







# Self-propelled hard disks

# a "simple" active liquid

Khanh-Dang Nguyen Thu-Lam Michael Schindler Olivier Dauchot

Kyoto 08/2015

17/08/15

### Overview

#### Introduction

- Active liquids
- Self-propelled disks

#### "Experimental" realization

Walking grains and In-silico extrapolation

#### =>Self propelled disks exhibit a transition to polar collective motion

#### Models and Theoretical description

- Where does the alignment come from ? What is the alignment ?
- How does it compare to the Vicsek alignment rule ?
- Are the differences significant?



# Active liquids

A commonly accepted definition of an active fluid :

Out of equilibrium fluid composed of particles the motion of which results from the dissipation of the energy received homogeneously at the scale of each particle.





# Transition to collective motion : the Vicsek Model

Over damped, Self Propelled Point Particles, V = V<sub>0</sub> n
 Noisy Alignment with neighbors (within some range)
 Diffusive Noise





**Gulliver** 

- ⇒ fast domain growth leading to high-density/high order solitary bands/sheets (2D/3D)
- $\Rightarrow$  Giant density fluctuations in the homogeneous polar state





17/08/15



#### Continuous description Bertin, Droz, Grégoire, J. Phys. A: Math. Theor. 42 (2009)

(12)

(13)

Binary interaction version



Boltzmann equation (molecular chaos)

$$\frac{\partial f}{\partial t}(\mathbf{r},\theta,t) + \mathbf{e}(\theta) \cdot \nabla f(\mathbf{r},\theta,t) = I_{\rm dif}[f] + I_{\rm col}[f]$$

Hydrodynamics equations

$$\frac{\partial \mathbf{w}}{\partial t} + \gamma(\mathbf{w} \cdot \nabla) \mathbf{w} = -\frac{1}{2} \nabla (\rho - \kappa \mathbf{w}^2)$$

$$+ (\mu - \xi \mathbf{w}^2) \mathbf{w} + \nu \nabla^2 \mathbf{w} - \kappa (\nabla \cdot \mathbf{w}) \mathbf{w}$$
(8)

where the different coefficients are given by

$$\nu = \frac{1}{4} \left[ \lambda \left( 1 - e^{-2\sigma_0^2} \right) + \frac{4}{\pi} \rho \left( \frac{14}{15} + \frac{2}{3} e^{-2\sigma^2} \right) \right]^{-1} (9)$$
  

$$\gamma = \frac{8\nu}{\pi} \left( \frac{16}{15} + 2e^{-2\sigma^2} - e^{-\sigma^2/2} \right)$$
(10)  

$$\kappa = \frac{8\nu}{\pi} \left( \frac{4}{15} + 2e^{-2\sigma^2} + e^{-\sigma^2/2} \right)$$
(11)





0

0.01

ollectifs & Matière Molle

-400

### The underlying expectation ...



# Is it reasonable?

|                  | Alignment            | Phases                                    | Giant density fluct. |
|------------------|----------------------|-------------------------------------------|----------------------|
| Rolling colloids | with (hydro origin)  | lso -> polar bands<br>-> hom. polar phase | No                   |
| Actin filaments  | with (steric origin) | lso -> polar clusters<br>-> polar bands ? | irrelevant           |
| Bacteria         | with (steric origin) | Iso -> polar clusters                     | irrelevant           |
| Walking disks    | A priori without     | Iso -> polar clusters                     | irrelevant           |
| Janus colloids   | ? (hydro origin)     | lso -> apolar active<br>clusters          | No                   |
| Surfing colloids | ? (hydro origin)     | lso -> apolar active<br>clusters          | No                   |

To date, not a single experimental system follows the Vicsek scenario

Is it because of "complicated" but irrelevant factors ?

Or more deeply the microscopic dynamics does not yield effectively to Vicseklike alignment and the associated transition scenario?



# Self-propelled disks

#### The simplest active particle with hard core repulsion

- Standard hard or soft repulsion
- No shape anisotropy
- No explicit alignment rule





# Experiments : Vibrated polar disks

Goals :

A well controlled 2D experiment

Particles,

- Hard disk interactions
- NO a priori alignment
- Polar self propulsion
- Achieved with :
  - A well controlled vibration set-up (square air bearing slide) (f=115Hz)
  - Specifically designed walkers







# Self propulsion





# Individual motions of SPP vs. ISO:

Varying the natural control parameter  $\Gamma$  in the range 2.8< $\Gamma$ <3.8 :



 SPP move along their polarity with an almost constant velocity V<sub>0</sub> The angular exponential diffusion (noise) increases linearly with Γ
 => Persistence length: ξ = V<sub>0</sub>/D<sub>0</sub>

By comparison ISO particles behave as standard diffusive particles
 Interactions : Hard core repulsion / No built-in alignment



### Collective behaviors ( $\Phi$ =0.47, $\Gamma$ =2.7)







### In silico extrapolation :

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \underbrace{-\alpha F_0 \mathbf{v}}_{\text{friction}} + \underbrace{F_0 \mathbf{n}}_{\text{moteur}} + \underbrace{F_0 \left(\varepsilon_{\parallel} \eta \mathbf{n} + \varepsilon_{\perp} \eta' \mathbf{e}_{\perp}\right)}_{\text{bruit actif}} + \text{slightly inelastic collisions}$$
$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}t} = \mathbf{\Omega} \times \mathbf{n} \qquad \mathbf{\Omega} = \frac{\mathbf{n} \cdot \hat{\mathbf{v}}}{\tau_{\varphi}} (\mathbf{n} \times \hat{\mathbf{v}})$$

+ Mapping the model on the experimental system via the one particle dynamics



# In silico extrapolation



Periodic boundary conditions



# More quantitatively



# More quantitatively

$$\gamma^{2} = \frac{D_{//}}{D_{//}^{\Gamma=2.7}} = \frac{D_{perp}}{D_{perp}^{\Gamma=2.7}}$$



**Gulliver** 

# γ=1: parameters values match experimental individual dynamics

The order parameter  $\langle \Psi \rangle \approx 0.5$  and decreases with system size

- ⇒ The experiment sits right below the thermodynamic limit transition
- ⇒ The order correlation length is larger than the system size

#### $\gamma \neq 1$ : more or less noise

Transition from disordered to polar phase

#### =>Self propelled disks exhibit a transition to polar collective motion

Questions

Where does the alignment come from ?



