritical and the polar
state  =

p
µ/⇠ emerges continuously as a new stable

stationary state. If ⇠ < 0, the bifurcation is subcritical
(discontinuous) and one must expand Eq. (6) to higher
orders in  to compute the new stable stationary state.
Note that the nature of the bifurcation can be changed by
tuning D/�. Using Eq. (4), we also evaluate the variance
of P in the isotropic state:

Var
0

[P] =
1

N

1

2

h�p · �pi
0

+D/�

|hp · �pi
0

�D/�| , (11)

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The
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⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
1

and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘

1

+ cos ⌘
2

� |p|),
where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives
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2/2 � 2 cos
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�
. (12)

This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
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specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separation
between velocity vectors decreases, and |p0| > |p|. From
Fig. 1, it is easy to see that this alignment property is a
necessary condition for having p · �p > 0. It is however
not su�cient since a large enough angular deviation of
momentum can always bring p0 in the backward semi-
plane.
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is defined below Eq. (2). Whenever
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µ/⇠ emerges continuously as a new stable

stationary state. If ⇠ < 0, the bifurcation is subcritical
(discontinuous) and one must expand Eq. (6) to higher
orders in  to compute the new stable stationary state.
Note that the nature of the bifurcation can be changed by
tuning D/�. Using Eq. (4), we also evaluate the variance
of P in the isotropic state:
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which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
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 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
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and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘
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+ cos ⌘
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where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:

1

�

d 
dt

'
�
µ�D/�

�
 � ⇠ 3, (3)

where the coefficients are given by

µ :=

⌦
p · �p

↵
0
, (4)

⇠ :=
⌦
(

1
2 � cos�) p · �p

↵
0
, (5)

hfi0 :=

1

4

Z 1

�1
db

Z ⇡

0
d�

���sin
�

2

���f(b,�). (6)

In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).

difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:

1

�

d 
dt

'
�
µ�D/�

�
 � ⇠ 3, (3)

where the coefficients are given by

µ :=

⌦
p · �p

↵
0
, (4)

⇠ :=
⌦
(

1
2 � cos�) p · �p

↵
0
, (5)

hfi0 :=

1

4

Z 1

�1
db

Z ⇡

0
d�

���sin
�

2

���f(b,�). (6)

In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).
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changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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sek like model (ii) a continuous time model of hard discs
obeying Vicsek aligning rules, actually an event-driven
implementation of the BDG model [11, 13], and (iii) a
model of inelastic hard discs, noiseless, but with geomet-
rical collision rules. In all cases not only the transition
point is very well predicted, but the ansatz also works
surprisingly well, even far in the ordered phase.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, so
we suppose that particles are at constant speed v

0

. For
spatially homogeneous states, the one particle distribu-
tion reduces to the density probability f(✓, t) of having a
particle with velocity v

0

ê(✓) at time t, with ê(✓) the unit
vector of polar angle ✓. This distribution evolves accord-
ing to self-di↵usion and binary scattering events. Note
that a scattering event can be rather complex, involving
for instance successive re-collisions, as in systems of hard
discs [40]. Collisions are then correlated and should be
considered as part of the same scattering event, so that
the molecular chaos hypothesis may hold. A scattering
event [Fig. 1(left)] is specified by the incoming angles ✓

1

and ✓
2

of the two particles or, equivalently, the incoming
half-angle ✓̄ = Arg(ei✓1 + ei✓2) and the incoming angular
separation � = ✓

1

� ✓
2

. Additional scattering param-
eters, such as the impact parameter or some e↵ective
noise, are collectively noted as ⇣. From now on, we shall
again call “collision” a given scattering event, keeping in
mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1

N

P
i a(✓i). Each self-di↵usion event

changes A into A0 such that N(A0 � A) = �a
di↵

(✓, ⌘),
where ⌘ is some noise described by the probability den-
sity P⌘(⌘). At each scattering event, the balance is
N(A0 � A) = �a, where �a depends a priori on all colli-
sional parameters. Assuming molecular chaos and aver-
aging these balance equations over all di↵using and scat-
tering events in a small time interval, then taking the
continuous time limit, one obtains the evolution equa-
tion

dA

dt
= ��f [�a] +

Z
2⇡

0

d✓

Z
d⌘ P⌘(⌘)f(✓, t) �adi↵, (1)

�f [�a] =

Z
2⇡

0

d✓̄
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with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision, we apply Eq. (1) to the average momentum
written in polar coordinates P =  ê(✓P ). When the
scattering rules have a mirror symmetry (no chirality),
the radial component of the kinetic equation reads:
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
parameter  in the following way:
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Figure 3: Top: Colour maps of the full scattering function p · �p(b,�). The geometry of the collisions and the colour scale are
shown in the bottom-left panel. Bottom/middle: the partially integrated scattering function as a function of the incoming
angle �, for different values ↵, ⌧v = 4. Right: Fully integrated scattering functions µ and ⇠, defined in Eqs. (4) and (5) plotted
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Binary scattering. Equations (3)–(6) contain all infor-
mation on the transition in the low-density limit. Their
nice feature is that they use only simple binary scattering
events without noise in their averages. We therefore need
to investigate the possible behaviours of two-disk scatter-
ings according to the model Eqs. (1).

Remind that a scattering event can consist of several, if
not many, hard-disk collisions, such as depicted in Fig. 1b.
Before the first collision, both particles are taken to be in
the stationary state, i.e. v = n̂. After the collision, we in-
tegrate Eqs. (1) numerically until maybe another collision
occurs. The binary scattering is considered over when
both particles have again reached their stationary state
and are heading away from each other. Repeating the
procedure in the whole range of initial parameters (b,�)

yields the scattering function p · �p(b,�). Figure 3 shows
this function for several ↵, as well as its integral over b
and the full integrals yielding the coefficients µ and ⇠.

