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⚫ 𝑇ത𝑇 deformation: “integrable” deformations of 2d QFTs  （Smirnov, Zamolodchikov, 17）

𝜕𝜆 𝑆 = ∫ 𝑑2𝑥 𝐷𝑒𝑡 𝑇𝑖𝑗
𝜆(𝑥)

⚫ RG irrelevant:  drastic modification of UV properties

⚫ Spectral flow:  𝜕𝜆 𝐸𝑛 𝜆 = 𝐸𝑛 𝜆 𝜕𝑅𝐸 𝜆 +
1

𝑅
𝑃𝑛 𝑅 2

⚫ Exact solutions in CFTs:

𝐸𝑛 𝜆 =
2𝑅

𝜆
1 +

𝜆𝐸𝑛
𝑅

+
𝜆2𝑃𝑛

2

4𝑅2
− 1

⚫ Suggest UV finiteness: (i) 𝜆 > 0 Hagedorn growth; (ii) 𝜆 < 0 UV instabilities (truncation?)
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⚫ 𝑇ത𝑇 deformation in holographic CFTs:

(i) 𝜆 < 0: finite cut-off surface  (H.Verlinde et al, 18)

(ii) 𝜆 > 0: glue-on surface?   (Wei Song et al, 24)

⚫ As a double-trace deformation:  mixed boundary condition  (Guica and Monten, 21)

⚫ UV finiteness revealed by UV-sensitive observables, e.g. correlation functions, 

entanglement entropy, etc.  (Donnelly et al, 18; Chen et al, 18, …)

⚫ Conformal perturbation theory: 𝑆 𝜆 = 𝑆𝐶𝐹𝑇 + 𝜆 ∫ 𝑑2𝑥 𝑇 𝑥 ത𝑇 𝑥 +⋯
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⚫ UV finiteness not accessible to perturbative analysis

⚫ Toy model example: resolving “UV” divergence at 𝑥 = 0

1

𝑥
→

1

𝑥+𝜖
=

1

𝑥
−

𝜖

𝑥2
+

𝜖2

𝑥3
+⋯

⚫ Re-summation required to see the resolution

⚫ Interesting phenomenon encoded in the non-perturbative aspects.

⚫ This is difficult for correlation functions, entanglement entropies, etc.

⚫ Thermodynamics:  𝑇ത𝑇-deformed partition function (torus with 𝜏 = 𝜏1 + 𝑖𝜏2)

𝑍 𝜏, ҧ𝜏, 𝜆 = 

𝑛

𝑒−𝜏2 𝐸𝑛 𝜆 −𝑖 𝜏1𝑃𝑛
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⚫ Perturbative expansion:   𝑍 𝜏, ҧ𝜏, 𝜆 = 𝑍𝐶𝐹𝑇 𝜏, ҧ𝜏 + 𝜆 𝑍1 𝜏, ҧ𝜏 + 𝜆2 𝑍2 𝜏, ҧ𝜏 + ⋯

⚫ Can we access non-perturbative effects from perturbative expansion?

⚫ 0th order question:  is there any non-perturbative effects in 𝑍(𝜏, ҧ𝜏, 𝜆)?

⚫ Equivalent question:  is the perturbation series convergent?

(i) YES:  then NO;   

(ii) NO:   then YES… 

⚫ Non-convergent series are called asymptotic series, whose meaningful re-summation 

involves non-perturbative corrections. Examples: instanton corrections in QFTs, etc

Introduction and Motivation

4.



⚫ Goal of our work: 

① Check convergence of the perturbation series  𝑍 𝜏, ҧ𝜏, 𝜆 = 𝑍𝐶𝐹𝑇 𝜏, ҧ𝜏 + 𝜆 𝑍1 𝜏, ҧ𝜏 + 𝜆2 𝑍2 𝜏, ҧ𝜏 + ⋯

② If it is an asymptotic series, find the properties of the non-perturbative effects

③ Explain the origin of the non-perturbative effects, like instantons in Yang-Mill theory.

④ Explore physical implications of the non-perturbative effects

⚫ To be explicit, we will work with 𝑇ത𝑇-deformed free boson/free fermion.

