On the growth of interfaces: dynamical scaling and beyond

Malte Henkel

Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198) Université de Lorraine Nancy, France

YuKawa International Seminar 2015
“New Frontiers in Non-equilibrium Statistical Physics”
Yukawa Institute, Kyoto, 17th - 19th of August 2015

Overview:

1. Physical ageing & interface growth
2. Interface growth & KPZ universality class
3. Interface growth on semi-infinite substrates
4. A spherical model of interface growth: the (first) Arcetri model
5. Linear responses and extensions of dynamical scaling
6. Form of the scaling functions & LSI
7. Conclusions
1. Physical ageing & interface growth

known & practically used since prehistoric times (metals, glasses)
systematically studied in physics since the 1970s
⇒ discovery: ageing effects reproducible & universal!
occur in widely different systems
(structural glasses, spin glasses, polymers, simple magnets, . . .)

Three defining properties of ageing:

1. slow relaxation (non-exponential!)
2. **no** time-translation-invariance (TTI)
3. dynamical scaling without fine-tuning of parameters

Cooperative phenomenon, far from equilibrium

Question: what can be learned about intrisically irreversible systems by studying their ageing behaviour?
\[t = t_1 \]

\[t = t_2 > t_1 \]

magnet \(T < T_c \)

\[\longrightarrow \text{ordered cluster} \]

magnet \(T = T_c \)

\[\longrightarrow \text{correlated cluster} \]

growth of ordered/correlated domains, of typical linear size

\[L(t) \sim t^{1/z} \]

dynamical exponent \(z \) : determined by equilibrium state
Interface growth

deposition (evaporation) of particles on a substrate

→ height profile $h(t, r)$

slope profile $u(t, r) = \nabla h(t, r)$

$p = \text{deposition prob.}$

$1 - p = \text{evap. prob.}$

Questions:

* average properties of profiles & their fluctuations?
* what about their relaxational properties?
* are these also examples of physical ageing?

? does dynamical scaling always exist? ? are there extensions?
Analogies between magnets and growing interfaces

Common properties of critical and ageing phenomena:

* collective behaviour,
 very large number of interacting degrees of freedom
* algebraic large-distance and/or large-time behaviour
* described in terms of universal critical exponents
* very few relevant scaling operators
* justifies use of extremely simplified mathematical models
 with a remarkably rich and complex behaviour
* yet of experimental significance

see talks by T. Sasamoto and K. Takeuchi at this conference
Magnets
thermodynamic equilibrium state
order parameter \(\phi(t, r) \)
phase transition, at critical temperature \(T_c \)
variance:
\[
\langle (\phi(t, r) - \langle \phi(t) \rangle)^2 \rangle \sim t^{-2\beta/(\nu z)}
\]
relaxation, after quench to \(T \leq T_c \)
autocorrelator
\[
C(t, s) = \langle \phi(t, r) \phi(s, r) \rangle_c
\]
Interfaces
growth continues forever
height profile \(h(t, r) \)
same generic behaviour throughout
roughness:
\[
w(t)^2 = \langle (h(t, r) - \bar{h}(t))^2 \rangle \sim t^{2\beta}
\]
relaxation, from initial substrate:
autocorrelator
\[
C(t, s) = \langle (h(t, r) - \bar{h}(t))(h(s, r) - \bar{h}(s)) \rangle
\]
ageing scaling behaviour:

when \(t, s \to \infty \), and \(y := t/s > 1 \) fixed, expect, with \(\left\{ \begin{array}{l}
\text{waiting time } s \\
\text{observation time } t > s
\end{array} \right. \)

\[
C(t, s) = s^{-b} f_C(t/s) \quad \text{and} \quad f_C(y) \overset{y \to \infty}{\sim} y^{-\lambda_C/z}
\]
b, \(\beta \), \(\nu \) and dynamical exponent \(z \) : universal & related to stationary state
autocorrelation exponent \(\lambda_C \) : universal & independent of stationary exponents
Magnets

exponent value $b = \begin{cases} 0 & ; \ T < T_c \\ 2\beta/\nu z & ; \ T = T_c \end{cases}$

Interfaces

exponent value $b = -2\beta$

models:

(a) gaussian field

$\mathcal{H}[\phi] = -\frac{1}{2} \int \text{d} \mathbf{r} (\nabla \phi)^2$

(b) Ising model

$\mathcal{H}[\phi] = -\frac{1}{2} \int \text{d} \mathbf{r} \left[(\nabla \phi)^2 + \tau \phi^2 + \frac{g}{2} \phi^4 \right]$

such that $\tau = 0 \leftrightarrow T = T_c$

dynamical Langevin equation (Ising):

$$\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \eta$$

$$= D \nabla^2 \phi + \tau \phi + g \phi^3 + \eta$$

$\eta(t, \mathbf{r})$ is the usual white noise, $\langle \eta(t, \mathbf{r}) \eta(t', \mathbf{r}') \rangle = 2T \delta(t - t') \delta(\mathbf{r} - \mathbf{r}')$

phase transition exactly solved $d = 2$

relaxation exactly solved $d = 1$

Onsager ’44, Glauber ’63, ...

Sasamoto & Spohn ’10

Calabrese & Le Doussal ’11, ...

