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We derive the high temperature expansion formulae for fermions with finite chemical potential, as an exten-
sion of the results by Kapusta and Gale.

I. INTRODUCTION OF HIGH-TEMPERATURE EXPANSION

High-temperature expansion in terms of normalized mass m/T of pressure P or equivalently the grand potential density
Feff = Ω/V = −P is useful, for example, to discuss the chiral phase transition.

Pressure of free bosons and fermions is given as
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where T , m and µ are the temperature, mass and chemical potential, respectively, and dB,F represents the degrees of freedom;
for example dB = 3 for pions (π0,±) and dF = 4NcNf for quarks with Nc colors and Nf flavors.

High-temperature expansion in terms of m/T is not just a Taylor expansion of the functions in the pressure integral. Since
the mass as well as T and µ provide scales of p, we have non-analytic term proportional to m4 logm in pressure. In order to
systematically study the small mass region, Kapusta developed a method which enables us to include the singularity. We can
find the explicit expression for the high-temperature expansion to (m/T )4 for bosons and fermions at zero chemical potential in
Ref. [1], less number of terms are shown for fermions with finite chemical potential.

In this note, we explain how to obtain the high-temperature expansion for fermions at finite chemical potential. The fermion
pressure to (m/T )4 is found to be,
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where γE = 0.5772156649 · · · is the Euler’s constant and ζ(n) is the zeta function; ζ(2) = π2/6, ζ(4) = π4/90,
ζ(3) = 1.2020569031595942854 · · · , ζ(5) = 1.036927755143369926331 · · · , ζ(7) = 1.00834927738192282684 · · · , ζ(9) =
1.002008392826082214418 · · · . The first three terms show the massless results (Stefan-Boltzmann limit), and the terms propor-
tional to m2 and m4 show the modification of pressure by finite mass.
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II. HIGH-TEMPERATURE EXPANSION

A. h functions

Following Ref. [1], we introduce h functions. Pressure is represented by the function h5,
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T

)
, (6)

where hB,Fn are given by the following integral [1],
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These functions are found to satisfy the following recursion formulae,
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= − y

n
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This recursion is derived by using the relation df/dy = y/x df/dx for a function of ω =
√
x2 + y2. Thus if we know massless

integrals, h3(y = 0) and h5(y = 0), and the n = 1 function, h1(y, ν), h5 is obtained by using the recursion formulae.
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B. Massless integrals

At zero chemical potentials, massless integrals are obtained by using the expansion of the boson and fermion distribution
functions,
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Explicit values for n = 3, 5 are given as

hB3 (0) = ζ(2)/2 = π2/12 , hB5 (0) = ζ(4)/4 = π4/360 , (14)

hF3 (0, 0) = ζ(2)/4 = π2/24 , hF5 (0, 0) = 7ζ(4)/32 = 7π4/2880 . (15)

Massless fermion integrals at finite ν contains several terms.
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This relation is obtained by using the property of the Fermi distribution function,∫ ∞
0

f(x)dx

(
1

ex−ν + 1
+

1

ex+ν + 1

)
=

∫ ν

0

f(ν − x)dx−
∫ ν

0

dx
f(ν − x) + f(x− ν)

ex + 1
+

∫ ∞
0

dx
f(x+ ν) + f(x− ν)

ex + 1
, (20)

For f(x) = x2n−1, the second term vanishes and we get Eq. (16).

C. High-temperature expansion for bosons

n = 1 integrals requires special care, since it is divergent at small x. Following Ref. [1], we use the following identities for
bosons to separate the singular contribution,
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where two poles of the second function, z = ±iω, contribute the integral.
We substitute the identity Eq. (21) into h1 in Eq. (7), then we get

hB1 (y) =

∫ ∞
0

dx

ω

1

eω − 1
= lim
L→∞

∫ 2πL

0

dx

[
1

ω2
− 1

2ω
+ 2

∞∑
l=1

1

ω2 + (2πl)2

]
(ω =

√
x2 + y2)

=
π

2y
+ lim
L→∞

{
−1

2
arcsinh (2πL/y) +

∞∑
l=1

2

ωl

[π
2
− arctan(ωl/2πL)

]}
(ωl =

√
y2 + (2πl)2)

=
π

2y
+

1

2
log

y

4π
+ lim
L→∞

{
1

2

L∑
l=1

(
2π

ωl
− 1

l

)
+

1

2

(
L∑
l=1

1

l
− log L

)}

+ lim
L→∞

{
−

L∑
l=1

2

ωl
arctan(ωl/2πL) +

∞∑
l=L+1

2

ωl
arctan(2πL/ωl)

}
. (24)