⚫ To simplify analysis, we study 𝑍 𝜏, ҧ𝜏, 𝜆 with 𝜏 = 𝑖𝜏2

Introduction and Motivation

5.



⚫ Resurgence: a quick review

⚫ Series expansion of 𝑍(𝜏, ҧ𝜏, 𝜆): recursive method

⚫ Saddle-point analysis 

⚫ Stokes phenomenon 

⚫ Discussions
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⚫ Perturbation series Z 𝜆 =?σ𝑛≥0𝑍𝑛𝜆
𝑛:  convergent/asymptotic

⚫ Convergent series: finite radius of convergence 𝑟

𝑍 𝜆 = perturbation series for 𝜆 < 𝑟

⚫ Asymptotic series:  zero radius of convergence 

① Exact result 𝑍 𝜆 ≠ perturbation series for all 𝜆

② Optimal approximation truncated at a particular finite order

③ In terms of coefficients: lim
𝑛→∞

𝑍𝑛

𝑍𝑛+1
= 𝑟 → 0, e.g.  𝑍𝑛 ∼ 𝑛!

④ Exact result 𝑍 𝜆 v.s. perturbation series:  non-perturbative corrections 
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⚫ Usually:  𝑍 𝜆 defined by (path-)integral, e.g. QFTs 

𝑍 𝜆 = ∫ 𝐷𝜙 𝑒−𝜆
−1 𝐼(𝜙)

⚫ Series in small 𝜆:  semi-classical approximation   

① Dominated by saddle-point configurations 𝜙∗ satisfying 𝛿𝐼 𝜙∗ = 0

② Perturbative vacuum: 𝐼 𝜙∗ = 0

③ Gaussian integral about 𝜙∗: ∫ 𝐷𝛿𝜙 𝑒−
1

2𝜆
𝛿𝜙 𝐼′′ 𝜙∗ 𝛿𝜙+⋯ = 𝑍0 + 𝑍1𝜆 + …

⚫ In general: there could be multiple saddles  {𝜙𝑖
∗}

⚫ Gaussian integral about each saddle 𝜙𝑖
∗:   

𝑒
−
𝐼(𝜙𝑖

∗)
𝜆 ∫ 𝐷𝛿𝜙 𝑒

−
1
2𝜆
𝛿𝜙 𝐼′′ 𝜙𝑖

∗ 𝛿𝜙+⋯
= 𝑒

−
𝐼 𝜙𝑖

∗

𝜆 (𝑍0
𝑖 + 𝑍1

𝑖𝜆 + ⋯)
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⚫ Summing over all saddles, we expect:

① Full result 𝑍 𝜆 = σ𝑛 𝑍𝑛𝜆
𝑛 + 𝑐𝑖 σ𝑖 𝑒

−
𝐼 𝜙∗

𝜆 (σ𝑛 𝑍𝑛
𝑖 𝜆𝑛) ← “trans-series”.

② The coefficients 𝑐𝑖 could be zero: saddle-point 𝜙𝑖
∗ does not contribute 

③ Depends its relation to  the integration contour

④ If 𝑐𝑖 ≠ 0 for any 𝐼 𝜙𝑖
∗ ≠ 0:  non-perturbative effects → 𝑍 𝜆 ≠ perturbation series

⚫ Asymptotic series non-perturbative corrections additional saddles

⚫ Resurgence:  non-perturbative corrections leave their “footprints” in the perturbation series!

⚫ (very) roughly speaking:  perturbation series at large orders “probe” far away in configuration 

space to “know about” other saddles 
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⚫ Stokes’ phenomenon: non-perturbative discontinuity in complex coupling plane

① Z 𝜆 = ∫Γ𝐷𝜙 𝑒−𝐼(𝜙)/𝜆 = σ𝑚 𝑐𝑚 ∫Γ𝑚
𝑒−𝐼(𝜙)/𝜆 = σ𝑚 𝑐𝑚 𝑒−

𝐼 𝜙𝑚
𝜆 (𝑍0

𝑚 + 𝑍1
𝑚𝜆 + ⋯)