(a) Edwards-Wilkinson (EW):

$$\partial_t h = \nu \nabla^2 h + \eta$$

(b) Kardar-Parisi-Zhang (KPZ):

$$\partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta$$
2. Interface growth & KPZ class

deposition (evaporation) of particles on a substrate \rightarrow height profile $h(t,r)$
generic situation: RSOS (restricted solid-on-solid) model

\begin{align*}
\partial_t h &= \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta \\
\partial_t h &= \nu \nabla^2 h + \eta
\end{align*}

some universality classes:

\begin{align*}
\text{(a) KPZ} & \quad \partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta \\
\text{(b) EW} & \quad \partial_t h = \nu \nabla^2 h + \eta
\end{align*}

η is a gaussian white noise with $\langle \eta(t,r)\eta(t',r') \rangle = 2\nu T \delta(t-t')\delta(r-r')$
Family-Viscek scaling on a spatial lattice of extent L^d:

$$\overline{h}(t) = L^{-d} \sum_j h_j(t)$$

two-time correlator:

$$C(t, s; r) = \langle (h(t, r) - \langle \overline{h}(t) \rangle) (h(s, 0) - \langle \overline{h}(s) \rangle) \rangle = s^{-b} F_C \left(\frac{t}{s}, \frac{r}{s^{1/z}} \right)$$

with ageing exponent: $b = -2\beta$

rigorous bound: $\lambda_C \geq (d + zb)/2$

KPZ class, to all orders in perturbation theory $\lambda_C = d$, if $d < 2$

$w^2(t; L) = \frac{1}{L^d} \sum_{j=1}^{L^d} \langle (h_j(t) - \overline{h}(t))^2 \rangle = L^{2\alpha} f (tL^{-z}) \sim \begin{cases} L^{2\alpha} ; & \text{if } tL^{-z} \gg 1 \\ t^{2\beta} ; & \text{if } tL^{-z} \ll 1 \end{cases}$

β: growth exponent, α: roughness exponent, $\alpha = \beta z$

autocorrelation exponent

$$F_C(y, 0) \sim y^{-\lambda_c/z}$$

rigorous bound

$$\lambda_C \geq (d + zb)/2$$

KPZ class, to all orders in perturbation theory $\lambda_C = d$, if $d < 2$
1D relaxation dynamics, starting from an initially flat interface

observe all 3 properties of ageing: slow dynamics, no TTI, dynamical scaling

confirm simple ageing for the 1D KPZ universality class

confirm expected exponents $b = -2/3$, $\lambda_C / z = 2/3$

pars pro toto

Kallabis & Krug 96; Krech 97; Bustingorry et al. 07-10; Chou & Pleimling 10;
D’Aquila & Täuber 11/12; mh, Noh, Pleimling 12 . . .
Experiment : **universality** of interface exponents, KPZ class

<table>
<thead>
<tr>
<th>model/system</th>
<th>d</th>
<th>z</th>
<th>β</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPZ</td>
<td>1</td>
<td>3/2</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>Ag electrodeposition</td>
<td>1</td>
<td>\approx 1/3</td>
<td>\approx 1/2</td>
<td></td>
</tr>
<tr>
<td>slow paper cumbustion</td>
<td>1</td>
<td>1.44(12)</td>
<td>0.32(4)</td>
<td>0.49(4)</td>
</tr>
<tr>
<td>liquid crystal (flat)</td>
<td>1</td>
<td>1.34(14)</td>
<td>0.32(2)</td>
<td>0.43(6)</td>
</tr>
<tr>
<td>liquid crystal (circular)</td>
<td>1</td>
<td>1.44(10)</td>
<td>0.334(3)</td>
<td>0.48(5)</td>
</tr>
<tr>
<td>cell colony growth</td>
<td>1</td>
<td>1.56(10)</td>
<td>0.32(4)</td>
<td>0.50(5)</td>
</tr>
<tr>
<td>(almost) isotrope colloïds</td>
<td>1</td>
<td></td>
<td>0.37(4)</td>
<td>0.51(5)</td>
</tr>
<tr>
<td>autocatalytic reaction front</td>
<td>1</td>
<td>1.45(11)</td>
<td>0.34(4)</td>
<td>0.50(4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.63(3)</td>
<td>0.2415(15)</td>
<td>0.393(4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.63(2)</td>
<td>0.241(1)</td>
<td>0.393(3)</td>
</tr>
<tr>
<td>CdTe/Si(100) film</td>
<td>2</td>
<td>1.61(5)</td>
<td>0.24(4)</td>
<td>0.39(8)</td>
</tr>
<tr>
<td>EW</td>
<td>2</td>
<td>0(log)</td>
<td>0(log)</td>
<td></td>
</tr>
<tr>
<td>sedimentation/electrodispersion</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental results from **several groups**, since 1999 (**mainly** since 2010)
3. Interface growth on semi-infinite substrates

properties of growing interfaces near to a boundary?
→ crystal dislocations, face boundaries . . .

