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Problem we address In this talk

 From the island formula, we believe that, after the Page time, information inside the horizon is
complicatedly encoded into the Hawking radiation.

* We can not easily change the interior information from operations on the Hawking radiation.

— Information inside the horizon is protected against some operations (errors) on the Hawking
radiation.
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Black hole Hawking radiation

But, to what extent is the interior information protected against errors in the Hawking radiation?

Also, if we consider gravitational backreaction from the error, what happens?



Outline of this talk

1. Introduction

* Brief review on black hole, Hawking radiation, island formula, etc.

* Brief review on QEC

 QEC in an evaporating black hole with a non-gravitating bath

 PSSY model
2. QEC in an evaporating black hole with a gravitating bath (Without backreaction)
3. QEC in an evaporating black hole with a gravitating bath (With backreaction)

4. Summary and future works



1. Introduction



Entropy of Hawking radiation and Island

* In quantum gravity with unitarity, the entanglement entropy of Hawking radiation is expected to obey the Page
curve.

* The island formula [Penington ’19, Almheiri-Engelhardt-Marolf-Maxfield ’19, ---] compute a correct entropy of
the Hawking radiation obeying the Page curve;

, Arealol] |
Sislang (R) = min { ext; FSQET IRV ] (I : island)
I 4GN

» Before the Page time, the black hole interior C EW[Black hole] — Linear growth

» After the Page time, the black hole interior C EW[HR] — Bekenstein-Hawking entropy
S(Pr)
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Entanglement wedge reconstruction

* The entanglement wedge reconstruction [Dong-Harlow-Wall *16, ---] states that information
on an entanglement wedge of some boundary region A, EW[A], can be reconstructed
from the boundary region A.

« This implies that, after the Page time, information on the black hole interior, /, can be

reconstructed from the Hawking radiation R— the interior information is encoded into
the Hawking radiation.

(Before the Page time, the information is encoded into the complement region BH = R)
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Robust encoding property

 The encoding of the black hole interior information has the quantum error correction (QEC)
property like the usual AdS/CFT case.

 QEC in AdS/CFT case [Almheiri-Dong-Harlow ’14, ---]

* AdS deep interior regions are robust against erasure (errors) of small boundary sub-regions.

= Information on the deep interior regions are protected against such erasures.

* Relatedly, such AdS deep interior regions are robust agains local operations associated with
such small boundary subregions (~”simple operations”). To affect them, we need to consider
*complex operations”.

= Information on the deep interior regions are protected against simple errors (operations).




o Similar to the AdS/CFT case, after the Page time, the interior of the black hole is
complicatedly encoded into the Hawking radiation. As a result, it is not easy to
access the interior information from the Hawking radiation, implying that it is
robust against an error acting on the Hawking radiation.
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 But, how complicated is it? How robust the encoding is?

— Focus on questions about these quantum error correction properties



Quantum error correction

* To explain QEC more systematically, we need some preparations.

« We focus on a CPTP error (quantum channel) &: map from density
matrix to density matrix having the properties;

1. Completely-positive (CP);
DH)Dp>0- &lp] > 0,8p] € D(H)

2. Trace-preserving (TP); trip] =1 — tr[&[p]] = 1



_ A CPTP error has the Kraus representation; &[p]| = Z E pE"

m
E,_ : Kraus (error) operator obeying the condition Z E'E =1

m

e A CPTP error has the Stinespring dilation; 3| eO)E - Initial state of a
environment system, - UH, £ . unitary acting on the original system H and the

environment system E such that &[p] = trg [UH,E (P ® leg)eleyl) U;;E]

. By taking a orthonormal basis of the environment system, { | ¢,,) E}m ;> the
two representations are related by

&lpl = trg _UH,E (P ® ‘eO>E<eO‘> U;L — Z e | Uy g (P ® ‘eO>E<eO‘ HE\e )E = Z wPEy,

m=1




» Generally, aerror & : D(H) - Y(H) changes input states p to &[p],
the input information might be lost in the view point of the system H.

— Input information on A might flow to the environment system £, and
some environment information (noise) might flow to the original system

H.

In this case, without accessing the environment system £, the original
iInput information can not be recovered.



» However, there Is a possibility that

there exists some subspace called code subspace H,.,,, C H and a recovery map &£

€Y (HCOde) ’

ode

such that for o, ;.

