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Goals

• Give a flavor of non-equilibrium statistical physics: 
Not so much the study of specific subjects, but 
rather a collection of ideas and tools that work for 
an incredibly wide range of problems.

• Exemplify key insights that have emerged from the 
analysis of far-from-equilibrium behaviors. 

• Diffusion-reaction systems (major lessons, a couple 
of long-standing challenges).  



1.  Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation

6. Fragmentation
7.  Adsorption 
8. Spin Dynamics
9. Coarsening
10. Disorder

11. Hysteresis
12. Population Dynamics
13. Diffusive Reactions
14. Complex Networks

TABLE OF CONTENTS

Aimed at graduate students, this book explores some of the core

phenomena in non-equilibrium statistical physics. It focuses on the

development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation, and adsorption, where basic

phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, by developing both a

discrete and a continuum formulation, the role of disorder in 

non-equilibrium processes, and hysteresis from the non-equilibrium

perspective. The concluding chapters address population dynamics,

chemical reactions, and a kinetic perspective on complex networks.

The book contains more than 200 exercises to test students'

understanding of the subject. A link to a website hosted by the

authors, containing an up-to-date list of errata and solutions to

some of the exercises, can be found at

www.cambridge.org/9780521851039.

Pavel L. Krapivsky is Research Associate Professor of Physics at

Boston University. His current research interests are in strongly

interacting many-particle systems and their applications to kinetic

spin systems, networks, and biological phenomena.

Sidney Redner is a Professor of Physics at Boston University. His

current research interests are in non-equilibrium statistical physics

and its applications to reactions, networks, social systems, biological

phenomena, and first-passage processes.

Eli Ben-Naim is a member of the Theoretical Division and an

affiliate of the Center for Nonlinear Studies at Los Alamos National

Laboratory. He conducts research in statistical, nonlinear, and soft

condensed-matter physics, including the collective dynamics of

interacting particle and granular systems.

Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially
stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particles (red) and the stationary particles (blue)
that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
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Simplified Reactions

• Coalescence:                           A + A => A

• Single-Species  Annihilation:      A + A => 0

• Two-Species  Annihilation:        A + B => 0



Single-Species Annihilation



Single-Species Annihilation



Hydrodynamic 
description

n
K

particle density
reaction rate

dn

dt
= −Kn2, n =

n0

1 + n0Kt
� 1

Kt



Hydrodynamic 
description

n
K

particle density
reaction rate

dn

dt
= −Kn2, n =

n0

1 + n0Kt
� 1

Kt

n(t) ∼






t−1/2 d = 1
t−1 ln t d = 2
t−1 d > 2



Dimensional analysis

K = K(D,R) ∼ DRd−2

n ∼ 1
DRd−2 t

n = n(D, t) ∼ 1√
Dt

when d = 1



Polya Theorem

#(sites visited by RW) ∼






√
t d = 1

t/ ln t d = 2
t d ≥ 3

Polya theorem ‘explains’ the asymptotic behavior in the
single-species annihilation process.

If you need more than five lines to prove something,
then you are on the wrong track. Anonymous.



Lessons

Above dc, the rate equation description is OK.

Below dc, it is wrong.

At dc, at most logarithmically wrong.

There is a critical dimension dc that separates
different kinetic behaviors. (For single-species
annihilation, dc = 2.)



Coalescence in 1D

(b)(a)

(a) (b) (c)

Evolution of V3 is exemplified.

Vn: density of voids of length n.



Coalescence in 1D: 
Equations

dVn

dt
= Vn+1 − 2Vn + Vn−1

Vn(0) = δn,0 fully occupied lattice



Coalescence in 1D: 
Equations and Solutions

dVn

dt
= Vn+1 − 2Vn + Vn−1

Vn(t) = e−2t [In(2t)− In+2(2t)]

c(t) =
�

n≥0

Vn(t) = e−2t [I0(2t) + I1(2t)]

c(t): Density of particles

In(2t): Modified Bessel function



A bit of wisdom

In non-equilibrium statistical physics the

Diffusion Equation plays a role of the

Harmonic Oscillator. One must express

some characteristics of a strongly interacting

many-particle system via the diffusion equation.



