Operational probabilistic theories and cellular automata: how I learned to stop worrying and love C* algebras

School on Advanced Topics in Quantum Information and Foundations

Quantum Information Unit and the Yukawa Institute for Theoretical Physics, Kyoto University

Paolo Perinotti - February 8-12 2021

Lecture 3 Update rules in OPTs

Summary

- Infinite CAs: quasi-local effects and algebra
 - Topological closure: sup-norm and op-norm
- States
- Global update rules
- Cellular automata
- Neighbourhood

Causal theories

- In causal theories every conditional test is allowed
 - If $[I \to I] \neq \{0, 1\}$ then
 - $\bullet \quad \llbracket \mathbf{I} \to \mathbf{I} \rrbracket = [0, 1]$
 - all the sets are convex
 - Every system A has a unique deterministic effect e_A

Starting from the quantum case

- In the quantum case: quasi-local algebra
 - Bonus 1: definition of QCA through local action on effects

Starting from the quantum case

- In the quantum case: quasi-local algebra
 - Bonus 1: definition of QCA through local action on effects

Bonus 2: evolution of transformations

Starting from the quantum case

- In the quantum case: quasi-local algebra
 - Bonus 1: definition of QCA through local action on effects

Bonus 2: evolution of transformations

$$\forall \rho, a \qquad \boxed{\rho} \xrightarrow{A} \boxed{\mathscr{U}} \xrightarrow{A'} \boxed{Q} = \boxed{\rho} \xrightarrow{A} \boxed{\mathscr{U}} \xrightarrow{A'} \boxed{Q}$$

$$\xrightarrow{A'} \boxed{\mathscr{U}} \xrightarrow{A'} = \xrightarrow{A'} \boxed{\mathscr{U}} \xrightarrow{A} \boxed{\mathscr{U}} \xrightarrow{A} \boxed{\mathscr{U}} \xrightarrow{A'}$$

Starting from the quantum case

- In the quantum case: quasi-local algebra
 - Bonus 1: definition of QCA through local action on effects

Bonus 2: evolution of transformations

$$\forall \rho, a \qquad \widehat{\rho} \stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q'}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q'}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{Q'}{\longrightarrow} \stackrel{A'}{\longrightarrow} \stackrel{A$$

Infinite composite systems In general OPTs

• Difference: in OPTs effects are not an algebra

$$a \in [\bar{A}], \quad b \in [\bar{A}], \quad ab = ?$$

• Problem: locality on effects does not grant locality on transformations

- In OPTs transformations of a given system are an algebra
- In view of these considerations we will define quasi-local transformations, and adapt the definition of CA

Important difference

- In the definition of QCA: assumed structure of the array of cells Z^d
- We will avoid this, and reconstruct the structure from the CA itself
 - Every cell is a system of the OPT at hand
 - We want to make sense of infinite arrays: infinite composite systems

In causal OPTs

- Overarching assumption: denumerable set *G* of systems
 - Infinite case Address of a cell: $n \in \mathbb{N}$ no immediate geometric meaning

• Finite region: finite subset R of G;

• Finite region: finite subset R of G;

- Finite region: finite subset R of G;
- Local effect: pair (a, R)—for the sake of brevity a_R —with $a \in [\bar{A}_R]_{\mathbb{R}}$

- Finite region: finite subset *R* of *G*;
- Local effect: pair (a, R)—for the sake of brevity a_R —with $a \in [\bar{A}_R]_{\mathbb{R}}$
- We collect $\bigsqcup_{R\subseteq G} \llbracket \bar{\mathbf{A}}_R
 rbracket_R$

- Finite region: finite subset *R* of *G*;
- Local effect: pair (a, R)—for the sake of brevity a_R —with $a \in [\bar{A}_R]_{\mathbb{R}}$
- We define injection functions: let $R \subseteq S$, then $f_{R,S}: \llbracket \bar{\mathbf{A}}_R \rrbracket_{\mathbb{R}} \to \llbracket \bar{\mathbf{A}}_S \rrbracket$ maps $f_{R,S}(a_R) = (a \otimes e_{S \setminus R})_S$