Experiments: Family-Vicsek scaling not always sufficient
→ distinct global and local interface fluctuations

\{ anomalous scaling, growth exponent \(\beta \) larger than expected

grainy interface morphology, facetting

! analyse simple models on a semi-infinite substrate!
frame co-moving with average interface deep in the bulk
characterise interface by

\[
\begin{align*}
\text{height profile} & \quad \langle h(t, r) \rangle \\
\text{width profile} & \quad w(t, r) = \left\langle \left[h(t, r) - \langle h(t, r) \rangle \right]^2 \right\rangle^{1/2}
\end{align*}
\]

\[h \to 0 \text{ as } |r| \to \infty \]
specialise to $d = 1$ space dimensions; boundary at $x = 0$, bulk $x \to \infty$

cross-over for the phenomenological growth exponent β near to boundary

bulk behaviour $w \sim t^\beta$
‘surface behaviour’ $w_1 \sim t^{\beta_1}$?

cross-over, if causal interaction with boundary

experimentally observed, e.g. for semiconductor films

values of growth exponents (bulk & surface):

$\beta = 0.25$ $\beta_{1,\text{eff}} \simeq 0.32$ Edwards-Wilkinson class

$\beta \simeq 0.32$ $\beta_{1,\text{eff}} \simeq 0.35$ Kardar-Parisi-Zhang class
simulations of RSOS models:
well-known bulk adsorption processes (& immediate relaxation)

description of immediate relaxation if particle is adsorbed at the boundary
explicit boundary interactions \(h_1(t) = \partial_x h(t, x)|_{x=0} \)

\[
\begin{align*}
(\partial_t - \nu \partial_x^2) h(t, x) - \frac{\mu}{2} (\partial_x h(t, x))^2 - \eta(t, x) &= \nu (\kappa_1 + \kappa_2 h_1(t)) \delta(x) \\
\end{align*}
\]

height profile \(\langle h(t, x) \rangle = t^{1/\gamma} \Phi \left(x t^{-1/z} \right) \), \(\gamma = \frac{z}{z - 1} = \frac{\alpha}{\alpha - \beta} \)

EW & exact solution, \(h(t, 0) \sim \sqrt{t} \) self-consistently

KPZ
Scaling of the width profile:

EW & exact solution $\lambda^{-1} = 4tx^{-2}$

bulk \hspace{1cm} boundary

same growth scaling exponents in the bulk and near to the boundary

large **intermediate scaling regime** with effective exponent (slopes)

agreement with **RG** for non-disordered, local interactions

? ageing behaviour near to a boundary ?
4. A spherical model of interface growth: the Arcetri model

\[\text{KPZ} \rightarrow \text{intermediate model} \rightarrow \text{EW} \]

preferentially exactly solvable, and this in \(d \geq 1 \) dimensions

Inspiration: mean spherical model of a ferromagnet

| Berlin & Kac 52 |
| Lewis & Wannier 52 |

Ising spins \(\sigma_i = \pm 1 \)

spherical spins \(S_i \in \mathbb{R} \)

spherical constraint \(\langle \sum_i S_i^2 \rangle = N \)

Obey \(\sum_i \sigma_i^2 = N = \# \text{ sites} \)

Hamiltonian \(\mathcal{H} = -J \sum_{(i,j)} S_i S_j - \lambda \sum_i S_i^2 \)

Lagrange multiplier \(\lambda \)

Exponents non-mean-field for \(2 < d < 4 \) and \(T_c > 0 \) for \(d > 2 \)

Kinetics from Langevin equation

\[\partial_t \phi = -D \frac{\delta \mathcal{H}[\phi]}{\delta \phi} + \zeta(t) \phi + \eta \]

Time-dependent Lagrange multiplier \(\zeta(t) \) fixed from spherical constraint

All equilibrium and ageing exponents exactly known, for \(T < T_c \) and \(T = T_c \)

Ronca 78, Coniglio & Zannetti 89, Cugliandolo, Kurchan, Parisi 94, Godrèche & Luck ’00, Corberi, Lippiello, Fusco, Gonnella & Zannetti 02-14
consider **RSOS/ASEP**-adsorption process:

rigorous: continuum limit gives KPZ

Bertini & Giacomin 97

use *not* the heights $h_n(t) \in \mathbb{N}$ on a discrete lattice, but rather the slopes $u_n(t) = \frac{1}{2} (h_{n+1}(t) - h_{n-1}(t)) = \pm 1$

RSOS

? let $u_n(t) \in \mathbb{R}$, & impose a spherical constraint $\sum_n \langle u_n(t)^2 \rangle = \mathcal{N}$

? consequences of the ‘hardening’ of a soft EW-interface by a ‘spherical constraint’ on the u_n?
Arcetri model: precise formulation & simple ageing

slope \(u(t, x) = \partial_x h(t, x) \) obeys Burgers’ equation, replace its non-linearity by a mean spherical condition

\[
\partial_t u_n(t) = \nu (u_{n+1}(t) + u_{n-1}(t) - 2u_n(t)) + \zeta(t)u_n(t) + \frac{1}{2} (\eta_{n+1}(t) - \eta_{n-1}(t))
\]

\[
\sum_n \langle u_n(t)^2 \rangle = N \quad \langle \eta_n(t)\eta_m(s) \rangle = 2T\nu \delta(t - s)\delta_{n,m}
\]

