A new control parameter for the glass transition of glycerol.

P. Gadige, S. Albert, C. Wiertel-Gasquet, R. Tourbot, F. Ladieu

Service de Physique de l'Etat Condensé (CNRS, MIPPU/ URA 2464), DSM/IRAMIS/**SPEC/SPHYNX** CEA Saclay, France

Main Funding:

Additionnal Funding:

ISC PIF The most emblematic claim of this work :

• Small effect: discovered through a nonlinear technique (see L'Hôte, Tourbot, Ladieu, Gadige PRB 90, 104202 (2014))

 As for Π exp^{ts}, the most interesting is not T_g(Π) in itself but what we learn about the glass transition when varying the control parameter.

I) Motivations for nonlinear experiments

- What happens around Tg ?
- Dynamical Heterogeneities
- Special interest of nonlinear responses !

II) Our specially designed experiment \rightarrow it works !

III) Results on Glycerol

- Order of magnitude and comparison to the Box model
- Relation to N_{corr}
- Tg shift

I) Motivations for nonlinear experiments

- What happens around Tg ?
- Dynamical Heterogeneities
- Special interest of nonlinear responses !
- II) Our specially designed experiment \rightarrow it works !
- III) Results on Glycerol
 - Order of magnitude and comparison to the Box model
 - Relation to Ncorr
 - Tg shift

What happens around Tg?

How to combine the existence of correlations with the absence of order ?

Dynamical Heterogeneities in supercooled liquids

• N_{corr} = average number of dynamically correlated molecules : $N_{corr} \propto \xi^3$

... directly observed in granular matter or in numerical simulations.

Example : numerical simulations on soft spheres :

Hurley, Harowell, PRE, 52, 1694, (1995)

... Experimentally, the heterogeneous nature of the dynamics has been established through various breakthroughs: • NMR experiments Tracht et al. PRL81, 2727 (98), J. Magn. Res. 140 460 (99),... E. Vidal Russell and N.E. Local measurements Israeloff, Nature 408, 695 (2000).**a** AFM tip « clusters » ≈ 50 nm of 30-90 z≈30nm monomers Probed ld≈0.5µm PVAc film volume Hole burning experiments

When T \downarrow : N_{corr} would \uparrow , which would explain why τ_{α} increases so much

Dynamical Heterogeneities and NHB.

• Many improvements since Schiener, Böhmer, Loidl, Chamberlin Science, 274, 752, (1996)

e.g. R.Richert's group: PRL, **97**, 095703 (2006); PRB **75**, 064302 (2007); EPJB, **66**, 217, (2008); PRL, **104**, 085702, (2010)...

• The central idea in Schiener et al 's seminal paper in 1996:

- I) Motivations for nonlinear experiments
 - What happens around Tg ?
 - Dynamical Heterogeneities
 - Special interest of nonlinear responses !
- II) Our specially designed experiment \rightarrow it works !
- III) Results on Glycerol
 - Order of magnitude and comparison to the Box model
 - Relation to N_{corr}
 - Tg shift
- Summary and Perspectives.

The prediction of Bouchaud-Biroli (⇔B&B): PRB 72, 064204 (2005)

The issue of interpretations : Box Model versus B&B

Some experiments done since B&B's prediction (2005)

<u>e.g. R.Richert's group:</u> PRL, **97**, 095703 (2006); PRB **75**, 064302 (2007); EPJB, **66**, 217, (2008); PRL, **104**, 085702, (2010)...

 \rightarrow Very good fits at 1 ω (better than at 3 ω)

- ightarrow Accounts for the transient regime at 1 ϖ
- \rightarrow Several liquids tested (Richert PRL (2007))

Using E_{st} will shed a new light on this interpretation issue

- I) Motivations for nonlinear experiments
- **II)** Our specially designed experiment

III) Results on Glycerol

- Order of magnitude and comparison to the Box model
- Relation to N_{corr}
- Tg shift

Our setup to measure cubic susceptibilities

Bridge with two glycerol-filled capacitors of different thicknesses

C. Thibierge et al, RSI **79**, 103905 (2008))

- I) Motivations for nonlinear experiments
- II) Our specially designed experiment