R [%[Gcade]] — Ocode

—The error & is called correctable or recoverable.

One can use the Petz map [Petz’ 88] as a recovery map.

e |f we embed (or put) important information onto the code subspace, we can protect
the information against the error &.

— Basic idea of guantum error correction.



Question: When does the error become correctable? Or, what error is
correctable?

— The correctability is characterized by an error correcting condition.

There are many equivalent conditions, e.g.,

* Decoupling condition [Schumacher-Nielsen '96, ---] « Focus this

e Knill-Laflamme condition [Knill-Laflamme ‘97]

e Sufficiency condition [Petz 88|,

® oo etc_



. To this end, we consider a physical state | ‘Pi)phs € H which we embed the code information

| 7)., into by an embeddingmap V, |W¥,) , = V|i). ..,and its entangled state with a

1/ phs code’

reference system Ref;

code

\/dcode Zl |Z>Ref® ‘qj)l’hs '

* Then, the error acts on this state;

d

code code

W) = W ,Z1 [ 1) Rer @ Z Un.E < [ i) phs @ |€o>E> \/ﬁ 1221 m;l [ D rer @ Ep | i) pns ® | €1) -

+ The decoupling condition is given by pp, = Pref @ PE > Pg = tra “‘P/K‘P/‘]

d

—No correlation between Ref and E

If the (not so small) correlation exists and we can not access to the environment E, then some fraction

of the reference information (~code information) is sent to the environment E, meaning the lost of the
information.



?
« [he condition PRef.E = PRef @ pr can be measured by evaluating the mutual

information, I(Ref; E) = S(pgeq) + S(Pp) — S(Prerp)-
If I(Ref, E') # 0, the error is not correctable (for the code subspace).

If I[(Ref, E) = 0, the error is correctable.

* Apply this treatment to an evaporating BH setup.



Setup of QEC for an evaporating BH

e Consider the identification

(i=12,-,d

« Interior and Exterior semi-classical excitations |i,i’) il =1,2,---,d,) — Code information

in,ex
+ Reference system for the Interior semi-classical excitations — Ref(in)

+ Reference system for the Exterior semi-classical excitations — Ref(ex)

« Entangled state between black hole and Hawking radiation with semi-classical excitations in the state \ 1, i’)m,ex

— Physical state encoding the code information |¥; ;) = V|i,i');, .

* An error acts on the Hawking radiation. — Environment E interacts with the Hawking radiation.

 Under the setup, we are interested in whether the black hole interior is protected or not. Then, we need to consider the decoupling
condition between Ref(in) and Ref(ex) U E ;

o if (Ref(in) : R E 0, th i t table, . . . -
it I(Ref(in) : Ref(ex) U E) # © SITOris NOL correctable — Investigate this decoupling condition

o If I[(Ref(in) : Ref(ex) U E) = 0, then correctable.

in the PSSY model! f'



PSSY (or West-coast) model

[Penington-Shenker-Stanford-Yang '19]

 The model consists of the two-dimensional Jackiw-Teitelboim (JT) gravity and end-of-the-world
(EoW) branes with tension p,

1 |1
Ipgoy = — Soy — — —J ¢(R+2)+J \/Z¢K +/1J ds,
dr (2 ), oM brane

So : Extremal entropy of the black hole, y : Euler character of /,

K : Extrinsic curvature of 0.4, h: boundary induced metric on 0.%

with the boundary conditions

du’ P,

2 _ _ _ _
ds a/%_ 2’ ¢|a%_?, an¢‘brane_'“’ K‘brane_o




The EOW brane is located deep inside the black hole and has k-internal states labeled by ¢ = 1,---, k.
— Mimic states of the interior partner of the (early) Hawking radiation.

Semi-classical excitations propagate on the black hole spacetime A with the EOW brane.

— This introduces states |y?.),

with (1//” \z// ) = 0y 3 0;; Ojr ],eSOZl under the gravitational path integral

We entangle the black hole A with an bath system B, which is not gravitating and stores the Hawking
radiation;

\‘Pl,>o<2\w,l>A®\a>B

a=1
A < Black hole B < Bath

At first, for simplicity, we basically focus on topological contributions from the topological term in the
PSSY action, and do not focus on the dynamical contribution of the PSSY model, i.e., Z, (n = 1,2,---).