Extension to \(d \geq 1 \) dimensions:

define gradient fields \(u_a(t, r) := \nabla_a h(t, r), \)

\[
\partial_t u_a(t, r) = \nu \nabla_r \cdot \nabla_r u_a(t, r) + \zeta(t)u_a(t, r) + \nabla_a \eta(t, r)
\]

\[
\sum_r \sum_{a=1}^d \langle u_a(t, r)^2 \rangle = dN^d
\]

interface height: \(\hat{u}_a(t, q) = i \sin q_a \hat{h}(t, q) \quad ; \quad q \neq 0 \) in Fourier space
exact solution:

\[
\hat{h}(t, q) = \hat{h}(0, q) e^{-2t\omega(q)} \sqrt{\frac{1}{g(t)}} + \int_0^t d\tau \, \hat{\eta}(\tau, q) \sqrt{\frac{g(\tau)}{g(t)}} e^{-2(t-\tau)\omega(q)}
\]

in terms of the auxiliary function \(g(t) = \exp \left(-2 \int_0^t d\tau \, \tilde{z}(\tau) \right), \) which satisfies Volterra equation

\[
g(t) = f(t) + 2T \int_0^t d\tau \, g(\tau)f(t-\tau), \quad f(t) := d \frac{e^{-4t} l_1(4t)}{4t} \left(e^{-4t} l_0(4t) \right)^{d-1}
\]

* for \(d = 1 \), identical to ‘spherical spin glass’, with \(T = 2T_{SG} \):

 hamiltonian \(\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j \); \(J_{ij} \) random matrix, its eigenvalues distributed according to Wigner’s semi-circle law

 \[\text{Cugliandolo & Dean 95}\]

* also related to distribution of first gap of random matrices \[\text{Perret & Schehr 15/16}\]

* for \(2 < d < 4 \), scaling functions identical to the ones of the critical bosonic pair-contact process with diffusion, with rates

 \[
 \Gamma[2A \rightarrow (2 + k)A] = \Gamma[2A \rightarrow (2 - k)A] = \mu, \quad k = 1, 2
 \]

 \[\text{Howard & Täuber 97; Houchmandzadeh 02; Paessens & Schütz 04; Baumann, mh, Pleimling, Richert 05}\]
phase transition: long-range correlated surface growth for $T \leq T_c$

$$\frac{1}{T_c(d)} = \frac{1}{2} \int_0^\infty dt \ e^{-dt} t^{-1} I_1(t) I_0(t)^{d-1} ; \quad T_c(1) = 2, \ T_c(2) = \frac{2\pi}{\pi - 2}$$

Some results: always simple ageing

1. $T = T_c$, $d < 2$:
 - rough interface, width $w(t) = t^{(2-d)/4} \implies \beta = \frac{2-d}{4} > 0$
 - ageing exponents $a = b = \frac{d}{2} - 1$, $\lambda_R = \lambda_C = \frac{3d}{2} - 1$; $z = 2$

 exponents z, β, a, b same as EW, but exponent $\lambda_C = \lambda_R$ different

2. $T = T_c$, $d > 2$:
 - smooth interface, width $w(t) = \text{cste.} \implies \beta = 0$
 - ageing exponents $a = b = \frac{d}{2} - 1$, $\lambda_R = \lambda_C = d$; $z = 2$

 same asymptotic exponents as EW, but scaling functions are distinct

3. $T < T_c$:
 - rough interface, width $w^2(t) = (1 - T/T_c)t \implies \beta = \frac{1}{2}$
 - ageing exponents $a = \frac{d}{2} - 1$, $b = -1$, $\lambda_R = \lambda_C = \frac{d-2}{2}$; $z = 2$
Illustration: Shape of the height Fluctuation-Dissipation Ratio, \(T = T_c \)

\[X(t, s) := TR(t, s) \frac{\partial C(t, s)}{\partial s} = X \left(\frac{t}{s} \right) \xrightarrow{t/s \to \infty} X_\infty = \begin{cases}
\frac{d}{d+2} ; & 0 < d < 2 \\
\frac{d}{4} ; & 2 < d
\end{cases} \]

lim FDR \(X_\infty \) is universal

\[X_{\infty} \]

\(X_{\infty} \) is distinct from \(X_{\text{EW}, \infty} = 1/2 \) for all \(d > 0 \)

green line: \(X_{\text{EW}} \) for \(d = 4 \)
Summary of results in the (first) Arcetri model:

Captures at least some qualitative properties of growing interfaces.

* phenomenology of relaxation analogous to domain growth in simple magnets \Rightarrow dynamical scaling form of simple ageing

* existence of a critical point $T_c(d) > 0$ for all $d > 0$ as a magnet

* at $T = T_c$, rough interface for $d < 2$, smooth interface for $d > 2$; upper critical dimension $d^* = 2$

* at $T = T_c$, $d < 2$, the stationary exponents (β, z) are those of EW, but the non-stationary ageing exponents are different

 explicit example for expectation from field-theory renormalisation group in domain growth of independent exponents $\lambda_{C,R}$

 different from EW and KPZ classes, where $\lambda_C = d$ for all $d < 2$ [Krech 97]

* at $T = T_c$, $d > 2$, distinct from EW, although all exponents agree

* for $d = 1$, equivalent to $p = 2$ spherical spin glass

* at $T = T_c$ and $2 < d < 4$, same ageing behaviour as at the multicritical point of the bosonic pair-contact process with diffusion (BPCPD)