III) Results on Glycerol

- Order of magnitude and comparison to the Box model
- Relation to N_{corr}
- Tg shift

- NB: $\omega \tau_{\alpha} \equiv f/f_{\alpha}$
 - $f_{\alpha} \Leftrightarrow peak of \chi_{lin}$ "(ω)
 - $|\chi_{lin}(\omega)|$ has no peak

<u>Main features of</u> $\chi_{2;1}^{(1)}(\omega,T)$

Same qualitative trends as for $\chi_3^{(1)}$ and $\chi_3^{(3)}$

- I) Motivations for nonlinear experiments
- II) Our specially designed experiment

III) Results on Glycerol

- Order of magnitude and comparison to the Box model
- Relation to N_{corr}
- Tg shift

<u>Comparing the ω dependences of</u> $\chi_{2;1}^{(1)}(\omega,T)$ and of $\left(\frac{\partial \chi_{Lin}}{\partial T}\right)_{E_{st}} = 0$

Direct link with $n_{corr}^{estim} \sim T \frac{d\chi_{Lin}}{dT}$ expected from Berthier et al., Science (2005); JCP, (2007); PRE (2007).

• For f/f $_{\alpha}$ < 0.2: "Trivial" dominates

Reshuffling \Rightarrow Ideal gas at t >> τ_{α}

<u>T-dependences of the dimensionless cubic susceptibility</u> $X_n^{(k)}$

 $X_{n}^{(k)}(\omega,T) = \frac{\chi_{n}^{(k)}(\omega,T)}{\left(\frac{\varepsilon_{0}\chi_{s}^{2}a^{3}}{k_{B}T}\right)} \implies \begin{cases} \text{is T-independent in the trivial limit (ideal gas)} \\ = N_{corr}(T)H_{n}^{k}(\omega\tau_{\alpha}(T)) & \text{if B&B's prediction holds} \end{cases}$

ω and T dependences consistent with X_{2:1}⁽¹⁾ ~ N_{corr} (OK within MCT)

Can we fit nonlinear resp. ? The "toy model" as an attempt :

L'Hôte, Tourbot, Ladieu, Gadige PRB 90, 104202 (2014)

N_{corr} has the right order of magnitude

- good fits for ALL the X_n^(k)
- ... but with

different values of N_{corr} (**toy** model)

Ladieu, Brun, L'Hôte, PRB **85**, 184207, (2012)

- I) Motivations for nonlinear experiments
- II) Our specially designed experiment

III) Results on Glycerol

- Order of magnitude and comparison to the Box model
- Relation to Ncorr
- Tg shift

A picture: D.H. ≈ overcrowded subway

Density $\uparrow ... \Rightarrow \Sigma \downarrow$ and $\tau_{\alpha} \uparrow$

Increasing E_{st} ...

 $\mathsf{E}_{\mathsf{st}} \uparrow \ldots \Rightarrow \Sigma \downarrow \mathsf{and} \tau_{\alpha} \uparrow$

Summary and Perspectives.

- Our very sensitive setup has successfully measured $\chi_{2;1}^{(1)}(\omega,T)$
- The interpretation issue is now clarified since :
 - the Box Model cannot account for the order of magnitude of $\chi_{2:1}^{(1)}$
 - Global consistency with $\chi_n^{(k)} \sim N_{corr}$:

 $\rightarrow \omega$ and T dependences,

 \rightarrow fits with the toy model

- Perspectives = systematic studies of $N_{corr} \Leftrightarrow$ the scale on which the systems is **solid**, **during** τ_{α} :
 - \rightarrow study $\chi_3(\omega_1;\omega_2;\omega_3)$ in other directions than (0,0, ω) or (± ω,ω,ω)
 - \rightarrow study $\chi_{2,1}^{(1)}$ at high temperatures (no heating)
 - \rightarrow Study $\chi_{2;1}^{(1)}$ at higher fields or in other liquids

• For the nice discussions and/or long time support, warm thanks to: G. Biroli, J.-P. Bouchaud, G. Tarjus, C. Alba-Simionesco, P.M. Déjardin, as well as P. Lunkenheimer, A. Loidl and the Augsburg group.

Thank you for your attention...