Operational probabilistic theories and cellular automata: how I learned to stop worrying and love C* algebras

School on Advanced Topics in Quantum Information and Foundations

Quantum Information Unit and the Yukawa Institute for Theoretical Physics, Kyoto University

Paolo Perinotti - February 8-12 2021

Lecture 5 Homogeneity and Cayley graphs

Summary

- Local processes in one-to one correspondence with CA
- Homogeneity
 - Homologous regions
- Cayley graphs and translations

• \mathscr{V}^{\dagger} acts locally on R if for all C, S

$$\mathscr{V}_{S}^{\dagger} = \mathscr{V}_{R \cap S}^{\dagger} \otimes \mathscr{I}_{S \setminus R}$$

• \mathscr{V}^{\dagger} acts locally on R if for all C, S

$$\mathscr{V}_{S}^{\dagger} = \mathscr{V}_{R \cap S}^{\dagger} \otimes \mathscr{I}_{S \setminus R}$$

• We write $\mathscr{V}^\dagger = \mathscr{V'}^\dagger \otimes \mathscr{I}_{G \backslash R}^\dagger$

• \mathscr{V}^{\dagger} acts locally on R if for all C, S

$$\mathscr{V}_{S}^{\dagger} = \mathscr{V}_{R \cap S}^{\dagger} \otimes \mathscr{I}_{S \setminus R}$$

- We write $\mathscr{V}^\dagger = \mathscr{V'}^\dagger \otimes \mathscr{I}_{G \backslash R}^\dagger$
- If \mathscr{V}^{\dagger} acts locally on R and \mathscr{W}^{\dagger} acts locally on $G \setminus R$

$${\mathscr V'}^\dagger \otimes {\mathscr W'}^\dagger := {\mathscr V}^\dagger {\mathscr W}^\dagger = {\mathscr W}^\dagger {\mathscr V}^\dagger$$

The swap GUR

• Let $G = H \times \{0, 1\}$

- Let $G = H \times \{0, 1\}$
- For $R \subseteq H$, we define $(G, A, \mathscr{S}_R^{\dagger})$ that swaps systems in the region (R, 0) with those in (R, 1)

- Let $G = H \times \{0, 1\}$
- For $R \subseteq H$, we define $(G, A, \mathscr{S}_R^{\dagger})$ that swaps systems in the region (R, 0) with those in (R, 1)

- Let $G = H \times \{0, 1\}$
- For $R \subseteq H$, we define $(G, A, \mathscr{S}_R^{\dagger})$ that swaps systems in the region (R, 0) with those in (R, 1)
- $\bullet \quad \mathscr{S}_H^{\dagger}(\mathscr{U}\otimes\mathscr{V})^{\dagger}\mathscr{S}_H^{\dagger} = (\mathscr{V}\otimes\mathscr{U})^{\dagger}$

- Let $G = H \times \{0, 1\}$
- For $R \subseteq H$, we define $(G, A, \mathscr{S}_R^{\dagger})$ that swaps systems in the region (R, 0) with those in (R, 1)
- $\bullet \quad \mathscr{S}_H^{\dagger}(\mathscr{U}\otimes\mathscr{V})^{\dagger}\mathscr{S}_H^{\dagger} = (\mathscr{V}\otimes\mathscr{U})^{\dagger}$
- If $R\cap S=\emptyset$, $\mathscr{V}^{\dagger}\mathscr{S}_{R\cup S}^{\dagger}\mathscr{V}^{-1\dagger}=\mathscr{V}^{\dagger}\mathscr{S}_{R}^{\dagger}\mathscr{V}^{-1\dagger}\mathscr{V}^{\dagger}\mathscr{S}_{S}^{\dagger}\mathscr{V}^{-1\dagger}$

Imprinting a GUR in local transformation

Imprinting a GUR in local transformation

• Consider $\mathscr{V}^{\dagger} \otimes \mathscr{V}^{-1\dagger}$ it is easily shown that

$$\mathcal{V}^{\dagger} \otimes \mathcal{V}^{-1\dagger} = (\mathcal{V}^{\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}^{\dagger}$$

$$= \left[\prod_{g \in G} (\mathcal{V}^{\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}_{g}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \right] \mathscr{S}^{\dagger}$$

Imprinting a GUR in local transformation

• Consider $\mathscr{V}^{\dagger} \otimes \mathscr{V}^{-1\dagger}$ it is easily shown that

$$\mathcal{V}^{\dagger} \otimes \mathcal{V}^{-1\dagger} = (\mathcal{V}^{\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}^{\dagger}$$

$$= \left[\prod_{g \in G} (\mathcal{V}^{\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}_{g}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \right] \mathscr{S}^{\dagger}$$