How does it compare to the Vicsek alignment rule ?

Are the differences significant ?



# To answer these questions

Binary interaction scattering event

don't conserve momentum  $\mathbf{P}(t) = \int d\theta f(\theta, t) \hat{\mathbf{e}}(\theta)$ 

Boltzmann equation (molecular chaos)

$$\frac{\partial f}{\partial t}(\mathbf{r},\theta,t) + \mathbf{e}(\theta) \cdot \mathbf{r}(\mathbf{r},\theta,t) = I_{\rm dif}[f] + I_{\rm col}[f]$$

Restricting to the study of homogeneous phases

• Compute the dynamics of the order parameter  $\psi(t) = |\mathbf{P}(t)|$ .

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \lambda \Phi_f \Big[ (\hat{\mathbf{p}} \cdot \delta \mathbf{p}) \cos \bar{\theta} \Big] - D\psi,$$

Ansatz (instead of a Fourier expansion) for the angular distribution

$$f(\theta, t) = f_{\psi(t)}(\theta)$$
  $f_{\psi}(\theta) = \frac{e^{\kappa \cos \theta}}{2\pi I_0(\kappa)}$ , with  $\frac{I_1(\kappa)}{I_0(\kappa)} = \psi$ ,

= > A closed form equation for the order parameter





# Generic form for homogeneous polar liquids

A closed form equation for the order parameter

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \lambda \Phi_{\psi} [\mathbf{p} \cdot \delta \mathbf{p}] - D\psi$$
$$\Phi_{\psi} [\dots] = \int_{0}^{\pi} \frac{\mathrm{d}\Delta}{\pi} \int \mathrm{d}\zeta \, K(\Delta, \zeta) g(\psi, \Delta)(\dots)$$

• Linearized around the isotropic state  

$$\frac{1}{\lambda} \frac{\mathrm{d}\psi}{\mathrm{d}t} \simeq (\mu - D/\lambda)\psi - \xi\psi^{3}$$

$$\mu := \langle \mathbf{p} \cdot \delta \mathbf{p} \rangle_{0},$$

$$\xi := \langle (\frac{1}{2} - \cos \Delta) \mathbf{p} \cdot \delta \mathbf{p} \rangle_{0}$$

$$\langle \dots \rangle_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{\mathrm{d}} \Delta \int \mathrm{d} \zeta K(\Delta, \zeta)(\dots)$$

**Gulliver** 



EC2M Effets Collectifs & Matière Molle

Let's use if ... 
$$\frac{1}{\lambda} \frac{\mathrm{d}\psi}{\mathrm{d}t} \simeq (\mu - D/\lambda)\psi - \xi\psi^{3}$$
$$\mu := \langle \mathbf{p} \cdot \delta \mathbf{p} \rangle_{0}, \qquad \langle \dots \rangle_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{d}\Delta \int \mathrm{d}\zeta K(\Delta, \zeta)(\dots)$$
$$\xi := \langle (\frac{1}{2} - \cos \Delta) \mathbf{p} \cdot \delta \mathbf{p} \rangle_{0}$$

For colliding particles, the collision rate :  $K(\Delta) \propto |\sin(\Delta/2)|$ 







### Simulations of binary scattering events



# Consequences for the transition between hom. phases



- A strongly first order transition in the absence of self-diffusion (D=0)
- A triciritical point at finite D>0, towards a second order transition
- A re-entrant transition for  $\alpha > 1$  (when the polarity is too much persistent)
- Nota Bene :
  - Multiple re-collisions are not essential
  - One can capture the form of  $p\delta p$  (b, $\Delta$ ) for  $\alpha$ =0 from simple geom. arguments
  - Inelastic HS behave in a similar way



### What about the Vicsek aligning rules?



# Summary

- Hard core repulsion + Self propulsion => effective alignment.
  - => steric orientation is not necessary
  - => hard or soft disks systems can not be claimed without "alignment"

Alignment

- $\langle \mathbf{p} \cdot \delta \mathbf{p} \rangle_0$  is the physically meaningful quantity
- Transition to collective motion
  - A rich phase diagram with a transition from 1rst to 2<sup>nd</sup> order, controlled by the level of noise
  - The Viscek aligning rule is not a good effective description of the alignment in systems of hard disks





Julien Deseigne and Hugue Chaté (CEA-Saclay)
 Christoph Weber, Timo Hanke and Erwin Frey (Munich)
 Michael Schindler and Khanh Dang Thu Lam (Gulliver)

Walking grains Grains in Silico Theory

Further reading : PRL **105** 098001 (2010) SoftMatter **8** p. 5629 (2012) PRL **110** 208001 (2013) Cond-mat 1410.4520 Cond-mat 1502.07612

Thank you !

(http://www.ec2m.espci.fr)