- Finite region: finite subset R of G;
- Local effect: pair (a, R)—for the sake of brevity a_R —with $a \in [\![\bar{\mathbf{A}}_R]\!]_{\mathbb{R}}$
- We collect $\coprod_{R\subseteq G} ar{[A_R]_R}$
- We define injection functions: let $R \subseteq S$, then $f_{R,S}: \llbracket \bar{\mathbf{A}}_R \rrbracket_{\mathbb{R}} \to \llbracket \bar{\mathbf{A}}_S \rrbracket$ maps $f_{R,S}(a_R) = (a \otimes e_{S \setminus R})_S$

• Equivalence relation: $a_R \sim b_S$ if

$$\begin{cases} f_{R,R\cup S}(a) = (a_0 \otimes e_{S\backslash R})_{R\cup S} \\ f_{S,R\cup S}(b) = (a_0 \otimes e_{R\backslash S})_{R\cup S} \end{cases}$$

• Equivalence relation: $a_R \sim b_S$ if

$$\begin{cases} f_{R,R\cup S}(a) = (a_0 \otimes e_{S\setminus R})_{R\cup S} \\ f_{S,R\cup S}(b) = (a_0 \otimes e_{R\setminus S})_{R\cup S} \end{cases}$$

• Domain set: $[\![\bar{\mathrm{A}}_G]\!]_{L\mathbb{R}} := \bigsqcup_{R \subseteq G} [\![\bar{\mathrm{A}}_R]\!]/\sim$

Vector space structure

Sum of local effects

$$a_R + b_S := c_{R \cup S}$$

$$c := a \otimes e_{S \setminus R} + b \otimes e_{R \setminus S}$$

Multiplication by a real number

$$ha_R \coloneqq \begin{cases} (ha)_R & h \neq 0 \\ 0_{\emptyset} & h = 0 \end{cases}$$

• The above operations equip $[\![\bar{A}]\!]_{L\mathbb{R}}$ with a real vector space structure

Topology of local effects

Operational norm and sup norm

Operational norm for effects

$$||a||_{\text{op}} = \sup_{\rho \in [\![A]\!]} |(a|\rho)|$$

We will use the sup-norm

$$J(a) := \{ \lambda \in \mathbb{R} \mid \lambda e \pm a \succeq 0 \}$$
$$\|a\|_{\sup} := \inf J(a)$$

Topology of local effects

Operational norm and sup norm

Operational norm for effects

$$||a||_{\text{op}} = \sup_{\rho \in [\![A]\!]} |(a|\rho)|$$

We will use the sup-norm

$$J(a) := \{ \lambda \in \mathbb{R} \mid \lambda e \pm a \succeq 0 \}$$
$$\|a\|_{\sup} := \inf J(a)$$

The sup norm is stronger

$$||a||_{\text{op}} \le ||a||_{\text{sup}}$$

Closure of the inductive limit

• Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$

- Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$
- Equivalence relation: $a_n \simeq b_n$ if $\lim_{n \to \infty} \|a_n b_n\|_{\sup} = 0$

- Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$
- Equivalence relation: $a_n \simeq b_n$ if $\lim_{n \to \infty} \|a_n b_n\|_{\sup} = 0$
- Space $[\![\bar{\mathbf{A}}_G]\!]_{Q\mathbb{R}}$ of quasi-local effects: $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}/\simeq$

- Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$
- Equivalence relation: $a_n \simeq b_n$ if $\lim_{n \to \infty} \|a_n b_n\|_{\sup} = 0$
- Space $[\![ar{\mathrm{A}}_G]\!]_{Q\mathbb{R}}$ of quasi-local effects: $[\![ar{\mathrm{A}}_G]\!]_{C\mathbb{R}}/\simeq$
- Local effects $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$: submanifold of $[\![\bar{\mathbf{A}}_G]\!]_{Q\mathbb{R}}$

- Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$
- Equivalence relation: $a_n \simeq b_n$ if $\lim_{n \to \infty} \|a_n b_n\|_{\sup} = 0$
- Space $[\![\bar{\mathrm{A}}_G]\!]_{Q\mathbb{R}}$ of quasi-local effects: $[\![\bar{\mathrm{A}}_G]\!]_{C\mathbb{R}}/\simeq$
- Local effects $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$: submanifold of $[\![\bar{\mathbf{A}}_G]\!]_{Q\mathbb{R}}$
- We define $[\![\bar{\mathbf{A}}_G]\!]_Q \subseteq [\![\bar{\mathbf{A}}_G]\!]_{Q+}$

- Space $[\![\bar{\mathbf{A}}_G]\!]_{C\mathbb{R}}$: Cauchy sequences in $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$
- Equivalence relation: $a_n \simeq b_n$ if $\lim_{n \to \infty} \|a_n b_n\|_{\sup} = 0$
- Space $[\![\bar{\mathrm{A}}_G]\!]_{Q\mathbb{R}}$ of quasi-local effects: $[\![\bar{\mathrm{A}}_G]\!]_{C\mathbb{R}}/\simeq$
- Local effects $[\![\bar{\mathbf{A}}_G]\!]_{L\mathbb{R}}$: submanifold of $[\![\bar{\mathbf{A}}_G]\!]_{Q\mathbb{R}}$
- We define $[\![\bar{\mathbf{A}}_G]\!]_Q \subseteq [\![\bar{\mathbf{A}}_G]\!]_{Q+}$
- Unique deterministic effect: e_G

Generalized extended States

- Generalised extended state space $[A_G]_{\mathbb{R}}$: space of bounded linear functionals on $[\bar{A}_G]_{\mathbb{Q}\mathbb{R}}$
- Norm in $\llbracket \mathbf{A}_G \rrbracket_{\mathbb{R}}$: $\|\rho\|_* \coloneqq \sup_{\|a\|_{\sup}=1} |(a|\rho)|$.
- Criterion for proper extended states: they must locally "look like" states

Extended States

• Local restriction on $R \subseteq G$: given $\rho \in [\![A_G]\!]_{\mathbb{R}}$ we define a functional on $[\![\bar{A}_R]\!]_{\mathbb{R}}$ as follows

$$\forall a \in \llbracket \bar{\mathbf{A}}_R \rrbracket_{\mathbb{R}}, \ (a|\rho_{|R}) := (a_R|\rho)$$

- A generalised extended state is a proper state if $\forall R \subseteq G \quad \rho_{|R} \in \llbracket A_R \rrbracket$
- We can define $[\![A_G]\!]_+$ and $[\![A_G]\!]_1$

Transformations instead of effects

• Local transformation: a pair (\mathscr{A}, R) where $R \subseteq G$, $\mathscr{A} \in [\![A_R \to A_R]\!]_{\mathbb{R}}$

Transformations instead of effects

- Local transformation: a pair (\mathscr{A}, R) where $R \subseteq G$, $\mathscr{A} \in \llbracket A_R \to A_R \rrbracket_{\mathbb{R}}$
- Action on local effects

Transformations instead of effects

- Local transformation: a pair (\mathscr{A}, R) where $R \subseteq G$, $\mathscr{A} \in [\![A_R \to A_R]\!]_{\mathbb{R}}$
- Action on local effects
- Equivalence:

$$\mathscr{A}_R \sim \mathscr{A}_S' \qquad \begin{cases} \mathscr{A} = \mathscr{A}_0 \otimes \mathscr{I}_{S \setminus R} \\ \mathscr{A}' = \mathscr{A}_0 \otimes \mathscr{I}_{R \setminus S} \end{cases}$$

Transformations instead of effects

- Local transformation: a pair (\mathscr{A}, R) where $R \subseteq G$, $\mathscr{A} \in [\![A_R \to A_R]\!]_{\mathbb{R}}$
- Action on local effects
- Equivalence:

$$\mathscr{A}_R \sim \mathscr{A}_S' \qquad \begin{cases} \mathscr{A} = \mathscr{A}_0 \otimes \mathscr{I}_{S \setminus R} \\ \mathscr{A}' = \mathscr{A}_0 \otimes \mathscr{I}_{R \setminus S} \end{cases}$$