• Let ${\mathscr S'}_g^\dagger := (\mathscr V^\dagger \otimes \mathscr I_G^\dagger) \mathscr I_g^\dagger (\mathscr V^{-1\dagger} \otimes \mathscr I_G^\dagger)$

Imprinting a GUR in local transformation

• Consider $\mathscr{V}^{\dagger} \otimes \mathscr{V}^{-1\dagger}$ it is easily shown that

$$\mathcal{V}^{\dagger} \otimes \mathcal{V}^{-1\dagger} = (\mathcal{V}^{\dagger} \otimes \mathcal{I}_{G}^{\dagger}) \mathcal{I}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathcal{I}_{G}^{\dagger}) \mathcal{I}^{\dagger}$$

$$= \left[\prod_{g \in G} (\mathcal{V}^{\dagger} \otimes \mathcal{I}_{G}^{\dagger}) \mathcal{I}_{g}^{\dagger} (\mathcal{V}^{-1\dagger} \otimes \mathcal{I}_{G}^{\dagger}) \right] \mathcal{I}^{\dagger}$$

- Let ${\mathscr S'}_g^\dagger := (\mathscr V^\dagger \otimes \mathscr I_G^\dagger) \mathscr S_g^\dagger (\mathscr V^{-1\dagger} \otimes \mathscr I_G^\dagger)$
- The transformation $\mathscr{S}_g'^\dagger$ identifies both neighbourhoods of g

Reversing the correspondence

• Every GUR defines $\mathscr{S'}_g^{\dagger}$

- Every GUR defines $\mathscr{S'}_g^{\dagger}$
- Viceversa, every set $\mathscr{S'}_g^\dagger$ such that

- Every GUR defines $\mathscr{S'}_g^{\dagger}$
- Viceversa, every set $\mathscr{S'}_g^\dagger$ such that
 - $\mathscr{S}_g^{\prime\dagger^2} = \mathscr{I}^\dagger$

- Every GUR defines \mathscr{S}'_q^{\dagger}
- Viceversa, every set $\mathscr{S'}_{q}^{\dagger}$ such that

$$\mathscr{S}_g^{\prime\dagger^2} = \mathscr{I}^\dagger$$

$$\mathscr{S}_g'^{\dagger 2} = \mathscr{I}^{\dagger}$$

$$\mathscr{S}_g'^{\dagger} \mathscr{S}_h'^{\dagger} = \mathscr{S}_h'^{\dagger} \mathscr{S}_g'^{\dagger}$$

- Every GUR defines $\mathscr{S'}_g^\dagger$
- Viceversa, every set $\mathscr{S'}_g^\dagger$ such that

$$\mathscr{S}_g^{\prime\dagger^2} = \mathscr{I}^\dagger$$

$$\mathscr{S}_g^{\prime\dagger}\mathscr{S}_h^{\prime\dagger}=\mathscr{S}_h^{\prime\dagger}\mathscr{S}_g^{\prime\dagger}$$

$$\mathscr{S'}_{g}^{\dagger}(\mathscr{I}_{N_{g}^{+}}^{\dagger}\otimes\mathscr{A}^{\dagger})\mathscr{S'}_{g}^{\dagger}=\mathscr{A'}^{\dagger}\otimes\mathscr{I}_{g}^{\dagger}$$

$$\prod_{h\in N^{-}}\mathscr{S'}_{h}^{\dagger}(\mathscr{B}_{g}^{\dagger}\otimes\mathscr{I}_{N_{g}^{-}}^{\dagger})\mathscr{S'}_{h}^{\dagger}=\mathscr{I}_{N_{g}^{-}}^{\dagger}\otimes\mathscr{B'}^{\dagger}$$

Reversing the correspondence

- Every GUR defines ${\mathscr{S}'}_g^\dagger$
- Viceversa, every set ${\mathscr{S}'}_g^\dagger$ such that

$$\mathscr{S}_g^{\prime\dagger^2} = \mathscr{I}^\dagger$$

$$\mathscr{S}_g^{\prime\dagger}\mathscr{S}_h^{\prime\dagger}=\mathscr{S}_h^{\prime\dagger}\mathscr{S}_g^{\prime\dagger}$$

$$\mathscr{S'}_{g}^{\dagger}(\mathscr{I}_{N_{g}^{+}}^{\dagger}\otimes\mathscr{A}^{\dagger})\mathscr{S'}_{g}^{\dagger}=\mathscr{A'}^{\dagger}\otimes\mathscr{I}_{g}^{\dagger}$$