Let us stress that p · �p is not changed by the colli-
sion itself, which conserves momentum. All (dis)alignment
must here come from the relaxation of the post-collisional
value of |v| to unity. Fig. ??a–d shows that scattering at
low angular separation, small �, always creates forward
momentum. In other words, two nearly parallel particles
that interact become even more parallel, which gives rise
to an effective alignment, p · �p > 0. On the other hand,
particles that enter in interaction frontally (� ⇡ ⇡) tend
to disalign, except for large ↵ and special symmetry such
as b ⇡ 0. Increasing ↵ favours aligning scattering events
until eventually only aligning events remain. This result
is far from being obvious. It is best summarized by inte-
grating out all parameter dependence except the incoming
angle, as is plotted in Fig. 3e,f.

The coefficients µ and ⇠ are then obtained by differ-
ently weighted integration over �. Their dependences on
the microscopic parameters of the dynamics, ↵ and ⌧v, are

shown in Fig. 3g,h. In the absence of noise, the transition
occurs for ↵ = ↵⇤, as given by µ(↵⇤) = 0, and ⇠(↵⇤) is
negative, hence the first order transition. Note that ↵⇤ is
essentially independent from ⌧v. When angular noise is
added, the transition is obtained by solving the equation
µ(↵⇤) = D/�. From the shape of the curve µ(↵), one im-
mediately infers that upon increasing noise, the transition
occurs at higher ↵⇤, and that for some finite value of D/�
the transition will pass the point ⇠ = 0. The transition
then becomes continuous at a tricritical point. Quantita-
tively the so obtained predictions are shown as solid lines
in Fig. 2c. The agreement with the MD simulations data
for density ⇢ = 10

�2 is excellent. We attribute the tiny
shift of the measured transition lines with respect to the
theoretical one to finite-density effects, as we learned from
Figs. 2a,b that higher density enlarges the polar phase.2

Finally, we also learn from the examination of the scat-
tering maps that, in the absence of noise, the polar phase,
with  ' 1, is actually an absorbing phase [?]: this is
because all binary scattering events at small � have
p · �p > 0. In other words, when all particles in a sys-
tem are sufficiently parallel, then any binary scattering in
absence of angular noise can only align the system more.
This is true for all ↵, and most remarkably for ↵! 0.

Altogether, our kinetic theory description, using the
von-Mises ansatz for the angular distribution, captures
quantitatively all the phenomenology reported in the nu-
merical simulations at low enough density. It however re-
lies on the numerical evaluation of the scattering maps. In
the last part of the paper, we would like to provide some
intuition on the origin of the peculiar form of these maps.
Also, we will elucidate the role of the multiple collisions
which can take place during a scattering event.

2The transition lines measured at even higher density, ⇢ = 10

�1

is shifted to the left even more (data not shown).
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(ii) a continuous time model of hard discs obeying Vicsek
aligning rules, actually an event-driven implementation
of the BDG model [11, 13], and (iii) a model of inelastic
hard discs, noiseless, but with geometrical collision rules.
In all cases not only the transition point is very well pre-
dicted, but the ansatz also works surprisingly well, even
far in the ordered phase. All detailed derivations are
provided in the Supplementary Materials.

Theoretical framework — Particle velocities at equi-
librium obey the Maxwell-Boltzmann distribution; self-
propelled particles do not. After some transient, a self-
propelled particle reaches its intrinsic steady velocity v

0

,
set by the competition between propelling and dissipa-
tion mechanisms [40–42]. In the low-density limit, this
transient lasts much less than the mean free flight, and
one can safely assume that particles have a constant
speed v

0

. For spatially homogeneous states, the one par-
ticle distribution thus reduces to the density probability
f(✓, t) of having a particle with velocity v

0

ê(✓) at time t,
with ê(✓) the unit vector of polar angle ✓. This distribu-
tion evolves according to self-di↵usion and binary scat-
tering events. Note that a scattering event can be rather
complex, involving for instance successive re-collisions, as
in systems of hard discs [40]. Collisions are then corre-
lated and should be considered as part of the same scat-
tering event, so that the molecular chaos hypothesis may
hold. A scattering event [Fig. 1(left)] is specified by the
incoming angles ✓

1

and ✓
2

of the two particles or, equiv-
alently, the incoming half-angle ✓̄ = Arg(ei✓1 + ei✓2) and
the incoming angular separation � = ✓
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. Additional
scattering parameters, such as the impact parameter or
some e↵ective noise, are collectively noted as ⇣. From
now on, we shall again call “collision” a given scattering
event, keeping in mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1
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where ⌘ is some noise described by the probability den-
sity P⌘(⌘). Each scattering event changes , A into A0

such that N(A0 � A) = �a, where �a depends a priori
on all collisional parameters. Assuming molecular chaos
and averaging these balance equations over all di↵using
and scattering events in a small time interval, then tak-
ing the continuous time limit, one obtains the evolution
equation

dA

dt
= ��f [�a] + �

di↵

Z
2⇡

0

d✓

Z
d⌘ P⌘(⌘)f(✓, t) �adi↵, (1)

�f [�a] =

Z
2⇡

0

d✓̄

Z ⇡

�⇡
d�

Z
d⇣K(�, ⇣)f(✓

1

, t)f(✓
2

, t) �a, (2)

where the normalized scattering rate K(�, ⇣) is inde-
pendent of ✓̄ because of global rotational invariance.
We define h. . . i