Annihilation process with 
impurity:  Unsolved

(0, 0)• • • • • • • ••••••• •

What is the survival probability S(t) of the impurity particle ?

Dbulk = 1 Dimpurity = D

S ∼ t−θ(D), θ(1) =
1
2

, θ(0) =
3
8

, θ(D) ≈
�

1 + D

8



Half-filled line: Mostly 
unsolved for annihilation

(0, 0)• • • • • • • •

The survival probability Sn(t) is the probability that

the nth
particle is alive at time t. How Sn(t) decays ?



(0, 0)• • • • • • • •

S1 ∼ t−α, α ≈ 0.225

S2 ∼ t−β , β ≈ 0.865



(0, 0)• • • • • • • •

S1 ∼ t−α, α ≈ 0.225

S2 ∼ t−β , β ≈ 0.865

Just two (non-trivial !) exponents.

S77 ∼ t−0.225, S666 ∼ t−0.865

Never t−1/2



Average Density

c(x, t) =
1√

2πDt
C(X), X =

x√
2Dt

C(X) =
1
2
Erfc(X) +

1√
8

e−X2/2 Erfc
�
− X√

2

�

!! !" !# # " ! $
%

&'"

&'$

&'(

&')

#'&

*



Number of particles in the 
initially empty half-line

�N�c =
3
8

+
1
2π

= 0.53415494309 . . .

�N�a =
1
2

�N�c =
3
16

+
1
4π

= 0.2670774715 . . .

�N� is finite, so we need the full distribution P (N).



Number of particles in the 
initially empty half-line

Pa(0) ≈ 0.74 (unknown)

Pa(0) + Pa(2) + Pa(4) + . . . =
3
4

(duality)

Pc(0) =
1
2

(elementary)

Pc(1) = 0.4660959764 . . . (very involved derivation)

Pc(1) =
11π − 4

16π
+

1
2π

�
arctan

�
1√
8

�
− 2 arctan

�
1√
2

��



Localized Input
∂n

∂t
= D∇2n−Kn2 + Jδ(r)

n ∼






1
rd−2 d > 4

1
r2 ln r d = 4
1
r2 4 > d > 2
ln r
r2 d = 2
1
rd 2 > d

N ∼






t d > 4
t

ln t d = 4√
t d = 3

(ln t)2 d = 2
ln t d = 1

N ∼
� √

t

dr rd−1 n(r)



n ∼






1
rd−2 d > 4

1
r2 ln r d = 4
1
r2 4 > d > 2
ln r
r2 d = 2
1
rd 2 > d

N ∼






t d > 4
t

ln t d = 4√
t d = 3

(ln t)2 d = 2
ln t d = 1

N ∼
� √

t

dr rd−1 n(r)

The specialist knows more and more about less and less
and finally knows everything about nothing. Konrad Lorenz

c1 ∼ r−(
√

17+1)/2 in 3d



Reaction

j
i+j

i
ijK



Two-Species 
Annihilation



Two-Species 
Annihilation



Rate Equation 
Description

Suppose densities are equal: nA = nB = n

dn
dt = −Kn2, n ∼ t−1



Rate Equation 
Description

Suppose densities are equal: nA = nB = n

dn
dt = −Kn2, n ∼ t−1

n ∼






t−1/4 d = 1
t−1/2 d = 2
t−3/4 d = 3
t−1 d ≥ 4

Correct answer:





Asymptotic Spatial 
Arrangement 

AA

A AA A BBB AA A BBB B A A ABA

L

A

l lAB






L ∼ t1/2 domain size
�AA = �BB ∼ t1/4 inter-particle spacing
�AB ∼ t3/8 depletion zone