$$\prod_{h\in N_{g}^{-}}\mathscr{S'}_{h}^{\dagger}(\mathscr{B}_{g}^{\dagger}\otimes\mathscr{I}_{N_{g}^{-}}^{\dagger})\mathscr{S'}_{h}^{\dagger}=\mathscr{I}_{N_{g}^{-}}^{\dagger}\otimes\mathscr{B'}^{\dagger}$$

defines a GUR through

$$\mathscr{V}^{\dagger} \otimes \mathscr{V}^{-1\dagger} = \left[\prod_{g \in G} (\mathscr{V}^{\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \mathscr{S}_{g}^{\dagger} (\mathscr{V}^{-1\dagger} \otimes \mathscr{I}_{G}^{\dagger}) \right] \mathscr{S}^{\dagger}$$

Translation invariance

 For QCA the local rule at any site summarises all the information needed about the evolution thanks to translation invariance

Translation invariance

- For QCA the local rule at any site summarises all the information needed about the evolution thanks to translation invariance
- Here we are not assuming a lattice structure from the outset and there is no natural notion of translation

Translation invariance

- For QCA the local rule at any site summarises all the information needed about the evolution thanks to translation invariance
- Here we are not assuming a lattice structure from the outset and there is no natural notion of translation
- Cellular automata are defined as homogeneous global update rules

Translation invariance

- For QCA the local rule at any site summarises all the information needed about the evolution thanks to translation invariance
- Here we are not assuming a lattice structure from the outset and there is no natural notion of translation
- Cellular automata are defined as homogeneous global update rules
- Intuitively speaking: homogeneity consists in "treating" every cell equally

Requirements for a precise definition

 The only operational criterion to establish equality of consists in "running the same test" in two cells and comparing the statistics of outcomes

Requirements for a precise definition

- The only operational criterion to establish equality of consists in "running the same test" in two cells and comparing the statistics of outcomes
- The definition of homogeneity requires first a precise notion of

Requirements for a precise definition

- The only operational criterion to establish equality of consists in "running the same test" in two cells and comparing the statistics of outcomes
- The definition of homogeneity requires first a precise notion of
 - "running the same test" on different cells

Requirements for a precise definition

- The only operational criterion to establish equality of consists in "running the same test" in two cells and comparing the statistics of outcomes
- The definition of homogeneity requires first a precise notion of
 - "running the same test" on different cells
 - exchanging the role of two cells

Operationally equivalent regions

Running the same test

 Two systems A and B are operationally equivalent (A ≅ B) if there is a reversible transformation between them

$$\mathscr{V} \in [A_1 \to A_2], \quad \mathscr{U} \in [B_1 \to B_2]$$

Running the same test

- Two systems A and B are operationally equivalent (A ≅ B) if there is a reversible transformation between them
- The reversible transformation defines the notion of "performing the same test"

$$\mathscr{V} \in [A_1 \to A_2], \quad \mathscr{U} \in [B_1 \to B_2]$$

Accounting for internal structure

 When talking about regions, we also want to compare their internal structure

Accounting for internal structure

- When talking about regions, we also want to compare their internal structure
- Every subregion $S_1 \subseteq R_1$ must have a counterpart $S_2 \subseteq R_2$ such that they correspond to o.e. systems $A_{S_1} \cong A_{S_2}$

Accounting for internal structure

- When talking about regions, we also want to compare their internal structure
- Every subregion $S_1 \subseteq R_1$ must have a counterpart $S_2 \subseteq R_2$ such that they correspond to o.e. systems $A_{S_1} \cong A_{S_2}$
- Result: R_1 and R_2 are o.e. iff $R_1 = \{g_1, \ldots, g_l\}, \ R_2 = \{h_1, \ldots, h_l\}, \ A_{g_i} \cong A_{h_i}$

Accounting for internal structure

- When talking about regions, we also want to compare their internal structure
- Every subregion $S_1 \subseteq R_1$ must have a counterpart $S_2 \subseteq R_2$ such that they correspond to o.e. systems $A_{S_1} \cong A_{S_2}$
- Result: R_1 and R_2 are o.e. iff $R_1 = \{g_1, \dots, g_l\}, \ R_2 = \{h_1, \dots, h_l\}, \ A_{g_i} \cong A_{h_i}$
- In this case $\mathscr{U}_{R_1,R_2} = \bigotimes_{g_i \in R_1} \mathscr{U}_{g_1,h_i}$

Homologous regions

"Treated in the same way"