0

= 1

2⇡

R ⇡
�⇡d�

R
d⇣K(�, ⇣)(. . . ) and re-

quire h1i
0

= 1 which defines the interaction rate scale
�. For discs like particles with an interaction range

scattering
b, d0, �

p1

p2

p0
1

p0
2

�1

�2

�

p = p1 + p2

p
0 = p

0
1
+ p

0
2

�p = p0�p

backward forward

FIG. 1. Left: Scattering of two particles. Right: Criterion for
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isotropic phase is unstable.
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with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision (fig. 1-right), we apply Eq. (1) to the average
momentum written in polar coordinates P =  ê(✓P ).
When the scattering rules have a mirror symmetry (no
chirality), the radial component of the kinetic equation
reads:
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with D a di↵usion constant set by P⌘ [44], while ✓P
is constant and has been set to 0. The same proce-
dure can be followed to write the kinetic equation of
the squared momentum, the balance equation of which
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The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
parameter  in the following way:
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which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
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momentum written in polar coordinates P =  ê(✓P ).
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angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
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with ê(✓) the unit vector of polar angle ✓. This distribu-
tion evolves according to self-di↵usion and binary scat-
tering events. Note that a scattering event can be rather
complex, involving for instance successive re-collisions, as
in systems of hard discs [40]. Collisions are then corre-
lated and should be considered as part of the same scat-
tering event, so that the molecular chaos hypothesis may
hold. A scattering event [Fig. 1(left)] is specified by the
incoming angles ✓

1

and ✓
2

of the two particles or, equiv-
alently, the incoming half-angle ✓̄ = Arg(ei✓1 + ei✓2) and
the incoming angular separation � = ✓

1

�✓
2

. Additional
scattering parameters, such as the impact parameter or
some e↵ective noise, are collectively noted as ⇣. From
now on, we shall again call “collision” a given scattering
event, keeping in mind the above discussion.

Let us first derive a kinetic equation for a generic
observable A = 1

N

P
i a(✓i). Each self-di↵usion event

changes A into A0 such that N(A0 � A) = �a
di↵

(✓, ⌘),
where ⌘ is some noise described by the probability den-
sity P⌘(⌘). Each scattering event changes , A into A0

such that N(A0 � A) = �a, where �a depends a priori
on all collisional parameters. Assuming molecular chaos
and averaging these balance equations over all di↵using
and scattering events in a small time interval, then tak-
ing the continuous time limit, one obtains the evolution
equation

dA

dt
= ��f [�a] + �

di↵

Z
2⇡

0

d✓

Z
d⌘ P⌘(⌘)f(✓, t) �adi↵, (1)

�f [�a] =

Z
2⇡

0

d✓̄

Z ⇡

�⇡
d�

Z
d⇣K(�, ⇣)f(✓

1

, t)f(✓
2

, t) �a, (2)

where the normalized scattering rate K(�, ⇣) is inde-
pendent of ✓̄ because of global rotational invariance.
We define h. . . i

0

= 1

2⇡

R ⇡
�⇡d�

R
d⇣K(�, ⇣)(. . . ) and re-

scattering
b, d0, �

p1

p2

p0
1

p0
2

�1

�2

|��|

p = p1 + p2

p
0 = p

0
1
+ p

0
2

�p = p0�p

backward forward

FIG. 1. Left: Scattering of two particles. Right: Criterion for
stability of the isotropic phase. The momentum of two inter-
acting particles is changed from p to p0. If p0 is more proba-
bly found (see text for details) in the forward semi-plane, the
isotropic phase is unstable.

quire h1i
0

= 1 which defines the interaction rate scale
�. For discs like particles with an interaction range
d
0

, and an impact parameter �d
0

 b  d
0

, one hasR
d⇣K(�, ⇣) = ⇡

4d0

R d0

�d0
db |sin(�/2)| and � = 4⇢d

0

v
0

/⇡,
with ⇢ the number density [42, 43]. In mean-field or
metric-free models K(�, ⇣) does not depend on �. Note
that, in both cases, � and ⇣ are decoupled.
In general, the scattering of two self-propelled particles

does not conserve the average momentum of the system
P(t), which defines a polarization vector, the modulus of
which  (t) = |P(t)| is the order parameter of the tran-
sition towards collective motion. It is thus natural to
analyze the change of momentum at the level of binary
collisions in order to understand collective macroscopic
states. Noting �p the change of total momentum during
a collision (fig. 1-right), we apply Eq. (1) to the average
momentum written in polar coordinates P =  ê(✓P ).
When the scattering rules have a mirror symmetry (no
chirality), the radial component of the kinetic equation
reads:

d 

dt
= ��f

h
(p̂ · �p) cos ✓̄

i
�D , (3)

with D a di↵usion constant set by P⌘ [44], while ✓P
is constant and has been set to 0. The same proce-
dure can be followed to write the kinetic equation of
the squared momentum, the balance equation of which
is N

�
P02 �P2

�
= 2P · �p+ 1

N �p · �p, and find:

d 2

dt
= 2��f

h
P · �p+

1

2N
�p · �p

i
� 2D

�
 2 � 1

N

�
. (4)

The von Mises distribution ansatz — The above ki-
netic equations remain of limited interest as long as the
angular distribution f is unknown. Here, we propose an
ansatz of the form f(✓, t) = f (t)(✓), which we constrain
to be exact in the isotropic phase. This ansatz is ex-
pected to be good if the angular distribution is at every
time close to some local equilibrium. We choose f to
be the so-called von Mises distribution, the distribution
of uniformly random angles constrained by the condition
|
R
d✓f (✓)ê(✓)| =  . This distribution maximises the

entropy functional H[f ] = �
R
f log f under the afore-

mentioned constraint and is, in this sense, the simplest
ansatz one can think of. It is parameterized by the order
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:

1

�

d 
dt

'
�
µ�D/�

�
 � ⇠ 3, (3)

where the coefficients are given by

µ :=

⌦
p · �p

↵
0
, (4)

⇠ :=
⌦
(

1
2 � cos�) p · �p

↵
0
, (5)

hfi0 :=

1

4

Z 1

�1
db

Z ⇡

0
d�

���sin
�

2

���f(b,�). (6)

In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).

difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:
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In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).

difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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!    For colliding particles, the collision rate : 

!             is the relevant quantity to compute 

3

where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :

d 

dt
= �� [p · �p]�D , where (6)

� [. . . ] =

Z ⇡

0

d�

⇡

Z
d⇣K(�, ⇣)g( ,�)(. . . ), (7)

g( ,�) =


I
0

()2
I
1

(2 cos �

2

)

2 cos �

2

. (8)

In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/

p
N ⌧ 1. The ansatz becomes

f
0

(✓) = (1 + 2 cos ✓)/2⇡, which is exact at order  . At
order  3, Eq. (6) reduces to d /dt = �(µ � ⇠ 3), with

µ = hp · �pi
0

�D/�, (9)

⇠ = h( 1
2

� cos�)p · �pi
0

. (10)

where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:

Var
0

[P] =
1

N

1

2

h�p · �pi
0

+D/�

|µ| , (11)

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The

R
⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
1

and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘

1

+ cos ⌘
2

� |p|),
where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives

Z

⇣
p · �p = 2 cos

�

2

�
2e��

2/2 � 2 cos
�

2

�
. (12)

This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K

4

namics averaged over noise: for � = 0 it is always pos-
itive, all collisions align; for � = 1 it is always nega-
tive, there is no alignment. At finite �, collision with
a large, respectively small, incoming angle separation �
align, respectively dis-align. Computing µ now simply
consists in averaging this function against the kinetic ker-
nel K. Here, there is no spatial dependence of any kind,
and K is just a constant. Integrating over �, one finds
µ = 8

⇡ e
��2/2 � 2 and ⇠ = 4

3⇡ e
��2/2. Solving for µ = 0,

the transition occurs at �c =
p

2 log(4/⇡) ' 0.695 and,
because ⇠ > 0, the transition is continuous. To extend
the predictions to the polar phase, we set d /dt = 0 in
Eq. (??) and solved it numerically, so to obtain the or-
der parameter. We also computed the fluctuations of the
order parameter in the isotropic and the polar states,
see Supp. Mat. These theoretical predictions are pre-
sented in Fig. ?? in full black lines. We compare them
to numerical results obtained using the following Monte-
Carlo method [? ]. Starting from N random angles
✓i, two particles are chosen randomly with a probabil-
ity proportional to K and the collision rule is applied.
The procedure is repeated until the stationary state is
reached. Quite remarkably the measured angles distri-
butions compare well with the ansatz in the whole range
of  [Fig. ??(b)]. Time averages of  and of  2 in the
stationary state (over typically 106 collisions) also com-
pare very well with the theoretical prediction and show
that finite-size e↵ects are under control [Fig. ??(c-d)].

We next consider two hard discs models, one with Vic-
sek aligning rules, the other with inelastic collisions. In
both models, N non-overlapping hard discs of diameter
d
0

= 1 move in a periodic box of linear size L.

Continuous-time hard discs Vicsek model — In this
model, speeds are fixed to v

0

= 1. When two parti-
cles are in contact, |r

1

� r
2

| = d
0

, they collide follow-
ing the BVCR. Because hard discs are non-overlapping,
there is only one way to assign the two outcoming ve-
locities to the two particles, out of the two possibilities.
This model is an actual implementation of the one stud-
ied theoretically in [? ? ], but actually not simulated.
The collision rule being the same as for the mean-field
Vicsek model, the

R
⇣p · �p function is the same as in the

above mean-field model [Eq. (??)]. What di↵ers is the
kinetic kernel, which here reads K(�) / |sin(�/2)|, as
given by the construction of the Boltzmann cylinder [?
], and � / ⇢. Again one can compute µ and ⇠, following
Eqs. (??) and (??), and solve for the order parameter in
the polar phase [see continuous lines on Fig. ??(a)]. The
transition is here also continuous. Note however that this
statement only concerns the transition between homoge-
neous states. It does not rule out the discontinuous tran-
sition scenario reported for this system, which involves
the destabilization of the homogeneous polar phase with
respect to inhomogeneous solutions [? ? ]. In order to
prevent such large but finite wavelengths destabilization
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4
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tic collisions. Symbols: numerical data, N = 1000 (open
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of the homogeneous state, we perform molecular dynam-
ics simulations in small L/d

0

systems. The theoretical
predictions are in very good agreement with the simula-
tion data at low density ⇢ = 10�3 [Fig. ??(a)]. Already
at density ⇢ = 10�1, deviations from the ⇢ ! 0 case are
clearly seen, though results are qualitatively similar. In-
terestingly, in the absence of self-di↵usion, an increase in
density stabilizes the isotropic phase.

Inelastic self-propelled hard discs — Several works [? ?
? ] have shown that pairwise dissipative interactions lead
to global polarization in swarms of SPPs. In the present
model, particles collide inelastically with a restitution co-
e�cient 0  e  1. Between collisions, the dynamics of
particle i is given by dri

dt = vi and ⌧
dvi
dt = v̂i �vi, where

⌧ = 1 is the microscopic timescale set by the competi-
tion between the self-propelling force v̂i and friction force
�vi [? ]. For this model, the

R
⇣p · �p functions are com-

puted numerically by simulating many collisions at fixed
incoming angular separation �, varying the impact pa-
rameter b uniformly [see inset of Fig. ??(b)]. Around the
transition e = ec and contrasting with the BVCR, tan-
gential collisions (low |�|) align, while frontal collisions
(high |�|) dis-align. From this behavior and from the
qualitative analysis of Eq. (??), one expects the transi-
tion to be discontinuous. This is confirmed by the explicit
calculation of µ and ⇠ as well as by the direct molecular
dynamics simulations [Fig. ??(b)].

