Operational probabilistic theories and cellular automata: how I learned to stop worrying and love C* algebras

School on Advanced Topics in Quantum Information and Foundations

Quantum Information Unit and the Yukawa Institute for Theoretical Physics, Kyoto University

Paolo Perinotti - February 8-12 2021

Lecture 4 Causal influence in OPTs

Summary

- Networks and causal cones
- Signalling
- Propagation of interventions
- The comb structure
- Classical and Quantum theory
- No interaction without disturbance

Causal influence

• Let us consider the local algebra $[\![\mathbf{A}_g \mathbf{C} o \mathbf{A}_g \mathbf{C}]\!]_{Q\mathbb{R}}$

Causal influence

- Let us consider the local algebra $[\![\mathbf{A}_g \mathbf{C} \to \mathbf{A}_g \mathbf{C}]\!]_{Q\mathbb{R}}$
- It is transformed in a subalgebra of some region R

$$\mathscr{V}[\![\mathbf{A}_{g}\mathbf{C} \to \mathbf{A}_{g}\mathbf{C}]\!]_{Q\mathbb{R}} \mathscr{V}^{-1} \subseteq [\![\mathbf{A}_{R}\mathbf{C} \to \mathbf{A}_{R}\mathbf{C}]\!]_{Q\mathbb{R}}$$

Causal influence

- Let us consider the local algebra $[\![\mathbf{A}_g \mathbf{C} \to \mathbf{A}_g \mathbf{C}]\!]_{Q\mathbb{R}}$
- It is transformed in a subalgebra of some region ${\cal R}$

$$\mathscr{V}[\![\mathbf{A}_g\mathbf{C} \to \mathbf{A}_g\mathbf{C}]\!]_{Q\mathbb{R}} \mathscr{V}^{-1} \subseteq [\![\mathbf{A}_R\mathbf{C} \to \mathbf{A}_R\mathbf{C}]\!]_{Q\mathbb{R}}$$

• We say that g does not causally influence g' if for any C, $g' \notin R$

Causal influence

- Let us consider the local algebra $[\![\mathbf{A}_g \mathbf{C} \to \mathbf{A}_g \mathbf{C}]\!]_{Q\mathbb{R}}$
- It is transformed in a subalgebra of some region ${\cal R}$

$$\mathscr{V}[\![\mathbf{A}_g\mathbf{C} \to \mathbf{A}_g\mathbf{C}]\!]_{Q\mathbb{R}} \mathscr{V}^{-1} \subseteq [\![\mathbf{A}_R\mathbf{C} \to \mathbf{A}_R\mathbf{C}]\!]_{Q\mathbb{R}}$$

• We say that g does not causally influence g' if for any C, $g' \notin R$

Causal influence

- Let us consider the local algebra $[\![\mathbf{A}_g \mathbf{C} \to \mathbf{A}_g \mathbf{C}]\!]_{Q\mathbb{R}}$
- It is transformed in a subalgebra of some region ${\cal R}$

$$\mathscr{V}[\![\mathbf{A}_g\mathbf{C} \to \mathbf{A}_g\mathbf{C}]\!]_{Q\mathbb{R}}\mathscr{V}^{-1} \subseteq [\![\mathbf{A}_R\mathbf{C} \to \mathbf{A}_R\mathbf{C}]\!]_{Q\mathbb{R}}$$

- We say that g does not causally influence g' if for any C, $g' \notin R$
- The forward neighbourhood N_g^+ of g is the set of all g^\prime such that g causally influences g^\prime

Causal influence in quantum literature

The traditional approach: start from no-signalling

No intervention on the state of A can influence the state of C

In quantum theory

$$\operatorname{Tr}_{\mathrm{B}}[R_{\mathscr{C}}] = I_{\mathrm{A}} \otimes R_{\mathscr{F}}$$

 $R_{\mathscr E}$ denoting the Choi operator corresponding to $\mathscr E$

- The definition is inspired by the notion of neighbourhood in QCAs
- It holds for reversible transformations

- The definition is inspired by the notion of neighbourhood in QCAs
- It holds for reversible transformations
- Basic idea:

- The definition is inspired by the notion of neighbourhood in QCAs
- It holds for reversible transformations
- Basic idea:

- The definition is inspired by the notion of neighbourhood in QCAs
- It holds for reversible transformations
- Basic idea:

The precise notion

 Without local discriminability (local tomography/tomographic locality) we need to take into account interventions involving ancillary systems

Explanation of the definition

Suppose that under $\mathscr U$ one has $A \not\to D$

Explanation of the definition

Suppose that under $\mathscr U$ one has $A \not\to D$

Equivalently:

Consider
$$E=I$$
, $A \nearrow A = A \nearrow A$ then discard C

Let $A \not\rightarrow D$:

Consider
$$E = I$$
, $A = A e$

then discard C

Let $A \not\rightarrow D$:

Consider
$$E = I$$
, $A = A e$

then discard C

Definition:

• Condition:

If
$$A \not\rightarrow B'$$

If
$$A \not\rightarrow B'$$

If
$$A_1$$
 A_1 A

Proof

 $A \not\rightarrow B'$

Necessary condition: comb structure

• Suppose that $A \not\to B'$. Then it must be

Necessary condition: comb structure

• Suppose that $A \not\to B'$. Then it must be

Preparing a state of A and discarding A₁we obtain that

Chain of conditions

Classical theory

Example 1

One can prove that in classical theory

Example 1

One can prove that in classical theory

Example 1

One can prove that in classical theory

Example 1

One can prove that in classical theory

Example 1

One can prove that in classical theory

Example 1

One can prove that in classical theory

Classical C-not

• However, $\tilde{\mathscr{S}_B} \neq \mathscr{S}_B' \otimes \mathscr{I}_{A'}$, thus $B \to A'$

Chain of conditions

In classical theory

Chain of conditions

In classical theory

Chain of conditions

In classical theory

Again on the classical C-not

Comb structure

Example 2

Also in quantum theory

Example 2

Also in quantum theory

$$A \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

Thus

Example 2

Also in quantum theory

$$A \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

$$B \not\sim B'$$

Thus

$$A \not\rightarrow B'$$

$$B'$$

$$B'$$

$$B'$$

$$B'$$

$$B'$$

$$A \not\rightarrow B'$$

$$B'$$

What about the first implication?

• From the characterisation of Kraus decompositions of a given channel

$$\sum_{i \in \mathsf{X}} \frac{A}{\mathcal{I}_i} \frac{C}{B} = \frac{A}{B} = \frac{A}{B}$$

• From the characterisation of Kraus decompositions of a given channel

$$\sum_{i \in X} \frac{A}{B} \frac{C}{\mathscr{I}_i} = \frac{A}{B} = \frac{A}{B} \frac{C}{B} = \frac{A}{B} \frac{C}{B}$$

Also from purification

• From the characterisation of Kraus decompositions of a given channel

$$\sum_{i \in \mathsf{X}} \frac{A}{\mathcal{I}_i} \frac{C}{B} = \frac{A}{B} = \frac{A}{B} \frac{C}{B} = \frac{A}{\mathcal{I}_i} \frac{C}{B} = \frac{$$

- Also from purification
 - The above result holds also in Fermionic theory and Real Quantum theory

• From the characterisation of Kraus decompositions of a given channel

$$\sum_{i \in X} \frac{A}{B} \frac{C}{i} = \frac{A}{B} = \frac{A}{B} \frac{C}{B} = \frac{A}{B}$$

- Also from purification
 - The above result holds also in Fermionic theory and Real Quantum theory

No interaction without disturbance

From no interaction without disturbance one has A → B

- From no interaction without disturbance one has A → B
- Thus

$$A \not\rightarrow B'$$

$$B'$$

$$B'$$

$$B'$$

$$B'$$

$$B'$$

$$A \not\rightarrow B'$$

$$B'$$

- From no interaction without disturbance one has A → B
- Thus

True in every theory with purification or just no interaction without disturbance

Proof

Depending on time

$$\frac{A_{1}}{2} \frac{A_{1}}{2} \frac{A_{1}}{2} = \frac{A_{1}}{2} \frac{A_{1}}{2} \frac{A_{1}}{2} = \frac{A_{1$$

Interaction without disturbance

• What about a theory featuring interactions without disturbance?

Interaction without disturbance

• What about a theory featuring interactions without disturbance?

• Thus, if the special interaction without disturbance is reversible, one has

