

FOR1394 DFG Research Unit Nonlinear Response to Probe Vitrification

Active microrheology: Brownian motion, strong forces and viscoelastic media

Matthias Fuchs

Fachbereich Physik, Universität Konstanz

New Frontiers in Non-equilibrium Statistical Physics 2015

► Intro to dense colloidal dispersions

► Active microrheology: Theory

► Delocalization transition

► Length Scales & Populations

➤ Steady state motion

► Transient dynamics

Intro to dense colloidal dispersions

Brownian motion

• Stokes–Einstein–Sutherland:

$$D_0 = \frac{k_B T}{\zeta_0}$$

mean squared displacement

$$\langle (\mathbf{r}(t) - \mathbf{r}(0))^2 \rangle = 6D_0 t$$

Displacement fluctuations in glass

Binary glass in d = 2

finite displacements

 $\langle (\mathbf{r}_i(t) - \bar{\mathbf{r}}_i)^2 \rangle < \infty$

with center of trajectory:

$$\bar{\mathbf{r}}_{i} = \frac{1}{\Delta t} \int_{0}^{\Delta t} dt \ \mathbf{r}_{i}(t)$$

[Klix, Ebert, Weysser, MF, Maret, Keim, Phys. Rev. Lett.109, 178301 (2012)]

Active microrheology: Theory

Active microrheology

- Hard-sphere suspension
- Fluid and glass states

- Probe displacement under strong forces
- Tails, heterogeneities etc.
- Parameters: ϕ and F

Model: Interacting Brownian particles, no HI $(D_0 = \frac{k_B T}{\zeta_0})$ Smoluchowski equation:

$$\partial_t \Psi = \Omega \Psi$$

Micro rheology

$$\Omega = \sum_{i}^{N} D_{0} \partial_{i} \cdot (\partial_{i} - \beta \mathbf{F}_{i}) + D_{s} \partial_{s} \cdot (\partial_{s} - \beta \mathbf{F}_{s}) - D_{s} \partial_{s} \cdot \mathbf{F}^{\mathbf{ex}}$$

ITT force-velocity relation* (nonlinear, exact)

$$\zeta \langle \mathbf{v} \rangle_{t \to \infty} = \mathbf{F}^{\mathbf{ex}} \quad , \quad \mathbf{\zeta} = \zeta_0 + \frac{1}{3k_B T} \int_0^\infty dt \ \langle \mathbf{F}_s \ e^{\Omega_{\mathrm{irr}}^{\dagger} t} \ \mathbf{F}_s \rangle^{(e)}$$

[* Gazuz, Puertas, Voigtmann, MF, Phys. Rev. Lett. 102, 248302 (2009)]

8

FOR1394

Mode coupling approximation:

probe distribution function

probe correlator

Evolution equation:

$$\partial_t \Phi^{\mathsf{s}}_{\mathbf{q}}(t) + \frac{1}{\tau_{\mathbf{q}}(F)} \Phi^{\mathsf{s}}_{\mathbf{q}}(t) + \int_0^t \mathscr{W}_{\mathbf{q}}(t-t') \partial_{t'} \Phi^{\mathsf{s}}_{\mathbf{q}}(t') \mathsf{d}t' = 0$$

Parallel relaxation channels*:

$$\mathcal{M}_{\mathbf{q}}(t) = \mathscr{F}_{\{}\Phi_{\mathbf{q}}^{\mathbf{s}}(t), \Phi_{\mathbf{q}}^{\mathrm{host}}(t), F\}$$

Input (full MCT): Equilibrium structure of the host at ϕ

[*Lang et al., PRL 105, 125701 (2010)]

Delocalization transition

Tracer Nonergodicity Parameter in Real Space

$$f^s(\boldsymbol{r},t) = \lim_{t \to \infty} \rho^s(\boldsymbol{r},t)$$
 $\varphi = .537$

FOR1394

Delocalization transition

 $\phi = 0.537$

Length Scales & Populations

Glassy host $\cdot F \lesssim$ threshold \cdot localized probe MCT, $\phi = 0.516$

Marginal probability distribution parallel to the force

[A. Puertas (U. Almeria), unpublished]

Probe distribution function $G_s(z, t \to \infty)$

Localized probe

Growing correlation length ξ

Steady state motion

Delocalization transition

• Steady probe velocity for long times \rightarrow friction coefficient

Nonlinear friction coefficient: $v = [\zeta(F)]^{-1}F$

Probe motion in perpendicular direction: $\delta x^2(t)$

- Delocalization transition
- Diffusive motion for long times

Nonlinear diffusion coefficient - perpendicular direction

• Orthogonal diffusion enhanced by increasing F

Stokes-Einstein Relation

Equilibrium:

$$\frac{D(\varphi)\zeta(\varphi)}{kT} = 1$$

Nonequilibrium:

$$\frac{D_{orth}(\varphi,F)\zeta(\varphi,F)}{kT} = \alpha(\varphi,F)$$

Transient dynamics

Probe motion in force direction: superdiffusion

MD Simulations - Yukawa mixture Winter *et al.*, PRL **108** (2012)

Probe motion in force direction: superdiffusion

Langevin Dynamics simulations

 $\phi = 0.62$

[A. Puertas (U. Almeria), unpublished]

Probe motion in force direction: superdiffusion

Brownian Dynamics simulations (2D)

Delocalized probe

Evolution of $G_s(z, t)$ **: Delocalized probe**

 $t [d^2/D_0] = 1.0$

6

8

2.5

5.0 -

10.0 -20.0 -

LD Simulations, $\phi = 0.62$,

29/33

Trajectories

- Brownian dynamics simulations
- individual trajectories in the glassy host
- intermittent dynamics

FOR1394

Evolution of $G_s(z,t)$: Delocalized probe

- micro-rheology delocalization threshold $F_c^{\rm ex} \gg k_B T/\sigma$
- force-induced diffusion \perp force
- "two population" behavior close to depinning
- rare large excursions on diverging length scale

FOR1394

Acknowledgements

- Gustavo Abade, Markus Gruber (Konstanz)
- Antonio Puertas (Almeria)
- Thomas Voigtmann (DLR, Düsseldorf)
- Igor Gazuz, Christian Harrer, Manuel Gnann (Konstanz)
- David Winter, Jürgen Horbach (Düsseldorf)
- movies/discussion: Peter Keim (Konstanz), Stefan Egelhaaf (Düsseldorf), Rut Besseling (Edinburgh), Eric Weeks (Emory)

Thank you for your attention