In summary, proposing an ansatz for the velocity an-
gular distribution, we have derived an equation for the
evolution of the momentum of systems of polar active
particles, the speed of which is constant. The weakly
non-linear analysis around the isotropic state is given by
Eqs. (??) and provides an intuitive way of anticipating
the transition to collective motion in systems of polar ac-
tive particles: the existence and the nature of the tran-
sition are essentially governed by the way

R
⇣p · �p, the

average of p · �p over the scattering parameters, depend
on the incoming angle �. Also, the fully non-linear equa-
tion has been tested on three di↵erent kind of models,
and show that the von Mises ansatz describes very well
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,

p-2

Self-propelled hard disks: implicit alignment and transition to collective motion

0

1

2

3

4

5

0 0.05 0.1↵

���
p

N D = 0 and ⇢ �= 0:

(a)

0.01

0.1

1

0.001 0.01 0.1 1

1
�

↵
/↵

�
(
0
)

⇢

�
⇢

1

�
⇢

2

/3

i
s
o
t
r
o
p
i
c

p

o

l

a

r

(b)

0

0.1

0.2

0.3

0.01 0.1 1 10 100↵

p

o

l

a

r

i

s

o

t

r

o

p

i

c

D/� D > 0 and ⇢ � 0:

(c)

0

1

0 0.5

���

D/�

↵ > ↵c

0

1

0.1

���
↵ < ↵c

(d)

Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:
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d 
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'
�
µ�D/�

�
 � ⇠ 3, (3)

where the coefficients are given by

µ :=

⌦
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�
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In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).

difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:
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In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
tions in the dilute regime. Importantly, the model-specific
quantities to be averaged in Eqs. (4) and (5) only include
the forward component of the momentum change, p · �p,
where p is the pre-scattering momentum of the two col-
liding particles, and �p is the change of their momentum
by the scattering event. The predictions thus depend only
on the microscopic details of the dynamics through the
scattering function p · �p(b,�).

difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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Figure 3: Top: Colour maps of the full scattering function p · �p(b,�). The geometry of the collisions and the colour scale are
shown in the bottom-left panel. Bottom/middle: the partially integrated scattering function as a function of the incoming
angle �, for different values ↵, ⌧v = 4. Right: Fully integrated scattering functions µ and ⇠, defined in Eqs. (4) and (5) plotted
as a function of ↵ for different ⌧v. The vertical dotted line indicates the transition in the absence of noise.

Binary scattering. Equations (3)–(6) contain all infor-
mation on the transition in the low-density limit. Their
nice feature is that they use only simple binary scattering
events without noise in their averages. We therefore need
to investigate the possible behaviours of two-disk scatter-
ings according to the model Eqs. (1).

Remind that a scattering event can consist of several, if
not many, hard-disk collisions, such as depicted in Fig. 1b.
Before the first collision, both particles are taken to be in
the stationary state, i.e. v = n̂. After the collision, we in-
tegrate Eqs. (1) numerically until maybe another collision
occurs. The binary scattering is considered over when
both particles have again reached their stationary state
and are heading away from each other. Repeating the
procedure in the whole range of initial parameters (b,�)

yields the scattering function p · �p(b,�). Figure 3 shows
this function for several ↵, as well as its integral over b
and the full integrals yielding the coefficients µ and ⇠.

Let us stress that p · �p is not changed by the colli-
sion itself, which conserves momentum. All (dis)alignment
must here come from the relaxation of the post-collisional
value of |v| to unity. Fig. ??a–d shows that scattering at
low angular separation, small �, always creates forward
momentum. In other words, two nearly parallel particles
that interact become even more parallel, which gives rise
to an effective alignment, p · �p > 0. On the other hand,
particles that enter in interaction frontally (� ⇡ ⇡) tend
to disalign, except for large ↵ and special symmetry such
as b ⇡ 0. Increasing ↵ favours aligning scattering events
until eventually only aligning events remain. This result
is far from being obvious. It is best summarized by inte-
grating out all parameter dependence except the incoming
angle, as is plotted in Fig. 3e,f.

The coefficients µ and ⇠ are then obtained by differ-
ently weighted integration over �. Their dependences on
the microscopic parameters of the dynamics, ↵ and ⌧v, are

shown in Fig. 3g,h. In the absence of noise, the transition
occurs for ↵ = ↵⇤, as given by µ(↵⇤) = 0, and ⇠(↵⇤) is
negative, hence the first order transition. Note that ↵⇤ is
essentially independent from ⌧v. When angular noise is
added, the transition is obtained by solving the equation
µ(↵⇤) = D/�. From the shape of the curve µ(↵), one im-
mediately infers that upon increasing noise, the transition
occurs at higher ↵⇤, and that for some finite value of D/�
the transition will pass the point ⇠ = 0. The transition
then becomes continuous at a tricritical point. Quantita-
tively the so obtained predictions are shown as solid lines
in Fig. 2c. The agreement with the MD simulations data
for density ⇢ = 10

�2 is excellent. We attribute the tiny
shift of the measured transition lines with respect to the
theoretical one to finite-density effects, as we learned from
Figs. 2a,b that higher density enlarges the polar phase.2

Finally, we also learn from the examination of the scat-
tering maps that, in the absence of noise, the polar phase,
with  ' 1, is actually an absorbing phase [?]: this is
because all binary scattering events at small � have
p · �p > 0. In other words, when all particles in a sys-
tem are sufficiently parallel, then any binary scattering in
absence of angular noise can only align the system more.
This is true for all ↵, and most remarkably for ↵! 0.