* for $T < T_c$, distinct universality class
5. Linear responses and extensions of dynamical scaling

extend Family-Viscek scaling to two-time responses:

analogue: TRM integrated response in magnetic systems

two-time integrated response:

* sample \(A \) with deposition rates \(p_i = p \pm \epsilon_i \), up to time \(s \),
* sample \(B \) with \(p_i = p \) up to time \(s \);

then switch to common dynamics \(p_i = p \) for all times \(t > s \)

\[
\chi(t, s; r) = \int_0^s \mathrm{d}u \ R(t, u; r) = \frac{1}{L} \sum_{j=1}^{L} \left\langle \frac{h^{(A)}_{j+r}(t; s) - h^{(B)}_{j+r}(t)}{\epsilon_j} \right\rangle = s^{-a} F_\chi \left(\frac{t}{s}, \frac{|r|^z}{s} \right)
\]

with \(a \): ageing exponent

expect for \(y = t/s \gg 1 \): \(F_R(y, 0) \sim y^{-\lambda_R/z} \) autoresponse exponent

? Values of these exponents ?
Effective action of the KPZ equation:

\[\mathcal{J} [\phi, \tilde{\phi}] = \int dt dr \left[\tilde{\phi} \left(\partial_t \phi - \nu \nabla^2 \phi - \frac{\mu}{2} \left(\nabla \phi \right)^2 \right) - \nu T \tilde{\phi}^2 \right] \]

\[\Rightarrow \text{Very special properties of KPZ in } d = 1 \text{ spatial dimension!} \]

Exact critical exponents: \(\beta = 1/3, \alpha = 1/2, z = 3/2, \lambda_C = 1 \)

kpz 86; Krech 97

related to precise symmetry properties:

A) tilt-invariance (Galilei-invariance)

kept under renormalisation!

\[\Rightarrow \text{exponent relation } \alpha + z = 2 \]

holds for any dimension \(d \)

Forster, Nelson, Stephen 77

Medina, Hwa, Kardar, Zhang 89

B) time-reversal invariance

special property in 1D, where also \(\alpha = \frac{1}{2} \)

Lvov, Lebedev, Paton, Procaccia 93
Frey, Täuber, Hwa 96
Special KPZ symmetry in 1D: let \(v = \frac{\partial \phi}{\partial r}, \, \tilde{\phi} = \frac{\partial}{\partial r} (\tilde{p} + \frac{v}{2T}) \)

\[
\mathcal{J} = \int dt \, dr \left[\tilde{p} \frac{\partial t}{\alpha} v - \frac{v}{4T} (\partial_r v)^2 - \frac{\mu}{2} v^2 \partial_r \tilde{p} + v T (\partial_r \tilde{p})^2 \right]
\]

is invariant under time-reversal

\[
t \mapsto -t, \quad v(t, r) \mapsto -v(-t, r), \quad \tilde{p} \mapsto \tilde{p}(-t, r)
\]

⇒ fluctuation-dissipation relation for \(t \gg s \)

\[
TR(t, s; r) = -\partial_r^2 C(t, s; r)
\]

distinct from the equilibrium FDT \(TR(t - s) = \partial_s C(t - s) \) Kubo

Combination with ageing scaling, gives the ageing exponents:

\[
\lambda_R = \lambda_C = 1 \quad \text{and} \quad 1 + a = b + \frac{2}{z}
\]
relaxation of the integrated response, 1D

observe all 3 properties of ageing:

- slow dynamics
- no TTI
- dynamical scaling

exponents $a = -1/3$, $\lambda_R/z = 2/3$, as expected from FDR

N.B.: numerical tests for 2 models in KPZ class
Simple ageing is also seen in space-time observables

correlator \(C(t, s; r) = s^{2/3} F_C \left(\frac{t}{s}, \frac{r^{3/2}}{s} \right) \)

integrated response \(\chi(t, s; r) = s^{1/3} F_{\chi} \left(\frac{t}{s}, \frac{r^{3/2}}{s} \right) \)

confirm \(z = 3/2 \)
Question: Are there model-independent results on the form of universal scaling functions?

‘Natural’ starting point: try to draw analogies with conformal invariance at equilibrium

⇒ ‘normally’ works for sufficiently ‘local’ theories

What about time-dependent critical phenomena?

Theorem: Consideration of the ‘deterministic part’ of the Janssen-de Dominicis action permits to reconstruct the full time-dependent responses and correlators, from the dynamical symmetries of the ‘deterministic part’.

essential tool: Bargman superselection rule of ‘deterministic part’
Time-dependent critical phenomena & ageing

Characterised by dynamical exponent $z : t \mapsto tb^{-z}$, $r \mapsto rb^{-1}$

? Can one extend to local dynamical scaling, with $z \neq 1$?