• Domain set: $[\![A_G \to A_G]\!]_{L\mathbb{R}} = [\![\{ \mathscr{A}_R \mid \mathscr{A} \in [\![A_R \to A_R]\!] \}/\simeq$

Algebra structure

 Sum of local transformations and multiplication by a real number

$$h\mathscr{A}_R := \begin{cases} (h\mathscr{A})_R & h \neq 0, \\ 0_\emptyset & h = 0, \end{cases}$$

$$\mathscr{A}_R + \mathscr{B}_S := \mathscr{C}_{R \cup S}$$

$$\mathscr{C} := \mathscr{A} \otimes \mathscr{I}_{S \setminus R} + \mathscr{B} \otimes \mathscr{I}_{R \setminus S}.$$

Algebra structure

 Sum of local transformations and multiplication by a real number

$$h\mathscr{A}_{R} := egin{cases} (h\mathscr{A})_{R} & h \neq 0, \ 0_{\emptyset} & h = 0, \end{cases}$$
 $\mathscr{A}_{R} + \mathscr{B}_{S} := \mathscr{C}_{R \cup S}$ $\mathscr{C} := \mathscr{A} \otimes \mathscr{I}_{S \setminus R} + \mathscr{B} \otimes \mathscr{I}_{R \setminus S}.$

Composition of local transformations

$$\mathscr{A}_R\mathscr{B}_S := (\{\mathscr{A}\otimes\mathscr{I}_{S\backslash R}\}\{\mathscr{B}\otimes\mathscr{I}_{R\backslash S}\})_{R\cup S}.$$

Operational norm and sup norm

Topology given by the sup-norm

```
J(\mathscr{A}) := \{ \lambda \in \mathbb{R} \mid \exists \mathscr{C} \in \llbracket A_G \to A_G \rrbracket_{L1}, \ \lambda \mathscr{C} \pm \mathscr{A} \ge 0 \}\|\mathscr{A}\|_{\sup} := \inf J(\mathscr{A})
```

Operational norm and sup norm

Topology given by the sup-norm

$$J(\mathscr{A}) := \{ \lambda \in \mathbb{R} \mid \exists \mathscr{C} \in \llbracket A_G \to A_G \rrbracket_{L1}, \ \lambda \mathscr{C} \pm \mathscr{A} \ge 0 \}$$
$$\|\mathscr{A}\|_{\sup} := \inf J(\mathscr{A})$$

• Reason: $\|\mathscr{A}\mathscr{B}\|_{\sup} \leq \|\mathscr{A}\|_{\sup} \|\mathscr{B}\|_{\sup}$

Operational norm and sup norm

Topology given by the sup-norm

$$J(\mathscr{A}) := \{ \lambda \in \mathbb{R} \mid \exists \mathscr{C} \in \llbracket A_G \to A_G \rrbracket_{L1}, \ \lambda \mathscr{C} \pm \mathscr{A} \ge 0 \}$$
$$\|\mathscr{A}\|_{\sup} := \inf J(\mathscr{A})$$

- Reason: $\|\mathscr{A}\mathscr{B}\|_{\sup} \leq \|\mathscr{A}\|_{\sup} \|\mathscr{B}\|_{\sup}$
- The limit of product sequences is the product of limits

Operational norm and sup norm

Topology given by the sup-norm

$$J(\mathscr{A}) := \{ \lambda \in \mathbb{R} \mid \exists \mathscr{C} \in \llbracket A_G \to A_G \rrbracket_{L1}, \ \lambda \mathscr{C} \pm \mathscr{A} \ge 0 \}$$
$$\|\mathscr{A}\|_{\sup} := \inf J(\mathscr{A})$$

- Reason: $\|\mathscr{A}\mathscr{B}\|_{\sup} \leq \|\mathscr{A}\|_{\sup} \|\mathscr{B}\|_{\sup}$
- The limit of product sequences is the product of limits
- Closure in the operational norm would not be an algebra