* We can compute the entropy of the Hawking radiation. For simplicity, we focus on the Renyi-two case;

1 k
S®(pp) = — log (tr [m%]) with trpg = T D WP, Ly,
a,f=1

- - -
- -

~ - - -

* To evaluate this quantity, we need to consider the gravitational path integral of the quantity, resulting in two
possible dominant contributions: disconnected saddle and replica wormhole saddle;
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, where dpi; = €

logk  logk < logdyy

. This results in the Renyi-two entropy, S (2)(,03) ~ { consistent with the Page

logdy, logdy, < logk’

curve.



QEC in the PSSY model

[Balasubramanian-Kar-Li-Parikkar ‘22]

In the PSSY model, we can investigate the QEC properties for an CPTP error with Kraus
representation { K} acting on the Hawking radiation by considering the state,

din dex k dE

‘ \P,> X Z Z ‘ i>ref(in) X i,>ref(ex) & VJZ'>A & (Km ‘ a>B) ® | €m>E
=1 i'=1 a=1 m=1

We assume d,,,d,. <K k, dgy;.

The correctability of the black hole interior can be characterized by the mutual information
I(ref(in) : ref(ex) U E).

For simplicity, let us focus on the Renyi-two case, given by

I(z)(ref(in), ref(ex) U E) — S(Z)(p;ef(in)) T S(z)(p;ef(ex),E) o S(Z)(p;ief(in), ref(ex),E)'



 Focus on the second term $ (2)(p,ﬁef(ex), ) and evaluate it.

5 (2)(10 ilﬂef(ex),E) - = lOg tr [(,0 ;ef(ex),E)z]

in ex k d
(o 2 1 y S /o e ﬂz N
pref(ex),E T l/jil,ii l/jil,ié A l/jlz ] A
Zy8

x (a, ‘ ‘ﬂ1> <“2‘Km

Gravitational path integral of this quantity gives

1 1 1

, 2 2 2
tr <:0ref(ex),E> — d_extr [(TE> ] + dindex dBH - r [(TBath) ]

coming from Hawking saddle coming from Replica wormhole saddle

dy T
’ TBath — Z Km (f) Klj’l’ and log dBH ~ SO
m=1




Similarly, for the other two terms,

N2 1 1
tr (pref(in)> =7 ~ o

din kdBH din
tr(’ )2 : tr[( )2]+ L] tr | (gan)”
. — T —_— . T .
P ref(in),ref(ex),E din dex E dex dB[—] _ Bath _
Then, the Renyi-two mutual information is given by
[P (ref(in) : ref(ex) U E)
0 for —logdg, +logd, < S© (TR> T (TE)
= 4 (—logdgy +logd,,) — (S® (z) — S (7z) )for — logdyy — logd,, < S@ (7z) — S® (7z) < — logdgy + logd,,
2logd., for $) (TR) T (TE) < —logdg; —logd;,

> trR{K K} |

en)

g (4)s



Similarly, for the other two terms,

in in
tr( ’ )2 : tr[( )2] + : : tr ( )2_
' — 7 — - T :
P ref(in),ref(ex),E din dex E dex dBH _ Bath _
Then, the Renyi-two mutual information is given by
(Renyi-two) Coherent information
[P (ref(in) : ref(ex) U E)
0 for —log dgyy + log d;, < S () — S (2)
= (—log dp + 10g din) — (S(z) (TR) —S@ (TE))for —logdyy —logd, < S(z)( R) S(z)( ) — log dgy + logd.,
2logd,, for § (TR) — S(z)( ) — log dBH logd




The schematic phase diagram of the mutual information on the log k —(S(z) (TR) — S (TE>> plane

S () (’Gz) — S@') (’C&> /@’& O(B J"ak

/N

‘YC’S'@OUE) The lower bound on (S(Z) (TR) — S (TE))

comes from the weak subadditivity;

> sk S (pap) < SOpy) + 5" (pp)  forn € (0.1) U (1.00)

In this case, it means

Ay donthdin f-------- _—

---P---------------- - ..

—max{logk,logd,} < S (TR) — S© (TE)




2. QEC in an evaporating black hole
with a gravitating bath
(Without backreaction)



Outline of our Research

We focus on the gravitating bath setup (doubled PSSY model) that the bath system
B is also gravitating and includes a black hole [Anderson-Parrikar-Soni '21].

We assume that the black hole A has semi-classical excitations, but the gravitating
bath B does not.