② Steepest descent contour Γ𝑚 through saddle point 𝜙𝑚: Lefschetz thimbles  

③ Integral coefficients 𝑐𝑚 determined by topological decomposition:  Γ =∪𝑚 𝑐𝑚 Γ𝑚

④ Fixing Γ (physical contour), varying 𝜆 = 𝜆 𝑒𝑖𝜃,  Γ𝑚 also deform accordingly

⑤ Stokes’ phenomena ：  Critical values 𝜃∗ across which 𝑐𝑚 → 𝑐𝑚 ± 1

⑥ Stokes’ ray  𝛾 = {Arg 𝜆 = 𝜃∗}:  branch-cut of 𝑍 𝜆 with 𝐷𝑖𝑠𝑐𝛾 𝑍 𝜆 ∼ 𝑒−
𝐼 𝜙𝑚

𝜆 = 𝑍𝑛𝑝(𝜆)

⑦ Criterion for Stokes’ ray:   𝐈𝐦
𝐼 𝜙𝑚

𝜆
= 𝐈𝐦

𝐼 𝜙0

𝜆
;  Re

𝐼 𝜙𝑚

𝜆
> 𝐑𝐞

𝐼 𝜙0

𝜆
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⚫ Stokes’ phenomenon:  relating 𝑍𝑛𝑝(𝜆) to perturbation series  σ𝑛 𝑍𝑛 𝜆
𝑛

⚫ Dispersion relation:  𝑍 𝜆 = C𝜆ׯ
𝑍 𝑤 𝑑𝑤

𝑤−𝜆
= ∫𝛾

𝐷𝑖𝑠𝑐𝛾𝑍 𝑤 𝑑𝑤

𝑤−𝜆
= ∫

𝑍𝑛𝑝 𝑤 𝑑𝑤

𝑤−𝜆
= ∫0

∞ 𝑒
−
𝐼 𝜙𝑚
𝑤 𝑍0

𝑚+𝑍1
𝑚𝜆+⋯

𝑤−𝜆
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⚫ Stokes’ phenomenon:  relating 𝑍𝑛𝑝(𝜆) to perturbation series  σ𝑛 𝑍𝑛 𝜆
𝑛

⚫ Dispersion relation:  𝑍 𝜆 = C𝜆ׯ
𝑍 𝑤 𝑑𝑤

𝑤−𝜆
= ∫𝛾

𝐷𝑖𝑠𝑐𝛾𝑍 𝑤 𝑑𝑤

𝑤−𝜆
= ∫

𝑍𝑛𝑝 𝑤 𝑑𝑤

𝑤−𝜆
= ∫0

∞ 𝑒
−
𝐼 𝜙𝑚
𝑤 𝑍0

𝑚+𝑍1
𝑚𝑤+⋯

𝑤−𝜆

⚫ Expanding both sides in small 𝜆: σ𝑛 𝑍𝑛𝜆
𝑛 = σ𝑛 𝜆

𝑛 ∫0
∞
𝑍𝑛𝑝 𝑤 𝑤1−𝑛 𝑑𝑤

⚫ Identifying coefficients:  𝑍𝑛 = ∫0
∞
𝑍𝑛𝑝 𝑤 𝑤1−𝑛 𝑑𝑤, 𝑍𝑛𝑝 𝑤 ∼ 𝑒−𝐼(𝜙𝑚)/𝑤

⚫ At large order 𝑛:  saddle-point approximation → 𝑍𝑛 ∼
𝑛!

𝐴𝑛
1 +⋯ , 𝐴 = 𝐼(𝜙𝑚)

⚫ Non-perturbative action can be extracted from  lim
𝑛→∞

𝑠𝑛 =
𝑍𝑛+1

𝑛 𝑍𝑛
= 𝐴



Resurgence: a quick review 

12.