Quasi local algebra

Closure of the inductive limit

- Algebra $[\![A_G \to A_G]\!]_{C\mathbb{R}}$ of Cauchy sequences
- Equivalence relation: $\mathscr{A}_n \simeq \mathscr{B}_n$ if $\lim_{n \to \infty} \|\mathscr{A}_n \mathscr{B}_n\|_{\sup} = 0$
- Quasi-local algebra $[\![A_G \to A_G]\!]_{Q\mathbb{R}}$: $[\![A_G \to A_G]\!]_{C\mathbb{R}}/\simeq$
- Local transformations make up a subalgebra
- We define $\|A_G \to A_G\|_{Q1} \subseteq \|A_G \to A_G\|_Q \subseteq \|A_G \to A_G\|_{Q+}$

Action on quasi-local effects

• Action of $[A_G \to A_G]_{Q\mathbb{R}}$ on $[\bar{A}_G]_{Q\mathbb{R}}$ $\mathscr{A}^{\dagger} a = \lim_{m,n \to \infty} \mathscr{A}_m^{\dagger} a_n$

Action on quasi-local effects

- Action of $[A_G \to A_G]_{Q\mathbb{R}}$ on $[\bar{A}_G]_{Q\mathbb{R}}$ $\mathscr{A}^{\dagger} a = \lim_{m,n \to \infty} \mathscr{A}^{\dagger}_m a_n$
- Main result

$$\forall a \in \llbracket \bar{\mathbf{A}}_G \rrbracket_{Q^*} \; \exists \mathscr{A} \in \llbracket \mathbf{A}_G \to \mathbf{A}_G \rrbracket_{Q^*}, \text{ s.t. } a = \mathscr{A}^{\dagger} e_G$$

$$* = \text{nothing}, +, 1, \mathbb{R}$$

Action on quasi-local effects

• Action of $[A_G \to A_G]_{Q\mathbb{R}}$ on $[\bar{A}_G]_{Q\mathbb{R}}$ $\mathscr{A}^{\dagger}a = \lim_{m,n \to \infty} \mathscr{A}_m^{\dagger}a_n$

Main result

$$\forall a \in \llbracket \bar{\mathbf{A}}_G \rrbracket_{Q^*} \; \exists \mathscr{A} \in \llbracket \mathbf{A}_G \to \mathbf{A}_G \rrbracket_{Q^*}, \text{ s.t. } a = \mathscr{A}^{\dagger} e_G$$

$$* = \text{nothing}, +, 1, \mathbb{R}$$

• Dual action on $[\![\mathbf{A}_G]\!]_{\mathbb{R}}$: $\forall a \in [\![\bar{\mathbf{A}}_G]\!]_{Q\mathbb{R}}$

$$\begin{array}{c|c}
\widehat{\mathcal{A}\rho} & A_G \\
\widehat{\mathcal{A}}\rho & a
\end{array} :=
\begin{array}{c|c}
\rho & A_G \\
\widehat{\mathcal{A}}^{\dagger}a
\end{array}$$

We could define a CA as a linear map

- We could define a CA as a linear map
- What if we add an external system?

- We could define a CA as a linear map
- What if we add an external system?
- Transformations in OPTs are families of linear maps

- We could define a CA as a linear map
- What if we add an external system?
- Transformations in OPTs are families of linear maps
- By now we know the families for (quasi-)local transformations

- We could define a CA as a linear map
- What if we add an external system?
- Transformations in OPTs are families of linear maps
- By now we know the families for (quasi-)local transformations
- We need to build consistent families also for CAs

• Let $G' := G \cup \{\alpha\}$; let $\forall C$, $A_{G'_C}$ be the topological limit with $A_{\alpha} = C$

- Let $G' := G \cup \{\alpha\}$; let $\forall C$, $A_{G'_C}$ be the topological limit with $A_{\alpha} = C$
- Automorphic family:

$$\mathscr{V}^{\dagger} := \{ \mathscr{V}_{\mathbf{C}}^{\dagger} : [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!]_{Q\mathbb{R}} \to [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!] \mid \mathbf{C} \in \mathsf{Sys}(\Theta) \}$$