• Given a GUR $(G, A, \mathscr{V}^{\dagger})$, the region R_1 is homologous to an o.e. region R_2 if $N_{R_1}^+$ is o.e. to $N_{R_2}^+$, and there exists a GUR $(G, A, \mathscr{T}^{\dagger})$ such that $\mathscr{B}_l^{(1)}\mathscr{V}\mathscr{A}_k^{(1)} = \mathscr{T}^{-1}\mathscr{B}_l^{(2)}\mathscr{V}\mathscr{A}_k^{(2)}\mathscr{T}$. We write $R_1 \bowtie_{\mathscr{T}} R_2$

Homologous regions

"Treated in the same way"

• Given a GUR $(G, A, \mathscr{V}^{\dagger})$, the region R_1 is homologous to an o.e. region R_2 if $N_{R_1}^+$ is o.e. to $N_{R_2}^+$, and there exists a GUR $(G, A, \mathscr{T}^{\dagger})$ such that $\mathscr{B}_l^{(1)}\mathscr{V}\mathscr{A}_k^{(1)} = \mathscr{T}^{-1}\mathscr{B}_l^{(2)}\mathscr{V}\mathscr{A}_k^{(2)}\mathscr{T}$. We write $R_1 \bowtie_{\mathscr{T}} R_2$

Homologous regions

"Treated in the same way"

- Given a GUR $(G, A, \mathscr{V}^{\dagger})$, the region R_1 is homologous to an o.e. region R_2 if $N_{R_1}^+$ is o.e. to $N_{R_2}^+$, and there exists a GUR $(G, A, \mathscr{T}^{\dagger})$ such that $\mathscr{B}_l^{(1)}\mathscr{V}\mathscr{A}_k^{(1)} = \mathscr{T}^{-1}\mathscr{B}_l^{(2)}\mathscr{V}\mathscr{A}_k^{(2)}\mathscr{T}$. We write $R_1 \bowtie_{\mathscr{T}} R_2$
- If $R_1 \bowtie_{\mathscr{T}} R_2$, one has $\mathscr{T}^{-1}\mathscr{V}\mathscr{T} = \mathscr{V}$

Absolute discrimination

"Treated differently"

• Given a GUR $(G, A, \mathscr{V}^{\dagger})$, the cells g_1 and g_2 are discriminated by \mathscr{V}^{\dagger} if for every GUR $(G, A, \mathscr{T}^{\dagger})$ there exists a region $R_1 \ni g_1$ that is not homologous to any $R_2 \ni g_2$ through \mathscr{T}

"Seen differently from e"

Homogeneity

No two cells are discriminated

• Given a GUR $(G, A, \mathscr{V}^{\dagger})$, we say that it is homogeneous if for every two cells $g_1, g_2 \mathscr{V}^{\dagger}$ does not discriminate them, but it does relatively to a third cell e

Homogeneity

No two cells are discriminated

- Given a GUR $(G, A, \mathscr{V}^{\dagger})$, we say that it is homogeneous if for every two cells $g_1, g_2 \mathscr{V}^{\dagger}$ does not discriminate them, but it does relatively to a third cell e
- For every pair (g_1, g_2) , there is \mathscr{T} such that for every $R_1 \ni g_1$ one finds $R_2 \ni g_2$ with $R_1 \bowtie_{\mathscr{T}} R_2$

From homogeneity

• We collect all the GURs \mathscr{T} such that $R_i \bowtie_{\mathscr{T}} R_j$, for every $R_i \ni g_i, R_j \ni g_j$, and $g_i, g_j \in G$

From homogeneity

- We collect all the GURs \mathscr{T} such that $R_i \bowtie_{\mathscr{T}} R_j$, for every $R_i \ni g_i$, $R_j \ni g_j$, and $g_i, g_j \in G$
- They form a group of permutations of *G*

From homogeneity

- We collect all the GURs \mathscr{T} such that $R_i \bowtie_{\mathscr{T}} R_j$, for every $R_i \ni g_i$, $R_j \ni g_j$, and $g_i, g_j \in G$
- They form a group of permutations of
- Since cells can be discriminated relatively to some third cell, there can be no fixed point unless $\mathcal{T} = \mathcal{I}$

From homogeneity

- We collect all the GURs \mathscr{T} such that $R_i \bowtie_{\mathscr{T}} R_j$, for every $R_i \ni g_i$, $R_j \ni g_j$, and $g_i, g_j \in G$
- They form a group of permutations of
- Since cells can be discriminated relatively to some third cell, there can be no fixed point unless $\mathcal{T} = \mathcal{I}$
- The group acts on itself transitively and freely: it is a group of translations