⚫ Resurgence analysis can progress in both ways: 

⚫ Knowledge of saddle-points → (prediction for) large order perturbation series

⚫ Knowledge of large order perturbation series → (clues for) saddle-point origins of non-perturbative effects

⚫ Our goal: non-perturbative aspects of 𝑇ത𝑇-deformed partition function

⚫ Strategy: compute 𝑍 𝜏, ҧ𝜏, 𝜆 to large order in 𝜆; using resurgence analysis to help identifying non-

perturbative effects



⚫ Resurgence: a quick review

⚫ Series expansion of 𝑍(𝜏, ҧ𝜏, 𝜆): recursive method

⚫ Saddle-point analysis 

⚫ Stokes phenomenon 

⚫ Discussions

Introduction and Motivation

12.



Series expansion of 𝒁(𝝉, ത𝝉, 𝝀): recursive method

13.

⚫ Hard way: conformal perturbation theory

Perturbative expansion for the action:   𝜕𝜆 𝑆
𝜆 = ∫ 𝑑2𝑥 𝐷𝑒𝑡 𝑇𝑖𝑗

𝜆 𝑥 → 𝑆𝜆 = 𝑆𝐶𝐹𝑇 + 𝜆∫ 𝑑2𝑥 𝐷𝑒𝑡 𝑇𝑖𝑗 𝑥 + ⋯

Perturbative expansion for partition function:   𝑍 𝜏, ҧ𝜏, 𝜆 = ∫ 𝐷𝜙 𝑒− ∫𝑇 𝑑
2𝑥 𝑆𝜆(𝜙)

⚫ Short-cut:  deformed partition function from deformed spectrum

𝑍 𝜏, ҧ𝜏, 𝜆 = 

𝑛

𝑒−𝜏2 𝐸𝑛(𝜆)+𝑖 𝜏1𝑃𝑛 , 𝐸𝑛 𝜆 =
𝑅

2𝜆
1 +

4𝜆𝐸𝑛
𝑅

+
4𝜆2𝑃𝑛

2

𝑅2
− 1

⚫ Spectral flow equation → Partition function satisfies flow equation (Cardy 18; Datta and Jiang 18)

𝜕𝜆 𝑍 𝜏, ҧ𝜏, 𝜆 = 𝜏2 𝜕𝜏𝜕ത𝜏 +
1

2
𝜕𝜏2 −

1

𝜏2
𝜆𝜕𝜆 𝑍(𝜏, ҧ𝜏, 𝜆)



Series expansion of 𝒁(𝝉, ത𝝉, 𝝀): recursive method

14.

⚫ Modular “covariance”:  𝑍 𝜏, ҧ𝜏, 𝜆 = 𝑍
𝑎𝜏+𝑏

𝑐𝜏+𝑑
,
𝑎ത𝜏+𝑏

𝑐ത𝜏+𝑑
,

𝜆

𝑐𝜏+𝑑 2 (Aharony et al 19)

⚫ Recursive relation for perturbation coefficients: 𝑍 𝜏, ҧ𝜏, 𝜆 = σ𝑛𝑍𝑛 𝜏, ҧ𝜏 𝜆𝑛

⚫ 𝑍𝑘+1 𝜏, ҧ𝜏 =
𝜏2

𝑘+1
𝐷𝜏

𝑘
𝐷ത𝜏

𝑘
−

𝑘 𝑘+1

4𝜏2
2 𝑍𝑘 𝜏, ҧ𝜏 , 𝑍0 𝜏, ҧ𝜏 = 𝑍𝐶𝐹𝑇(𝜏, ҧ𝜏)

⚫ Ramanujan-Serre (RS) derivatives: 𝐷𝜏
𝑘
= 𝜕𝜏 −

𝑖𝑘

2𝜏2
, 𝐷ത𝜏

𝑘
= 𝜕ത𝜏 +

𝑖𝑘

2𝜏2

⚫ Efficient algorithm to generate the coefficients (credits to collaborators: J.G and Y.Jiang)

⚫ 𝑍𝑘(𝜏, ҧ𝜏) are elements of a differential ring closed under RS derivatives

⚫ Free boson: generated by {𝜂−1 𝜏 , ෨𝐸2 𝜏, ҧ𝜏 , 𝐸4 𝜏 , 𝐸6(𝜏)} + 𝑐. 𝑐 ;  ෨𝐸2(𝜏, ҧ𝜏) = 𝐸2 𝜏 −
3