- Let $G' := G \cup \{\alpha\}$; let $\forall C$, $A_{G'_C}$ be the topological limit with $A_{\alpha} = C$
- Automorphic family:

$$\mathscr{V}^{\dagger} := \{ \mathscr{V}_{\mathbf{C}}^{\dagger} : [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!]_{Q\mathbb{R}} \to [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!] \mid \mathbf{C} \in \mathsf{Sys}(\Theta) \}$$

- Let $G' := G \cup \{\alpha\}$; let $\forall C$, $A_{G'_C}$ be the topological limit with $A_{\alpha} = C$
- Automorphic family:

$$\mathscr{V}^{\dagger} := \{ \mathscr{V}_{\mathbf{C}}^{\dagger} : [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!]_{Q\mathbb{R}} \to [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!] \mid \mathbf{C} \in \mathsf{Sys}(\Theta) \}$$

- For $C = C_0 C_1$ $\mathscr{V}_C^{-1\dagger} \mathscr{A}_{G'_{C_0}}^{\dagger} \mathscr{V}_C^{\dagger} = \mathscr{A}'_{G'_{C_0}}^{\dagger}$ $\mathscr{V}_C^{\dagger} \mathscr{A}_{G'_{C_0}}^{\dagger} \mathscr{V}_C^{-1\dagger} = \mathscr{A}''_{G'_{C_0}}^{\dagger}$

- Let $G' := G \cup \{\alpha\}$; let $\forall C$, $A_{G'_C}$ be the topological limit with $A_{\alpha} = C$
- Automorphic family:

$$\mathscr{V}^{\dagger} := \{ \mathscr{V}_{\mathbf{C}}^{\dagger} : [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!]_{Q\mathbb{R}} \to [\![\bar{\mathbf{A}}_{G'_{\mathbf{C}}}]\!] \mid \mathbf{C} \in \mathsf{Sys}(\Theta) \}$$

- For $C = C_0 C_1$ $\mathscr{V}_{C}^{-1\dagger} \mathscr{A}_{G'_{C_0}}^{\dagger} \mathscr{V}_{C}^{\dagger} = \mathscr{A}'_{G'_{C_0}}^{\dagger}$ $\mathscr{V}_{C}^{\dagger} \mathscr{A}_{G'_{C_0}}^{\dagger} \mathscr{V}_{C}^{-1\dagger} = \mathscr{A}''_{G'_{C_0}}^{\dagger}$

• An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.

- An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.
 - $\hat{\mathscr{V}}_{\mathbf{C}}[\![\mathbf{A}_{G'_{\mathbf{C}}}]\!] = [\![\mathbf{A}_{G'_{\mathbf{C}}}]\!]$

- An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.
 - $\hat{\mathscr{V}}_{\mathbf{C}}[\![\mathbf{A}_{G'_{\mathbf{C}}}]\!] = [\![\mathbf{A}_{G'_{\mathbf{C}}}]\!]$
 - $\mathscr{V}^\dagger\cdot\mathscr{V}^{-1\dagger}$ leaves $[\![A_{G'_{\mathbf{C}}}\to A_{G'_{\mathbf{C}}}]\!]_{L+}$ invariant

- An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.
 - $\hat{\mathscr{V}}_{\mathbf{C}}[\![\mathbf{A}_{G'_{\mathbf{C}}}]\!] = [\![\mathbf{A}_{G'_{\mathbf{C}}}]\!]$
 - $\mathscr{V}^\dagger\cdot\mathscr{V}^{-1\dagger}$ leaves $[\![\mathbf{A}_{G'_{\mathbf{C}}}\to\mathbf{A}_{G'_{\mathbf{C}}}]\!]_{L+}$ invariant
- Result 1: $(G, A, \mathcal{V}^{-1\dagger})$ is an UR

- An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.
 - $\hat{\mathscr{V}}_{\mathbf{C}}[\![\mathbf{A}_{G'_{\mathbf{C}}}]\!] = [\![\mathbf{A}_{G'_{\mathbf{C}}}]\!]$
 - $\mathscr{V}^\dagger\cdot\mathscr{V}^{-1\dagger}$ leaves $[\![A_{G'_{\mathbf{C}}}\to A_{G'_{\mathbf{C}}}]\!]_{L+}$ invariant
- Result 1: $(G, A, \mathcal{V}^{-1\dagger})$ is an UR
- Result 2: $\mathscr{V}^{\dagger}e_{G'}=e_{G'}$