In this system, an CPTP error with Kraus representation { £, } acts on the
gravitating bath B.

First, we IGNORE gravitational backreactions from the error. Later, we include it.

In this setup, we study the QEC properties by evaluating the (Renyi-two) mutual
information.



Doubled PSSY model

[Anderson-Parrikar-Soni ‘21]

e |n the doubled PSSY model, we consider the state
k
) o ) )@ |w)g
a=1

where A < Black hole with semi-classical excitations, B <« Gravitating bath.

« For simplicity, we assume that the black holes on the two systems A, B have the same

black hole entropy. Also, we again assume d,,, d,. <K k, dgy;.

* The introduction of the gravitating bath changes the gravitational path integrals.

EX. In evaluating the gravitational path integral of the Renyi-two entropy of the Hawking radiation,
we can see the difference between them.



Ex. Renyi-two entropies of the Hawking radiation for the gravitating and non-gravitating cases. (Ignoring the semi-
classical excitation indices) P

k
tr [pl%] X Z (W |y, - (w | w?) , (non-gravitating
a, =1

k
Ctrfpgl o D Py, P ) - (W), - (w2 ™) g (gravitating)
B B B

o [31__\ s
) A o
4l . 2

B

* The Renyi-two entropies of the Hawking radiation for the gravitating case is the same as that for the non-

logk logk < logdyy

gravitating case at the leading order; S(Z)(pB) ~ { .
logdy; logdyy < logk



QEC in the doubled PSSY model

* |nthe doubled PSSY model, we investigate the QEC properties by
considering the decoupling condition.

e Jo this end, we consider the state
din dex k dE k
/ : >/ a a
| V') 21 21 21 21 | ) vefiiny) @ l>ref(ex) ® ‘l//i,i’>A 2 (Em“/f >B) 2 |€m>E
=1 1=1 a=1 m=
, and evaluate the Renyi-two mutual information

I®)(Ref(in); Ref(ex) U E)

to see whether the black hole interior is protected or not.



Renyi-two entropies

* |n evaluating the Renyi-two mutual information, we need to consider the
gravitational path integral of the following purities;

2 din dex K
S a p a i p T p
tr [(pref(in),ref(wC),E) l X Z Z Z <l//llalli ‘ l/jizalié>A <l/112’zlé ‘ l//ll’zli>A <Wal Eszml 4 1>B <wa2 EmlEmz v 2>B
i=1 i'=1 apf=1m=1
9 din dex K dE
tr [(pref(ex) E> ] X Z Z Z <l//f,lzi | l/ji?,li§>A <Wllf,zlé | l/jij,zii>A <l/ja1 E’LzEml l/jﬁ1>B <Wa2 E’jﬁEmz l/jﬂ2>B

k
p a p o a p a f
Z <Wi1,1i{ | l//i2,1i1>A <l/ji2,2i§ | l//il,zi§>A <‘/f "y 1>B <‘/f > [y 2>B



* |et us evaluate the gravitational path integral of

d. d k d
2 n ex E
:B a IB a
tr l(pref(in),ref(ex),E> l X Z Z Z 2 <l/ji191ii | wizalié>A <l//i2,2i§ | l//ilazii>A <l//0‘1

i=1 i'=1 af=1m=1

E'TE

ny—myp

E'TE

ny Nty

l//ﬂl > < l//az l//ﬂz >
B B

* \We can evaluate it by writing down possible 14 gravitational saddles (diagrams), and reading off
their resulting factors. For simplicity, we focus on very early (pre-Page) times and very late (post-
Page) times.

* |In these time regimes, there are four dominant saddles;

7/
/
\ V\ /
/
\ /
’

Hawking saddle Two (A,B)-wormhole saddle  (B,B)-replica wormhole saddle  Fully connected saddle



* The four saddles leads to the following Renyi-two entropy; T Sl
For early times k << dyy,
logd, +logd, +S® <GE> for —logk < §@ (63) — S© (GE)

S(Z) (pre in),ref(ex ) ~
flin).rejlex).E logd, +logd, +logk+ S (GB) for §(% (GB) — 5@ (GE) <K —logk

(B,B)-replica wormhole saddle Two (A,B)-wormhole saddle

logd, +logd, +S® (GE) for —logk +logd, < S® (GB) — S© ((TE)
logd, +logk+ @ (GB) for $¢) (03) T (GE) < —logk+logd,,