Heuristic Derivation

L ∼ (Dt)1/2 typical mixing scale
#(A particles) = n0L +

√
n0L

#(B particles) = n0L−
√

n0L

nA ∼ #(A)−#(B)
L ∼ √n0 (Dt)−1/4

dn

dt
∼ ∆n

∆t
∼ − (Dt)−1/2

�2AB/D
leads to �AB ∼ t3/8

In d dimensions n ∼
√

n0Ld

Ld ∼ L−d/2 ∼ t−d/4

In physics, your solution should convince a reasonable person. In math,
you have to convince a person who’s trying to make trouble. Frank Wilczek



Lessons

(1) dc = 4 for two-species annihilation
(2) Three characteristic length scales
(3) Exact solution is lacking even in one dimension
(4) The t−3/4 asymptotic in d = 3 is beyond the reach

in simulations (but maybe not in Nature)
(5) No log-correction at d = dc = 4



Trapping Reaction

(1) Stationary traps absorb particles
(2) Diffusing non-interacting particles
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Trapping Reaction

(1) Stationary traps absorb particles
(2) Diffusing non-interacting particles
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Mean-Field and Exact 
Descriptions

dn
dt = −Kρn, n ∼ e−Kρt

ρ the density of traps
n the density of particles

The mean-field description is wrong in all dimensions:

n ∼ exp
�
−Adρ

2/(d+2)(Dt)d/(d+2)
�



Higher Dimensions

a

(a)



a

(b)



Higher Dimensions

(1) The best chance to survive is to be in a large void.

(2) The competition between increasing the survival probability

and decreasing the existence probability of a void by increasing

its size selects the optimal void.

(3) One can posit the adsorption BC on the ‘boundary’ of a void.

(4) Asymptotically the density in such a void ∼ exp(−Λ2
1Dt)

(Λ2
1 is the smallest eigenvalue of the Laplacian).

(5) Overall n ∼
�

exp
�
−λ2

1Dt/V 2/d − ρV
�

ρ dV

(6) Minimal λ1 corresponds to the spherical void.

(Rayleigh-Faber-Krahn theorem.)

Premature optimization is the root of all evil. Donald E. Knuth



Quantum Reactions is a 
Challenge

The only success (up to now) is with the trapping reaction.

The key is it is essentially a single-particle problem

One associates an imaginary potential energy − iΓ with each trap

The density decays as exp(−Adtd/(d+3))

Recall that in the classical case the decay is exp(−Bdtd/(d+2))



Annihilation in 
Quantum Regime

(1) An ultracold Fermi gas like 6Li is a two-component Fermi gas.

(2) When two atoms with opposite spin collide, they can form a molecule.

(3) The energy and momentum conservation makes A+A −→ A2 impossible.

(4) The three-body process A + A + A −→ A2 + A is possible.

(5) The energies of the products are so large that they overcome
a trapping potential and leave the system.

(6) Thus essentially A + A + A −→ ∅



Classical vs. Quantum 
Particle on a lattice

!"# $# %# # %# $# !"#
&

#

#'#!

#'#"

#'#(

#'#%

#'#)

* &
+,-
./0

&+,
-0"

123445132
673&,78



Infinite chain with a single 
trap

0 1 2 3
0

0.2

0.4

0.6

0.8

1

a = 0
a = 1
a = 2
a = 3
a = 

i
dψn

dt
= ψn−1 + ψn+1 − iγδn,0ψ0, ψn(t = 0) = δn,a



Particle on a finite ring 
with a single trap

Classical: survival prob decays as exp
�
−π2t

N2

�

Quantum: survives with prob 1
2

except when it starts at a = 0 or a = N/2

Why? Thanks to avoiding modes.



Summary

(1) Non-equilibrium statistical physics has traditionally dealt
with small deviations from equilibrium.

(2) Far-from-equilibrium systems do not have an underlying master equation,
there are no analogs e.g. to the Boltzmann factor or the partition
function of equilibrium statistical physics.

(3) Still far-from-equilibrium systems often have simple collective behaviors.

(4) Various tools efficiently work in numerous problems.