𝜋𝜏2

⚫ Free fermion: generated by {𝜂−1 𝜏 , 𝜃2 𝜏 , Θ34 𝜏 , ෨𝐸2 𝜏, ҧ𝜏 , 𝐸4 𝜏 , 𝐸6(𝜏)} + 𝑐. 𝑐

⚫ Many clever tricks to streamline the computation!  
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⚫ To be explicit, we focus on the free boson and free fermion CFTs

⚫ 𝑍0
𝐵 𝜏, ҧ𝜏 =

1

𝜏2𝜂 𝜏 𝜂(ത𝜏)
, 𝑍0

𝐹 𝜏, ҧ𝜏 = σ𝑖=2,3,4
𝜃𝑖(𝜏)

𝜂(𝜏)

⚫ Compute numerical series for fixed modular parameter: 𝜏 = − ҧ𝜏 = 𝑖𝜏2

⚫ Extract the coefficient ratios at large orders: 𝑠𝑛 =
𝑍𝑛+1

𝑛 Z𝑛

⚫ Using the available computing power, we generated up to 𝑛 = 600 orders 

⚫ Large 𝑛 expansion of 𝑠𝑛:  Richardson transformation (faster convergence)

⚫ So, let’s show some plots!



Series expansion of 𝒁(𝝉, ത𝝉, 𝝀): recursive method

Free boson

𝜏2 = 1 𝜏2 = 4/5 𝜏2 = 9/8

Free fermion

𝜏2 = 1 𝜏2 = 3/4 𝜏2 = 4/5

16.

⚫ Numerical observation in both free boson/fermion:  lim
𝑛→∞

𝑠𝑛 = −2𝜏2



Series expansion of 𝒁(𝝉, ത𝝉, 𝝀): recursive method

17.

⚫ Recall the resurgence analysis:    

lim
𝜆→0

𝑍𝑛𝑝 𝜆 ∼ 𝑒
−
𝐴
𝜆 → lim

𝑛→∞
𝑍𝑛 ∼

𝑛!

𝐴𝑛
→ lim

𝑛→∞
𝑠𝑛 ∼ 𝐴

⚫ Numerical observation suggests: 

lim
𝜆→0

𝑍𝑛𝑝 𝜏, ҧ𝜏, 𝜆 ∼ 𝑒2𝜏2/𝜆

⚫ Can we explain such a non-perturbative contribution?

⚫ Path-integral representation of 𝑍(𝜏, ҧ𝜏, 𝜆)

⚫ Coupling constant is 𝜆

⚫ Find saddle-point contribution that accounts for 𝑍𝑛𝑝(𝜏, ҧ𝜏, 𝜆)
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Saddle-point analysis:

18.

⚫ Alternative formulation of 𝑇ത𝑇-deformed CFTs 

⚫ CFT coupled to flat JT-gravity (coupling constant 𝜆)  (Dubovsky et al 18)

⚫ CFT as a non-critical string theory (string tension 𝜆)  (H.Verlinde et al 20; Kutasov et al 20)

⚫ Insight from both: “dynamical coordinates” 

⚫ Integral representation of torus partition function:

⚫ 𝑍 𝜏, ҧ𝜏, 𝜆 =
𝜏2

𝜋𝜆
∫𝐻+

𝑑2𝜁

𝜁2
2 𝑒

−
𝜁−𝜏 2

𝜆𝜁2 𝑍𝐶𝐹𝑇(𝜁, ҧ𝜁)

⚫ Dynamical modular parameter (𝜁, ҧ𝜁)

⚫ Integration contour: upper-half-plane 𝐻+ = {𝜁1 ∈ ℝ, 𝜁2 ∈ ℝ+}

⚫ Semi-classical limit 𝜆 → 0: saddle-point approximation 

⚫ 𝜆 only enters the  𝑇ത𝑇-deformation “kernel”: 𝐾 𝑇ത𝑇 𝜏, ҧ𝜏, 𝜁, ҧ𝜁, 𝜆 = 𝑒
−

𝜁−𝜏 2

𝜆𝜁2



Saddle-point analysis:

19.