We have introduced the UV cutoff 2πL, and take the limit L → ∞. The sum over l is divided into two parts, l ≤ L and l > L,
and the relation π/2− arctanx = arctan (1/x). The last line in Eq. (24) is found to vanish.
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We have replaced the sum by the integral over θ = l/L = limL→∞ ωl/2πL. The function hB1 (y) is found to be
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Or the following expression would be more useful for numerical summation,
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By using massless integrals, hB3 (0) and hB5 (0), and hB1 (y), the high-temperature expansion of hB3 (y) and hB5 (y) are found to
be
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D. High-temperature expansion for fermions at finite chemical potential

Fermion integrals are obtained in a similar but a little more complicated manner. We use the following identities for fermions,
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We can obtain this identity by considering the contour integral,
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where C represents the contour integral surrounding the poles of the first term, z = π(2l − 1) − iν with integer l. The integral
can be evaluated in a different way. By replacing the integral to that on the upper and lower contours, we get
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where two poles of the second function, z = ±iω, contribute the integral.
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We substitute the identity Eq. (32) into h1 in Eq. (8), and we get
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By using massless integrals, hF3 (0, ν) and hF5 (0, ν), and n = 1 integral hF1 (y, ν), the high-temperature expansion of hF3 (y, ν)
and hF5 (y, ν) are found to be
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+
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8

(
log

y

π
− 1

2
+ γE −Hν(ν)

)
+O(y4) , (39)
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Fermion pressure is obtained via the relation PF = 4dF T
4 hF5 (m/T, µ/T )/π2, and we obtain Eq. (3).

III. EXPECTED PHASE BOUNDARY

We shall now apply the high-temperature expansion formula Eq. (40) to guess the phase boundary in the Nambu-Jona-Lasinio
(NJL) model [2]. We follow the notation in Ref. [3]. In the mean field treatment of the NJL model, the grand potential density
(effective potential) is given as
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4
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T
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µ

T

)
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4

)
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]
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where Fvac is the vacuum effective potential, and E(k) =
√
k2 + (m0 +Gσ)2 is the quark energy. The first term in Eq. 42

comes from the bosonization, and the second term shows the zero-point energy, which is negative for fermions. The constituent
quark mass is given as m = m0 +Gσ.
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FIG. 1: Contributions to c4. Solid line shows cT4 = γE − 1− log(πT/2Λ) at T = Tc/
√

1 + 3µ2/π2T 2 where c2 vanishes. Other lines show
Hν(µ/T ). The fourth order coefficient vanishes when two lines cross.

We consider the chiral limit (m0 = 0), then Feff is found to be

Feff(m;T, µ) =Feff(0;T, µ) +
c2(T, µ)

2
m2 +

c4(T, µ)

24
m4 +O(m6) , (44)

c2(T, µ) =− dF
24

[
3

π2
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(
1− 8π2
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)
−
(
T 2 +

3
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)]
, (45)

c4(T, µ) =
3dF
4π2

[
γE − 1− log

(
πT

2Λ

)
−Hν(µ/T )

]
. (46)

In vacuum, the chiral symmetry is broken due to negative c2. This is achieved in the case where the coupling is strong, G2 >
G2
c = 8π2/dF . At µ = 0, c2 increases with increasing T and becomes zero at

T = Tc =
Λ

π

√
3

(
1− G2

c

G2

)
<

√
3Λ

π
. (47)

At finite µ, c2 is expected to be zero at [4]

T 2 +
3

π2
µ2 = T 2

c . (48)

As long as c4 is positive, zero c2 implies the second order phase transition. If we extrapolated the results to T = 0 (it is too
much..), we get the transition chemical potential at T = 0 as µc = πTc/

√
3 ' 290 MeV. This is close to the one third of the

nucleon mass, and the present estimate may not be too crazy.
At around the empirical values, e.g. Tc = 160 MeV and Λ = 600 MeV, c4 is positive at (T, µ) = (Tc, 0), suggesting

that the phase transition is the second order in the present setup. Since Hν is a increasing function of ν = µ/T , c4 decreases
with increasing ν. In the leading order approximation of Hν , c4 becomes zero at around ν = 2 on the phase boundary. The
simultaneous disappearance of c2 and c4 implies the tricritical point.

To say the truth, c4 does not vanish on the phase boundary in the conversion radius, ν < π, when we use numerically obtained
Hν . Even though, the results of high-temperature expansion clearly suggest the existence of the tricritical point.

IV. SUMMARY

We have shown the high-temperature expansion formulae for fermions with finite chemical potential, as an extension of the
results by Kapusta and Gale [1]. The suggested phase boundary from the expansion seems to catch some of the characteristic
features of the QCD phase transition. It also suggest the existence of the tricritical point in the chiral limit (critical point with
small finite quark mass); the fourth order coefficient decreases with increasing µ/T .
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