- An update rule is $(G, A, \mathscr{V}^{\dagger})$, isometric s.t.
 - $\hat{\mathscr{V}}_{\mathbf{C}}[\![\mathbf{A}_{G'_{\mathbf{C}}}]\!] = [\![\mathbf{A}_{G'_{\mathbf{C}}}]\!]$
 - $\mathscr{V}^\dagger\cdot\mathscr{V}^{-1\dagger}$ leaves $[\![A_{G'_{\mathbf{C}}}\to A_{G'_{\mathbf{C}}}]\!]_{L+}$ invariant
- Result 1: $(G, A, \mathcal{V}^{-1\dagger})$ is an UR
- Result 2: $\mathscr{V}^{\dagger}e_{G'}=e_{G'}$
- Result 3: $\mathscr{V}^\dagger \cdot \mathscr{V}^{-1\dagger}$ preserves $\llbracket \mathcal{A}_{G'_{\mathbf{C}}} \to \mathcal{A}_{G'_{\mathbf{C}}} \rrbracket_{\$*}$ for \$ = Q, L and $* = 1, 1, +, \mathbb{R}$

Admissibility

• Desideratum: $\mathscr{V}_{\rm C}^\dagger$ must represent the action of $\mathscr{V}_{G}^\dagger\otimes\mathscr{I}_{\rm C}^\dagger$

Admissibility

- Desideratum: $\mathscr{V}_{\mathbf{C}}^\dagger$ must represent the action of $\mathscr{V}_{G}^\dagger \otimes \mathscr{I}_{\mathbf{C}}^\dagger$
- Observation: $\mathscr{V}^{\dagger}[\![\bar{\mathbf{A}}_R]\!]_{L\mathbb{R}}\subseteq [\![\bar{\mathbf{A}}_{R'}]\!]_{L\mathbb{R}},$ $R\subseteq G'$

Admissibility

- Desideratum: $\mathscr{V}_{\mathbf{C}}^{\dagger}$ must represent the action of $\mathscr{V}_{G}^{\dagger}\otimes\mathscr{I}_{\mathbf{C}}^{\dagger}$
- Observation: $\mathscr{V}^{\dagger} \llbracket \bar{\mathbf{A}}_R \rrbracket_{L\mathbb{R}} \subseteq \llbracket \bar{\mathbf{A}}_{R'} \rrbracket_{L\mathbb{R}},$ $R \subseteq G'$
- The UR is admissible if the family of maps $\mathscr{V}_{\mathbb{C}}^{\dagger}(R): [\![\bar{A}_R]\!]_{\mathbb{R}} \to [\![\bar{A}_{R'}]\!]_{\mathbb{R}}$ represents some transformation $\mathscr{V}_R \otimes \mathscr{I}_{\mathbb{C}}$

Admissibility

- Desideratum: $\mathscr{V}_{\mathbf{C}}^\dagger$ must represent the action of $\mathscr{V}_{G}^\dagger \otimes \mathscr{I}_{\mathbf{C}}^\dagger$
- Observation: $\mathscr{V}^{\dagger} \llbracket \bar{\mathbf{A}}_R \rrbracket_{L\mathbb{R}} \subseteq \llbracket \bar{\mathbf{A}}_{R'} \rrbracket_{L\mathbb{R}},$ $R \subseteq G'$
- The UR is admissible if the family of maps $\mathscr{V}_{\mathbb{C}}^{\dagger}(R): [\![\bar{A}_R]\!]_{\mathbb{R}} \to [\![\bar{A}_{R'}]\!]_{\mathbb{R}}$ represents some transformation $\mathscr{V}_R \otimes \mathscr{I}_{\mathbb{C}}$
- A Global Update Rule (GUR) is a UR $(G, A, \mathscr{V}^{\dagger})$ such that $(G, A, \mathscr{V}^{\dagger})$, $(G, A, \mathscr{V}^{-1\dagger})$ are admissible