For late times dp;; < &,

2 ~
\) ©) (pref(in),ref(ex),E ) ~

Fully connected saddle

d, n d,
h _ trBH { EmEn _ E IBH ET R B

m,nz 1 B H = 1 B H - ‘ 1 ol o %

: -z.’-A




» First, regarding to the early times k < dj,

Hawking saddle

logd, +logd, + S® <GE) for —logk < S (UB) — S© ((FE)
logd, +logd, +logk+ S® ((FB) for () (GB) — §©) (GE) < —logk

(B,B)-replica wormhole saddle

* The difference between the two cases is the entropy of the environment
system;

2 ~
\) ) (pref(in),ref(ex),E ) ~

Hawking saddle

~
~

for the first case, S¥ (GE) < logk + §) (GB),

for the second case, S (GE) > logk + S (GB).

* The large entropy of the environment system results in the replica wormhole
connecting the two bath systems B.



» Next, regarding to the late times dp; < &,

logd, +logd, + S (6E> for —logk + logd,, < S (GB) — S© (GE)

S(Z) (pre in),ref(ex ) ~
f(in),ref(ex),E lOg dex + lng 4+ S(z) (GB) for S(Z) (6B> — S(z) (GE) < — lng T lOg din

» Since we consider the late times dg;; < k implying the wormhole connecting the
black hole A and the bath system B.

* |n addition to the wormhole, the large entropy of the environment system results in

the replica wormhole connecting the two bath systems B, resulting in the fully
connected wormhole.

Two (A,B)-wormhole saddle Fully connected saddle



2 2
. Similarly, we can evaluate the quantities, tr [(pref(ex),E) ] and tr [(pref(m)> ]

» For early times k < dyy, Hawking saddle

@) logd,, + S (o) for —logk < S@ (o5) — S (o
S ( rejl\ex ) ~
rfent logd,, +logk+ @ (GB) for () (GB) — 5(2) log k

o) (B,B)-replica wormhole saddle
A ) (pref(in)) lOg d
Hawking saddle

« For late times dp;; < £, Two (A,B)-wormhole saddle
2)

@ ( {log d, + S (GE) for —logk —logd., < S(z) S
pref(ex) E) ~

logd, +logd, +logk+ S@ ( ) for §) ( ) S(Z) logk log

Fully connected saddle

2 ~
A ) <,0 ref(in)) ~ lOg din
Two (A,B)-wormhole saddle




Renyi-two mutual information

 Combining the Renyi-two entropies, we get the Renyi-two mutual information;

for early times k < dgy,

[P (ref(in); ref(ex) UE) ~ 0 for — log k <« $) (63) —S@ <6E),
and for S (GB> T <0E) < — logk,

for late times dyy; < K,

[P (ref(in); ref(ex) U E)
0 for max {—logk +logdy, —logdgy} < S* (05) — S (o)
~ { (~logk+1logd,,) — (5 (a5) =52 (o) )

for dgy; < k with — log dpyy < S (GB> — 5@ (GE) < max {—logk + log d,,, — log dBH}




The schematic phase diagram of the mutual information on the log & —(S(z) (GB) — S© <GE> ) plane

 The lower and upper bound on

®) _ Q&)
S (03) /\S (O?-) fo@o(ac'-( /éq C(Bf-( Jf/é; h (S (2) (GB) SN <6E>> again comes from the
/@&O(Bh e ---------------- weak subadditivity;

T (w)%(re 'Rm) \ Y@,}@Q UE) — max{log dgy, logdg} < S¥(og) — S (op) < logdyy
3

) e Due to the existence of the black hole in the bath,
the effect of the error can not have a large effect.

 However, the parameter region, where the Renyi-
two mutual information does not vanish, still exits.
The parameter region is smaller than that for the
non-gravitating case.

I_@(reqf (n); YeS@)UE.)
<0



3. QEC in an evaporating black hole
with a gravitating bath
(With backreaction)



Including gravitational back reaction from the error

 Next, we include a gravitational backreaction from the error onto the bath system, and check whether
the resulting Renyi-two mutual information changes or not.

* There are infinitely many implementation of backreactions from the error onto the system. Focus on
one of the implementations;

“ We regard the Kraus operator for the error as a local scaling operator with scaling dimension A,
causing the gravitational backreaction.