⚫ Saddle-point analysis is easy:

⚫ 𝜕𝜁,ത𝜁
𝜁−𝜏 2

𝜁2
= 0 → 𝜁1

∗ = 𝜏1, 𝜁2
∗ = ±𝜏2

⚫ Perturbation series from expansion about the “physical” saddle point  𝜁1
∗ = 𝜏1,

𝜁2
∗ = 𝜏2 ∶ Z𝑝𝑒𝑟𝑡 = 𝑍𝐶𝐹𝑇 1 + 𝑏1𝜆 +⋯

⚫ Non-perturbative contribution from 𝜁1
∗ = 𝜏1, 𝜁2

∗ = −𝜏2: Z𝑛𝑝 ∼ 𝑒
4𝜏2
𝜆

⚫ Inconsistent with the numerical observation: 𝑍𝑛𝑝 ∼ 𝑒
2𝜏2
𝜆 !

⚫ There must be additional saddle-point contributions to 𝑍(𝜏, ҧ𝜏, 𝜆)

⚫ Puzzle: how can they arise given the simple 𝜆-dependence of the integrand?



Saddle-point analysis:

20.

⚫ Revisit saddle-point analysis:

⚫ 𝑍 𝜏, ҧ𝜏, 𝜆 =
𝜏2

𝜋𝜆
∫𝐻+

𝑑2𝜁

𝜁2
2 𝑒−𝐼(𝜆), 𝐼(𝜆) = −

𝜁−𝜏 2

𝜆𝜁2
+ 𝐹𝐶𝐹𝑇 𝜁, ҧ𝜁 , 𝑍𝐶𝐹𝑇 = 𝑒−𝐹𝐶𝐹𝑇

⚫ 𝐹𝐶𝐹𝑇(𝜁, ҧ𝜁) is sub-leading in small 𝜆:  saddle-points independent of 𝐹𝐶𝐹𝑇

⚫ A caveat:  𝐹𝐶𝐹𝑇(𝜁, ҧ𝜁) could diverge at 𝜁𝑠𝑖𝑛𝑔 , ҧ𝜁𝑠𝑖𝑛𝑔

⚫ Near 𝜁𝑠𝑖𝑛𝑔 , ҧ𝜁𝑠𝑖𝑛𝑔,  𝐹𝐶𝐹𝑇 could be “leading order” effectively

⚫ 𝜕𝜁,ത𝜁 −
𝜁−𝜏 2

𝜆𝜁2
+ 𝐹𝐶𝐹𝑇 𝜁, ҧ𝜁

𝜁∗,ത𝜁∗
= 0, 𝜁∗, ҧ𝜁∗ = 𝜁𝑠𝑖𝑛𝑔, ҧ𝜁𝑠𝑖𝑛𝑔 + 𝑂(𝜆𝛼)

⚫ A subtle mechanism of saddle-point: “supported” by singularities of 𝐹𝐶𝐹𝑇(𝜁, ҧ𝜁)

⚫ To identify them  ← analytic structure of 𝐹𝐶𝐹𝑇(𝜁, ҧ𝜁)



Saddle-point analysis:

21.

⚫ Universal divergences of 𝐹𝐶𝐹𝑇:

⚫ low temperatures:  lim
𝜁,ത𝜁→∞

𝐹𝐶𝐹𝑇 𝜁, ҧ𝜁 ∼
𝜋𝑐

12
𝜁 + ҧ𝜁

⚫ high temperatures:  lim
𝜁,ത𝜁→0

𝐹𝐶𝐹𝑇 𝜁, ҧ𝜁 ∼
𝜋𝑐

12

1

𝜁
+

1

ത𝜁

⚫ Related by modular (inversion) invariance  

⚫ For integrable/rational CFTs, chiral divergences from 𝜁 and ҧ𝜁 independently

⚫ Finite rep. under modular transformation: 𝜒𝛼 𝜁 = σ𝛽 𝑆
𝛼𝛽𝜒𝛽(1/𝜁) → lim

𝜁→0,∞
𝜒𝛼 𝜁 → ∞

⚫ Finite sum over characters: 𝑍 𝜁, ҧ𝜁 = σ𝛼,𝛽 𝑛
𝛼𝛽𝜒𝛼 𝜁 ҧ𝜒𝛽( ҧ𝜁)

⚫ 𝑍(𝜁, ҧ𝜁) diverges for 𝜁 → 0,∞ and ҧ𝜁 → 0,∞ independently



Saddle-point analysis:

22.