For $z = 2$, example of the Schrödinger group:

$\begin{align*}
 t &\mapsto \frac{\alpha t + \beta}{\gamma t + \delta}, \\
 r &\mapsto \frac{Dr + vt + a}{\gamma t + \delta}; \quad \alpha \delta - \beta \gamma = 1
\end{align*}$

⇒ study ageing phenomena as paradigmatic example

essential: (i) absence of TTI & (ii) Galilei-invariance

Transformation $t \mapsto t'$ with $\beta(0) = 0$ and $\dot{\beta}(t') \geq 0$ and

$t = \beta(t')$, $\phi(t) = \left(\frac{d\beta(t')}{dt'}\right)^{-x/z} \left(\frac{d \ln \beta(t')}{dt'}\right)^{-2\xi/z} \phi'(t')$

out of equilibrium, have 2 distinct scaling dimensions, x and ξ.

mean-field for magnets: expect $\\begin{cases}
 \xi = 0 \text{ in ordered phase } T < T_c \\
 \xi \neq 0 \text{ at criticality } T = T_c
\end{cases}$

NB: if TTI (equilibrium criticality), then $\xi = 0$.

Dynamical symmetry I: Schrödinger algebra \(\mathfrak{sch}(d) \)

Dynamical symmetries of Langevin equation (deterministic part !)

Schrödinger operator in \(d \) space dimensions:

\[
S = 2\mathcal{M} \partial_t - \partial_r \cdot \partial_r
\]

(free) Schrödinger/heat equation

(noiseless) Edwards-Wilkinson equation

\[
\begin{align*}
[S, \mathcal{Y}_{\pm 1/2}] &= [S, \mathcal{M}_0] = [S, X_{-1}] = [S, \mathcal{R}] = 0 \\
[S, X_0] &= -S \\
[S, X_1] &= -2tS + 2\mathcal{M}\left(x - \frac{d}{2}\right)
\end{align*}
\]

Infinitesimal change:

\[
\delta \phi = \varepsilon \mathcal{X} \phi, \quad \mathcal{X} \in \mathfrak{sch}(d), |\varepsilon| \ll 1
\]

Lemma: If \(S\phi = 0 \) and \(x = x_\phi = \frac{d}{2} \), then \(S(\mathcal{X} \phi) = 0 \).

\(\mathfrak{sch}(d) \) maps solutions of \(S\phi = 0 \) onto solutions.
Dynamical symmetry II: ageing algebra $\text{age}(d)$

1D Schrödinger operator:

$$S = 2\mathcal{M} \partial_t - \partial_r^2 + 2\mathcal{M} \left(x + \xi - \frac{1}{2}\right) t^{-1}$$

Generalised ‘Schrödinger equation’:

Extra potential term arises in several models, without time-translations (e.g. 1D Glauber-Ising, spherical & Arcetri models)

If time-translations ($X_{-1} = -\partial_t$) are included, then $\xi = 0$

$$[S, Y_{\pm 1/2}] = [S, M_0] = 0$$

$$[S, X_0] = -S$$

$$[S, X_1] = -2tS$$

Infinitesimal change: $\delta \phi = \varepsilon \mathcal{X} \phi$, $\mathcal{X} \in \text{age}(d), |\varepsilon| \ll 1$

Lemma: If $S\phi = 0$, then $S(\mathcal{X} \phi) = 0.$

Niederer '74; mh & Stoimenov '11

$\text{age}(d)$ maps solutions of $S\phi = 0$ onto solutions.
Example for the t^{-1}-term in Langevin eq.: Arcetri model

Continuous slopes $u_i \in \mathbb{R}^d$, constraint $\sum_{i \in \Lambda} u_i^2 = dN$

For $d > 0$ phase transition $T_c(d) > 0$, exponents not mean-field if $d < 2$

Spherical constraint: $\langle \sum_{i \in \Lambda} u_i^2 \rangle = dN$

Langevin equation, with Lagrange multiplier $\zeta(t)$ & centered gaussian noise $\eta_i(t)$

\[
\frac{\partial u_a(t, r)}{\partial t} = \nu \Delta u_a(t, r) + \zeta(t) u_a(t, r) + \partial_a \eta(t, r) , \quad \langle \eta(t, r) \eta(s, r') \rangle = 2\nu T \delta(t - s) \delta(r - r')
\]

Set $g(t) := \exp \left(2 \int_0^t dt' \zeta(t') \right)$, spherical constraint gives Volterra eq.

\[
g(t) = f(t) + 2T \int_0^t d\tau \, f(t - \tau) g(\tau) , \quad f(t) = \frac{d e^{-4t} I_1(4t)}{4t} \left(e^{-4t} I_0(4t) \right)^{d-1}
\]

Find for $T \leq T_c$: $g(t) \xrightarrow{t \to \infty} t^{-F} \iff \zeta(t) \sim \frac{F}{2} t^{-1}$

Quite analogous to spherical model of a ferromagnet

Godrèche & Luck 00
Picone & MH 04
Schrödinger- & ageing-covariant two-point functions

Two-point function

\[R = R(t, s; r_1 - r_2) := \langle \phi_1(t, r_1) \tilde{\phi}_2(s, r_2) \rangle \]

Each \(\phi_i \) characterized by (i) scaling dimensions \(x_i, \xi_i \) (ii) mass \(\mathcal{M}_i \)

* from Schrödinger-invariance

\[
R(t, s, r) = r_0 \delta_{x_1, x_2} s^{-1-a} \left(\frac{t}{s} - 1 \right)^{-1-a} \exp \left[-\frac{\mathcal{M}_1}{2} \frac{r^2}{t-s} \right]
\]