Altogether, our kinetic theory description, using the
von-Mises ansatz for the angular distribution, captures
quantitatively all the phenomenology reported in the nu-
merical simulations at low enough density. It however re-
lies on the numerical evaluation of the scattering maps. In
the last part of the paper, we would like to provide some
intuition on the origin of the peculiar form of these maps.
Also, we will elucidate the role of the multiple collisions
which can take place during a scattering event.

2The transition lines measured at even higher density, ⇢ = 10

�1

is shifted to the left even more (data not shown).
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Figure 1: (a) An isolated self-propelled particle converges to
its stationary state where velocity v and polarity n̂ are parallel.
(b) A single binary “scattering event” can consist of many hard-
disk elastic collisions. (c) Stable phases in the absence of noise.
Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a
discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ ˆvi)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000

or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1

as initial condition, we found that the polar state  = 1

is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 2: (a) Order parameter in the isotropic phase, without
angular noise. N = 1000 (circles) and 4000 (crosses). From
right to left: theory at ⇢ ! 0, ⇢ = 10�3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.3. (b) Dependence of the isotropic–polar transi-
tion on the density, with no angular noise. (c) Transition
lines in the (↵, D/�)-plane, at fixed density ⇢ = 0.01. Solid
lines are theoretical results at ⌧v = 1. Upward triangles (red)
and downward triangles (blue) are transitions measured nu-
merically by respectively increasing and decreasing D/� quasi-
statically. (d) Order parameter obtained by increasing (red)
and decreasing (blue) the angular noise.

showing that finite-size effects are under control. In all
cases we observed convergence to the fully polar state be-
yond the points shown. The theoretical framework used
below adds the line for ⇢! 0, drawn in black. Increasing
density here clearly favours the polar state. The departure
of the transition due to density effects, 1�↵⇤(⇢)/↵⇤(0), is
plotted in Fig. 2b.

Adding angular noise to the trajectories quite changes
the picture. During simulations we first increased D/�
quasi-statically and then decreased it again. The transi-
tion was measured by looking at the maximum of the fluc-
tuations of the order parameter among many realizations
of the dynamics. The resulting phase diagram at density
⇢ = 10

�2 is shown in Fig. 2c. In agreement with intuition,
at strong enough angular noise the isotropic state is always
stable. When decreasing the noise we pass into the polar
phase, but the nature of this transition can be either dis-
continuous or continuous. For values ↵ < ↵c ⇡ 0.157 the
transition has some hysteresis, as indicated in the upper
panel of Fig. 2d. The discontinuous nature of the tran-
sition is thus robust when adding angular noise, and the
phase areas in Fig. 2c overlap, presenting an area which
we could call coexistence region if the system were not
homogeneous. For ↵ > ↵c, at our level of numerical pre-
cision, the hysteresis is no longer observed, as can be seen
in the lower panel of Fig. 2d.1 At ↵c, the coexistence zone

1In the last three points of Fig. 2c, for ↵ � 10 there is a slight

vanishes into a single line of transition (tricritical point [6,
p. 173]).

Kinetic theory framework. We now rationalize these
numerical observations in the context of kinetic theory,
using the properties of the binary scattering. We intro-
duced the procedure in Ref. [5] and summarize it here in
a few words. In the dilute regime, one can expect a ki-
netic theory to be quantitative, because (i) the assumption
of molecular chaos is expected to hold and (ii) the mean
free-flight time ��1 is long enough so that particles have
mostly reached their stationary velocity v0 before inter-
acting with another particle (⌧v, ⌧n ⌧ ��1). The binary
scattering of self-propelled particles does not conserve mo-
mentum, and that is why a polar state can emerge from
an isotropic initial condition. Writing a kinetic equation
on the evolution of the momentum and assuming that the
angular distribution of velocities takes the ansatz form of
a von Mises angular distribution, one can write down an
evolution equation for the order parameter  . This equa-
tion can then be expanded, up to order  3 to study the
stability of the isotropic phase [5]:
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In the stationary state, the left-hand size of Eq. (3) van-
ishes. The transition line is obtained by solving the equa-
tion µ(↵⇤) = D/� for ↵⇤, while the sign of ⇠(↵⇤) at the
transition tells whether it is continuous or discontinuous.
Note that the coefficient µ is exact within the assumptions
of kinetic theory, while ⇠ should depend on the ansatz used
for the angular distribution. Both coefficients are an aver-
age over all pre-scattering parameters, as given in Eq. (6),
where b is the impact parameter and � is the angle be-
tween the incoming particles’ velocities. The averaging
needs not be done over the norms of the velocities, since
those are fixed to v0 = 1. We have checked explicitly that
this assumption holds very well in the numerical simula-
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by the scattering event. The predictions thus depend only
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difference in upward and downward directions. It decreases when
changing D/� more slowly. The apparent hysteresis thus disappears,
which suggests that there is no hysteresis in the whole range ↵ > ↵c.
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/

p
N ⌧ 1. The ansatz becomes

f
0

(✓) = (1 + 2 cos ✓)/2⇡, which is exact at order  . At
order  3, Eq. (6) reduces to d /dt = �(µ � ⇠ 3), with
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where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:

Var
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[P] =
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2

h�p · �pi
0

+D/�

|µ| , (11)

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The

R
⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
1

and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘
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+ cos ⌘
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� |p|),
where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/
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where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:
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[P] =
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which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The