⚫ Toy model approximation:   𝐹𝐶𝐹𝑇 𝜁, ҧ𝜁 ≈ 𝐹𝑇𝑀 𝜁, ҧ𝜁 =
𝜋𝑐

12
𝜁 +

1

𝜁
+

𝜋 ҧ𝑐

12
ҧ𝜁 +

1

ത𝜁

⚫ captures the leading order divergences near 𝜁 → 0,∞ and ҧ𝜁 → (0,∞) independently 

⚫ sufficient for saddle-point analysis

⚫ Additional saddle-point solutions: 

⚫ Solving 𝜕𝜁,ത𝜁 −
𝜁−𝜏 2

𝜆𝜁2
+ 𝐹𝑇𝑀 𝜁, ҧ𝜁 = 0 → 𝜁1

∗ = 𝑠′′
6𝜏2

2+2𝜋𝑐𝑠𝜏2𝜆

2𝜋𝑐𝜆
, 𝜁2

∗ = 𝑖𝜏2𝑠
′ 3

𝜋𝑐𝜆
, 𝑠, 𝑠′, 𝑠′′ = ±1

⚫ For small 𝜆 → 0: 𝜁∗ ∼ ±
𝜋𝑐𝜆

12
→ 0, ҧ𝜁∗ ∼ ±

12

𝜋𝑐 𝜆
𝜏2 → ∞, self-consistent with approximation!

⚫ Analytically continued away from the Euclidean section ҧ𝜁 = 𝜁∗; in the “Regge” regime

⚫ Universal for integrable CFTs



Saddle-point analysis:

23.

⚫ Plugging them into the toy model effective action:

⚫ Non-perturbative contribution: 𝑍𝑛𝑝 𝜏, ҧ𝜏, 𝜆 ∼ 𝜆
1

2
𝛼+1 𝑒

2𝜏2
𝜆
+𝑖

4𝜋𝑐

3𝜆
±𝜏2±1 +𝑂( 𝜆)

⚫ Extracting the leading order action: 𝐴 = −2𝜏2,  consistent with numerical observation!

⚫ For free scalar: 𝛼 = 1, 𝑐 =
1

2
;  for free fermion 𝛼 = 0, 𝑐 =

1

4

⚫ Non-perturbative sector: expansion in 𝜆

⚫ Checking higher order corrections: 

⚫ General formula:   𝑍𝑛𝑝 ∼ 𝜆−𝜈𝑒
−
𝐴

𝜆
−
𝐵

𝜆
+𝑂( 𝜆)

→ 𝑠𝑛 ∼ 𝐴 −
𝐵

2

𝐴

𝑛
+

𝐵2−8𝐴𝜈

8𝑛
+ 𝑂(𝑛−3/2 )

⚫ Richardson transformation on 𝑠𝑛 for each order in large 𝑛

⚫ Let’s look at more plots!



Saddle-point analysis:

24.

Free fermion

Free boson

𝜏2 = 1

𝜏2 = 1

𝑂(1) 𝑂(𝑛−1/2 ) 𝑂(𝑛−1 )



Saddle-point analysis:

25.

Free fermion

Free boson

𝜏2 = 4/5

𝜏2 = 3/4

𝑂(1) 𝑂(𝑛−1/2 ) 𝑂(𝑛−1 )



Saddle-point analysis:

26.

⚫ Good matches up to order 𝑛−1 in 𝑠𝑛, strong evidence we are on the right track

⚫ Higher orders do not match -- toy model result no longer accurate from 𝑂( 𝜆)

⚫ Free fermions converge more slowly 

⚫ One possible explanation: define 𝛿𝑍 = 𝑍𝐶𝐹𝑇 − 𝑍𝑇𝑀

⚫ Near saddle-points (Regge regime): 𝛿𝑍 ∼ 𝑞 for boson; 𝛿𝑍 ∼ 𝑞1/4 for fermion, 𝑞 ∼ 𝑒
−
𝐾

𝜆

⚫ Exact CFT v.s. toy model:  additional decaying oscillatory features

⚫ Full modular invariance of 𝑍𝐶𝐹𝑇 v.s. only inversion invariance of 𝑍𝑇𝑀

⚫ Modular images of the “Regge” singularities → additional non-perturbative corrections 

⚫ Infinitely many! 