* from ageing-invariance

\[
R(t, s; r) = r_0 s^{-1-a} \left(\frac{t}{s} \right)^{1+a'-\frac{\lambda_R}{2}} \left(\frac{t}{s} - 1 \right)^{-1-a'} \exp \left(-\frac{\mathcal{M}_1}{2} \frac{r^2}{t-s} \right)
\]

with

\[1 + a = \frac{x_1 + x_2}{2}, \quad a' - a = \xi_1 + \xi_2, \quad \lambda_R = 2(x_1 + \xi_1), \quad \mathcal{M}_1 + \mathcal{M}_2 = 0 \]

Bargman rule

can derive **causality condition** \(t > s \)

\(\Rightarrow \) \(R \) is physically a **response function**.
1D KPZ: find $R(t, s) = \langle \psi(t)\tilde{\psi}(s) \rangle$ from ‘logarithmic partner’ of order parameter (ψ, ϕ)

scaling dimensions become Jordan matrices $\begin{pmatrix} x & x' \\ 0 & x \end{pmatrix}$, $\begin{pmatrix} \xi & \xi' \\ 0 & \xi \end{pmatrix}$ and similarly for response fields

* good collapse \Rightarrow no logarithmic corrections \Rightarrow $x' = \tilde{x}' = 0$

* no logarithmic factors for $y \gg 1 \Rightarrow \xi' = 0$

\Rightarrow only $\tilde{\xi}' = 1$ remains

$$f_R(y) = y^{-\lambda R/z} \left(1 - \frac{1}{y}\right)^{-1-a'} \left[h_0 - g_0 \ln \left(1 - \frac{1}{y}\right) - \frac{1}{2}f_0 \ln^2 \left(1 - \frac{1}{y}\right) \right]$$

find integrated autoresponse $\chi(t, s) = \int_0^s du \ R(t, u) = s^{1/3} f_\chi(t/s)$

$$f_{\chi}(y) = y^{1/3} \left\{ A_0 \left[1 - \left(1 - \frac{1}{y}\right)^{-a'} \right] + \left(1 - \frac{1}{y}\right)^{-a'} \left[A_1 \ln \left(1 - \frac{1}{y}\right) + A_2 \ln^2 \left(1 - \frac{1}{y}\right) \right] \right\}$$

with free parameters A_0, A_1, A_2 and a' — for the 1D KPZ class, use $\frac{\lambda R}{z} - a = 1$
non-log LSI with $a = a'$: deviations $\approx 20\%$

non-log LSI with $a \neq a'$: works up to $\approx 5\%$

log LSI: works better than $\approx 0.1\%$

<table>
<thead>
<tr>
<th>R</th>
<th>a'</th>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \phi \phi \rangle$ – LSI</td>
<td>-0.500</td>
<td>0.662</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \phi \psi \rangle$ – L^1LSI</td>
<td>-0.500</td>
<td>0.663</td>
<td>$-6 \cdot 10^{-4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \psi \psi \rangle$ – L^2LSI</td>
<td>-0.8206</td>
<td>0.7187</td>
<td>0.2424</td>
<td>-0.09087</td>
</tr>
</tbody>
</table>

logarithmic LSI fits data at least down to $y \simeq 1.01$, with $a' - a \approx -0.4873$ (can we make a conjecture?)
7. Conclusions

* long-time dynamics of growing interfaces naturally evolves towards dynamical scaling & ageing
* phenomenology very similar to ageing phenomena in simple magnets
* subtleties in the precise scaling forms & space-dependent profiles
* shape of two-time response functions compatible with extended forms of dynamical scaling, according to LSI
* in certain cases logarithmic contributions in the scaling functions (but \textit{without} logarithmic corrections to scaling) :

\[\implies \text{implications for interpretation of numerical data for the 2D KPZ, where } \lambda^C,\text{eff} \neq \lambda^R,\text{eff} \neq 2 \quad ? \]

\text{Halpin-Healy et al. 14, Ódor et al. 14}

proving dynamical symmetries can remain a delicate affair
Arcetri model, exact solution:

\[
\omega(q) = \sum_{a=1}^{d}(1 - \cos q_a), \quad q \neq 0
\]

\[
\hat{h}(t, q) = \hat{h}(0, q)e^{-2t\omega(q)}\sqrt{\frac{1}{g(t)}} + \int_0^t d\tau \, \hat{\eta}(\tau, q)\sqrt{\frac{g(\tau)}{g(t)}} e^{-2(t-\tau)\omega(q)}
\]

in terms of the auxiliary function \(g(t) = \exp\left(-2\int_0^t d\tau \, \hat{z}(\tau)\right)\),

which satisfies Volterra equation

\[
g(t) = f(t) + 2T \int_0^t d\tau \, g(\tau)f(t-\tau) , \quad f(t) := d \frac{e^{-4t}I_1(4t)}{4t} \left(e^{-4t}I_0(4t)\right)^{d-1}
\]

* for \(d = 1\), identical to ‘spherical spin glass’, with \(T = 2T_{SG}\) :

hamiltonian \(\mathcal{H} = -\frac{1}{2} \sum_{i,j} J_{ij}S_iS_j\); \(J_{ij}\) random matrix, its eigenvalues distributed according to Wigner’s semi-circle law