R
⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
1

and ⌘
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are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘
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sion noises gives
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/

p
N ⌧ 1. The ansatz becomes

f
0

(✓) = (1 + 2 cos ✓)/2⇡, which is exact at order  . At
order  3, Eq. (6) reduces to d /dt = �(µ � ⇠ 3), with
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where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:
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[P] =
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h�p · �pi
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|µ| , (11)

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The
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p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
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, where ⌘
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and ⌘
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gaussian noises of variance �2. The two new angles are
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
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In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
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, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =
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emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The
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p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓
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and ✓
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, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
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, where ⌘
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and ⌘
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are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
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where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives
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This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K

4

is just a constant. Integrating over �, one finds:

µ = 8

⇡ e
��2/2 � 2, (13)

⇠ = 4

3⇡ e
��2/2, (14)

h�p · �pi
0

= 2e��2

� 16

⇡ e��2/2 + 4. (15)

Solving for µ = 0, the transition occurs at �c =p
2 log(4/⇡) ' 0.695 and, because ⇠ > 0, the transi-

tion is supercritical. To extend the predictions to the
polar phase, we set d /dt = 0 in Eq. (6) and solved it
numerically, so to obtain the order parameter. We also
computed the fluctuations of the order parameter in the
isotropic state using Eq. (11), together with Eqs. (13) and
(15); for the polar phase, see Supp. Mat. These theoret-
ical predictions are presented in Fig. 2 in full black lines.
We compare them to numerical results obtained using
the following Monte-Carlo method [46]. Starting from N
random angles ✓i, two particles are chosen randomly with
a probability proportional to K and the collision rule is
applied. The procedure is repeated until the stationary
state is reached. Quite remarkably the measured angles
distributions compare well with the ansatz in the whole
range of  [Fig. 2(b)]. Time averages of  and of  2 in the
stationary state (over typically 106 collisions) also com-
pare very well with the theoretical prediction and show
that finite-size e↵ects are under control [Fig. 2(c-d)].

We next consider two hard discs models, one with Vic-
sek aligning rules, the other with inelastic collisions. In
both models, N non-overlapping hard discs of diameter
d
0

= 1 move in a periodic box of linear size L.
Continuous-time hard discs Vicsek model — In this

model, norms of velocities are fixed to v
0

= 1. When two
particles are in contact, |r

1

�r
2

| = d
0

, they collide follow-
ing the BVCR. Because hard discs are non-overlapping,
there is only one way to assign the two outcoming ve-
locities to the two particles, out of the two possibilities.
This model is an actual implementation of the one stud-
ied theoretically in [43, 47]. The collision rule being the
same as for the mean-field Vicsek model, the

R
⇣p · �p

function is the same as in the above mean-field model
[Eq. (12)]. What di↵ers is the kinetic kernel, which here
reads K(�) / |sin(�/2)|. Again one can compute µ and
⇠, following eq. (13) and (14), and solve for the order
parameter in the polar phase (see continuous lines on
fig 3(a)). The transition is here also super-critical. Note
however that this statement only concerns the transition
between homogeneous states and therefore it does not
rule out the first-order transition scenario reported for
this system, which involves the destabilization of the ho-
mogeneous polar phase with respect to inhomogeneous
solutions [43, 47]. In order to prevent such large but finite
wavelengths destabilization of the homogeneous state, we
perform simulations in small L/d

0

systems. Results are
in very good agreement with data from molecular dy-
namics simulations at low density ⇢ = 10�3 [Fig. 3(a)].
Already at density ⇢ = 10�1, deviations from the ⇢ ! 0
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FIG. 3. (a): Continuous-time hard discs Vicsek model. Sym-
bols: numerical data, N = 104. Black lines are theoretical
predictions. (b): Self-propelled hard discs model with inelas-
tic collisions. Symbols: numerical data, N = 1000 (open
symbols), N = 4000 (full symbols).

case are clearly seen, though results are qualitatively sim-
ilar. Interestingly, in the absence of self-di↵usion, the non
trivial renormalization of µ by density leads to a decrease

of the critical noise level above which polar order sets in.

Inelastic self-propelled hard discs — In this model, par-
ticles collide inelastically with a restitution coe�cient
0  e  1. Between collisions, the dynamics of parti-
cle i is given by dri

dt = vi and ⌧ dvi
dt = v̂i � vi, where

⌧ = 1 is the microscopic timescale set by the competi-
tion between the self-propelling force v̂i and friction force
�vi. For this model, the

R
⇣p · �p functions are computed

numerically by simulating many collisions at fixed incom-
ing angular separation �, varying the impact parameter
b uniformly (see inset of Fig. 3(b)). Around the transition
e = ec, tangential collisions (low �) align, while frontal
collisions (high �) dis-align. From this qualitative be-
havior and from the analysis of Eq. (10), one expects
the transition to be subcritical. This is confirmed by the
explicit calculation of µ and ⇠ as well as by the direct
molecular dynamics simulations [Fig. 3(b)].