© The scaling dimension A depends on the details of the error. (Ex. A can be a function of dy. )

* By this implementation, we can treat the backreaction as if it comes from a brane ending at the local
scaling operators with tension A and the brane action [Goel-Lam-Turiaci-Vrlinde *19, ....]

el n

1 Bulk Massive — A ds
Bulk Massive




Gravitational saddle

with the local scaling operators

 \WWe need to re-evaluate the gravitational path integral, but with inserting
the local scaling operators.

 The saddles, which we need to focus, are those after the Page time since
we are interested in the change of the mutual information.

» Saddles connecting the boundaries of the universe B are affected by the
backreactions

— Focus on the fully connected saddle with the backreactions, and check
whether it can dominate over the other saddles. oy




Cusp from the brane

* Due to the tension of the brane from the error, the geometry is deformed, and it
starts having the cusp

— Briefly evaluate the on-shell gravitational action for the backreacted geometry

The boundary term of the (doubled) PSSY model capture the cusp contribution
(amounting to the Hayward term)

Vh¢K + 2A

1 1
J Vh¢K = J vV h¢pK
A1 ) o A7 ) \sual Ads bdy.

1 1 J’
4m cusp 4m usual AdS bdy. m




* This results in a change of the Renyi-two entropy

2 / ~ 2
5@ (pmf(m),,,ef(ex),E) ~logd,, +logk + 5@ (0g) +2A  for dgy < k
Fully connected saddle

* Need to compare it with other saddles

P /
S( ) <pref(in),’”€f(ex)aE>

After the Page time dpy<<k

_ . 2 / 2 /
=min § S ) <,0 ref(in),ref(ex),E > ’ 5 ) (10 ref(in),ref(ex),E >
Two (A,B)—wormhole saddle Fully Connected saddle

X min {log d, +logd, +S® (UE), logd, +logk+ S@ (UB> + 2A}

From tho cusp

» Depending on the scaling dimension A, there are two possibilities.




Small scaling dimension 2A < logd.,

o After the Page time, the dominant saddle are the almost same as the non-
backreacting one.

e (plief(in),ref(ex),E>
logd, +logd, + S@ (GE)
for max {—logk +logd, — 2A, — log dBH} < S@ (GB) — 5§ (UE)»
logd,, + logk+ S (03) + 2A
for —logdy, < §@ <GB> — S© (o*E) < max {—logk +logd, —2A, — log dBH} .

n
ny

— 10 (ref(in); ref(ex) U E)

0 for max{—logk + logd;, — A, —logdgr} < S® (o) — S¥(og)
(—logk + logd;, — 2A) — (5(2) (o) — S (O'E))
for dgy < kwith —logdgy < S (oB) — S(z)(O'E)
< max{—logk +logd;, — 2A, —logdpy}

Y

The Renyi-two mutual information still have a non-vanishing parameter region!



Large scaling dimension 2A > logd.,

o After the Page time, the fully connected saddle can not appear as a
dominant saddle, and the two-(A,B) wormhole saddle dominates.

* Thus, after the Page time, the Renyi-two entropy is given by

5 (pf,ref(in), ref(ex), E) ~ log din +10g dey + S(z) (JE)

 Therefore, for this case, the mutual information vanishes.

I (2)%in); ref(ex) Lﬂx 0




Interpretation

* The gravitational backreaction destroys the entanglement between the

environment system and the other systems. It is similar to the Firewall
[AMPS “12].

 Geometrically, this is represented by the dominance change of the
saddles due to the gravitation backreaction from the error.




* In some sense, the wormhole connecting the boundaries of the universe B are
cut by the gravitational backreaction.

Gravitational backreaction

“‘-nllll... ‘
Black hole Hawking radiation
+Cut
.

* Due to this gravitational backreaction, the black hole interior is protected
against the error with relatively small scaling dimension 2A > logd,, !




Summary and future works

* |f we do not consider gravitational backreaction from an error acting on the gravitating bath, there are
similarities between the gravitating and non-gravitating bath cases.

* The gravitational backreaction from error is important, and due to the backreaction, the black hole interior
can be protected against an error acting on gravitating bath.

Future directions

e Other error model

 Recovery map for the gravitating bath case (Petz map, Petz-lite, etc. )
 Mutual information by summing over all possible planar contributions

 QEC properties for the two identical black hole case, where both of them have semi-classical excitations.

Thank you for your attention!!