* also related to distribution of first gap of random matrices \(\text{Perret \\ & Schehr 15/16}\)

a further auxiliary function: \(F_r(t) := \prod_{a=1}^{d} e^{-2tI_{r_a}(2t)} \)

\(I_n\) : modified Bessel function

for initially uncorrelated heights and initially flat interface

\(\text{Cugliandolo \\ & Dean 95}\)
height autocorrelator:
\[C(t, s) = \langle h(t, r) h(s, r) \rangle_c = \frac{2F_0(t+s)}{\sqrt{g(t)g(s)}} + \frac{2T}{\sqrt{g(t)g(s)}} \int_0^s d\tau \ g(\tau) F_0(t+s-2\tau) \]

interface width:
\[w^2(t) = C(t, t) = \frac{2F_0(2t)}{g(t)} + \frac{2T}{g(t)} \int_0^t d\tau \ g(\tau) F_0(2t-2\tau) \]

slope autocorrelator:
\[A(t, s) = \sum_{a=1}^d \langle u_a(t, r) u_a(s, r) \rangle_c = \frac{2f((t+s)/2)}{\sqrt{g(t)g(s)}} + \int_0^s d\tau \ \frac{2Tg(\tau)}{\sqrt{g(t)g(s)}} f((t+s)/2 - \tau) \]

height response:
\[R(t, s; r) = \left. \frac{\delta \langle h(t, r) \rangle}{\delta j(s, 0)} \right|_{j=0} = \Theta(t-s) \sqrt{g(s)/g(t)} F_r(t-s) \]

slope autoresponse:
\[Q(t, s; 0) = \Theta(t-s) \sqrt{g(s)/g(t)} f((t-s)/2) \]

* correspondence of 1D \(A/I \) model with spherical spin glass:
 - spins \(S_i \leftrightarrow \) slopes \(u_n \)

spin glass autocorrelator:
\[C_{SG}(t, s) = \frac{1}{N} \sum_{i=1}^N \langle S_i(t) S_i(s) \rangle = A(t, s) \]

spin glass response:
\[R_{SG}(t, s) = \sum_{i=1}^N \left. \frac{\delta \langle S_i(t) \rangle}{\delta h_i(s)} \right|_{h=0} = 2Q(t, s) \]

* kinetics of heights \(h_n(t) \) in model \(A/I \) driven by phase-ordering of the spherical spin glass \(\equiv \) 3D kinetic spherical model
Relationship with the critical diffusive bosonic pair-contact process (BPCPD)

* each site of a hypercubic lattice is occupied by $n_i \in \mathbb{N}_0$ particles
* single particles hop to a nearest-neighbour site with diffusion rate D
* on-site reactions, with rates $\Gamma[2A \rightarrow (2 + k)A] = \Gamma[2A \rightarrow (2 - k)A] = \mu$
 \[k \text{ is either } 1 \text{ or } 2 \]

* control parameter $\alpha := \frac{k^2 \mu}{D}$

\Rightarrow for $d > 2$, particles cluster on a few sites only, if $\alpha > \alpha_C$

Figure: 2D section of BPCPD in $d = 3$; height of columns \sim particle number
\Rightarrow fluctuations grow with t when $\alpha > \alpha_C$ & are bounded for $\alpha < \alpha_C$
bosonic creation operator \(a^\dagger(t, r) \), commutator \([a(t, r), a^\dagger(t', r')] = \delta(r - r')\)
\(\implies\) average particle number is constant!

\[
n(t, r) = \langle a^\dagger(t, r)a(t, r) \rangle = \langle a(t, r) \rangle = \rho_0 = \text{cste}.
\]

clustering transition at \(\alpha = \alpha_C \), characterised by changes in the variance.

\[
\bar{C}(t, s) := \langle a^\dagger(t, r)a(s, r) \rangle - \rho_0^2 \xrightarrow{t, s \to \infty} \langle n(t, r)n(s, r) \rangle - \rho_0^2 = s^{-b}f_C(t/s)
\]

\[
\bar{R}(t, s) := \left. \frac{\delta \langle a(t, r) \rangle}{\delta j(s, r)} \right|_{j=0} = s^{1-a}f_R(t/s)
\]

obey simple ageing for \(\alpha \leq \alpha_C \). Precisely at the clustering transition \(\alpha = \alpha_C \), for \(2 < d < 4 \), the scaling functions are **identical**:

- **BPCPD** : \(b + 1 = a = d/2 - 1 \)
- **Arcetri** : \(b = a = d/2 - 1 \)

\[
f_{R,\text{BPCPD}}(y) = (y - 1)^{d-2} = f_{R,\text{Arc}}(y)
\]

\[
f_{C,\text{BPCPD}}(y) = (y + 1)^{-d/2}_2F_1 \left(\frac{d}{2}, \frac{d}{2}; \frac{d}{2} + 1; \frac{2}{1+y} \right) = f_{C,\text{Arc}}(y)
\]

N.B. : for \(d > 4 \), Arcetri \(\neq \) BPCPD \(\neq \) EW, although all exponents, up to \(b \), agree.