In summary, proposing an ansatz for the velocity angu-
lar distribution, we have derived a closed equation for the
evolution of the total momentum in systems of polar ac-
tive particles. The weakly non-linear analysis around the
isotropic state is given by Eqs. (13) and (14) and provides
an intuitive way of anticipating the transition to collec-
tive motion in systems of polar active particles: as long
as the kinetic kernelK(�, ⇣) factorizes, the existence and
the nature of the transition are essentially governed by
the shape of the

R
⇣p · �p functions. Also, the fully non-

linear equation has been tested on three di↵erent kind
of models, and show that the von Mises ansatz describes
very well the velocity angular distribution, even for large
polarization. These encouraging results naturally call for
the extension of our analysis to models in which the par-
ticle speeds are free to fluctuate.
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!    Hard core repulsion + Self propulsion => effective alignment. 
!   => steric orientation is not necessary 
!   => hard or soft disks systems can not be claimed without “alignment” 
 

!   Alignment  
!               is the physically meaningful quantity 
 

!   Transition to collective motion  
!   A rich phase diagram with a transition from 1rst to 2nd order, controlled by 

the level of noise 
!   The Viscek aligning rule is not a good effective description of the alignment 

in systems of hard disks 

3

where In(x) is the modified Bessel function of the first
kind, of order n. In the limits  ! 0 ( ! 0) and
 ! 1 ( ! 1), one recovers respectively the uniform
distribution and a normal distribution of variance 1/.
When injecting this ansatz into Eq. (3) and integrating
over ✓̄, the parametrization with respect to  , leads to a
closed evolution equation for  :

d 

dt
= �� [p · �p]�D , where (6)

� [. . . ] =

Z ⇡

0

d�

⇡

Z
d⇣K(�, ⇣)g( ,�)(. . . ), (7)

g( ,�) =


I
0

()2
I
1

(2 cos �

2

)

2 cos �

2

. (8)

In the first term of the r.h.s. of Eq. (6) p · �p is a model-
specific quantity which describes how individual scatter-
ings events change momentum in the forward direction.
This quantity is averaged over the space of collision pa-
rameters with a (normalized) weight that describes the
kinetics of collisions. The sign of p · �p has a clear geo-
metrical meaning: It is positive when �p points forward,
i.e. in the same “direction” than p [Fig. 1]. When a
collision is said to align particles, the angular separa-
tion between velocity vectors decreases, and |p0| > |p|.
From Fig. 1, it is easy to see that this alignment prop-
erty is a necessary condition for having p · �p > 0.
It is however not su�cient since a large enough angu-
lar deviation of momentum can always bring p0 in the
backward semi-plane. In the isotropic phase,  (t) has
fluctuations of order 1/

p
N ⌧ 1. The ansatz becomes

f
0

(✓) = (1 + 2 cos ✓)/2⇡, which is exact at order  . At
order  3, Eq. (6) reduces to d /dt = �(µ � ⇠ 3), with

µ = hp · �pi
0

�D/�, (9)

⇠ = h( 1
2

� cos�)p · �pi
0

. (10)

where the average h.i
0

, defined below Eq. (2), results from
the sampling of the scattering rate K(�, ⇣) only. When-
ever µ > 0, the isotropic state becomes unstable. D being
positive, the self-di↵usion always stabilizes the isotropic
phase [45]. If ⇠ > 0 at the transition, the pitchfork bi-
furcation is supercritical and the polar state  =

p
µ/⇠

emerges continuously as a new stable stationary state. If
⇠ < 0, the bifurcation is subcritical (discontinuous) and
one must expand Eq. (6) to higher orders in  to com-
pute the new stable stationary state. Using Eq. (4), we
also evaluate the variance of P in the isotropic state:

Var
0

[P] =
1

N

1

2

h�p · �pi
0

+D/�

|µ| , (11)

which diverges as the transition is approached. The
above set of equations is our main theoretical result. It
provides an intuitive understanding of how polar order
develops in systems of polar active particles.
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FIG. 2. Mean-field binary Vicsek model: numerical solution
of the Boltzmann equation (symbols) and theory (full lines).
(a): The

R
⇣
p · �p function, for di↵erent values of the control

parameter �. (b): Angular distributions measured atN = 104

(symbols) and the corresponding ansatz distributions (lines).
From top to bottom: � = 0.25, 0.5, 0.6, 0.675, 1 (respectively
 ' 0.94, 0.77, 0.61, 0.32, 0.01). Inset: the same but with ver-
tical log-scale. (c), (d): Average in the steady state of the
order parameter and its rescaled standard deviation.

We now come to the illustration of these mechanisms,
and to the validation of the von Mises ansatz, in the case
of three di↵erent models. In all models, we concentrate
on collisional rules and set D = 0.
Mean-field binary Vicsek model — At every time-step,

two randomly chosen particles among N � 1 collide fol-
lowing the binary Vicsek collision rule (BVCR): from
pre-collision velocity angles ✓

1

and ✓
2

, the half-angle
✓̄ = Arg(ei✓1 + ei✓2) is computed and randomly rotated
to ✓̄ + ⌘

1

and ✓̄ + ⌘
2

, where ⌘
1

and ⌘
2

are independent
gaussian noises of variance �2. The two new angles are
then assigned to the unit velocity vectors of the particles.
It is easy to see that p · �p = |p|(cos ⌘

1

+ cos ⌘
2

� |p|),
where |p| = 2 cos(�/2). The integration over the colli-
sion noises gives

Z

⇣
p · �p = 2 cos

�

2

�
2e��

2/2 � 2 cos
�

2

�
. (12)

This function of the incoming angular separation � rep-
resented in Fig. 2(a) summarizes the microscopic dynam-
ics averaged over noise: for � = 0 it is always positive,
all collisions align; for � = 1 it is always negative, there
is no alignment. At finite �, collision with a large, re-
spectively small, incoming angle separation � align, re-
spectively dis-align. Computing µ now simply consist
in averaging this function against the kinetic kernel K.
Here, there is no spatial dependence of any kind, and K
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Further reading :  
 PRL 105 098001 (2010) 
 SoftMatter 8 p. 5629 (2012) 
 PRL 110 208001 (2013)  
 Cond-mat 1410.4520 
 Cond-mat 1502.07612  
  

(http://www.ec2m.espci.fr) 

Thank you ! 