⚫ Can check: they give decaying and oscillatory contributions to 𝑠𝑛



⚫ Resurgence: a quick review

⚫ Series expansion of 𝑍(𝜏, ҧ𝜏, 𝜆): recursive method

⚫ Saddle-point analysis 

⚫ Stokes phenomenon

⚫ Discussions

Outline

27.



28.

⚫ Resurgence analysis helps identifying (potential) non-perturbative corrections

⚫ They may be absent, i.e. Γ =∪𝑚 𝑐𝑚 Γ𝑚, 𝑐𝑚 = 0, Γ = 𝐻+

⚫ Stokes phenomenon: 𝑐𝑚 → 𝑐𝑚 ± 1 as coupling 𝜆 = 𝜆 𝑒𝑖𝜃 rotates in complex plane

⚫ Stokes ray: critical 𝜃𝑚 s.t. 𝐈𝐦
𝐼 𝜙𝑚

𝜆
= 𝐈𝐦

𝐼 𝜙0

𝜆
;  Re

𝐼 𝜙𝑚

𝜆
> 𝐑𝐞

𝐼 𝜙0

𝜆

⚫ For 𝑇ത𝑇-deformed CFTs, very distinct physical properties for: 

(i) 𝜆 > 0 (Hagedorn density of states, stringy); (ii) 𝜆 < 0 (complex spectrum or UV cut-off)   

⚫ From 𝜆 > 0 to 𝜆 < 0:  Stokes phenomenon?

⚫ We will analyze using 𝑍𝑇𝑀:

⚫ 𝑍 𝜏, ҧ𝜏, 𝜆 =
𝜏2

𝜋𝜆
∫𝐻+

𝑑2𝜁

𝜁2
2 𝑒

−
𝜁−𝜏 2

𝜆𝜁2 𝑍𝑇𝑀 𝜁, ҧ𝜁 =
𝜏2

𝜋𝜆
∫𝐻+

𝑑2𝜁

𝜁2
2 𝑒

−
𝜁−𝜏 2

𝜆𝜁2
+
𝜋𝑐

12
𝜁+

1

𝜁
+ത𝜁+

1
ഥ𝜁

Stokes phenomenon



29.

⚫ For 𝜆 > 0 𝜃 = 0 and 𝜏2 > 𝜏2
𝑐 =

𝜋𝑐𝜆

3
, can check that Γ = Γ𝑝ℎ𝑦𝑠

⚫ Γ𝑝ℎ𝑦𝑠 : Lefschetz thimble through the physical saddle 𝜁1
∗ = 0, 𝜁2

∗ = 𝜏2

⚫ The additional saddles do not contribute:  𝑍 𝜏2, 𝜆 > 0 ∼ 𝑍𝑝𝑒𝑟𝑡(𝜏2, 𝜆)

⚫ 𝑍𝑝𝑒𝑟𝑡 𝜏2, 𝜆 = 𝑒
2𝜏2
𝜆
−

2

3𝜆
3𝜏2

2−𝜋𝑐𝜆 3−𝜋𝑐𝜆
∼ 𝑍𝐶𝐹𝑇(𝜏2)(1 + 𝑂(𝜆))

⚫ Singularity in 𝜏2 at 𝜏2
𝑐 : Hagedorn type?

⚫ Rotate 𝜆 = 𝜆 𝑒𝑖𝜃 , 𝜃 ∈ [0, 𝜋] in the complex coupling plane: 

⚫ Identify Stokes ray associated with the additional saddles 

⚫ Compute  𝛥𝑅𝑒 𝐼 𝜃 = 𝑅𝑒 𝐼 𝜁∗, ҧ𝜁∗ − 𝑅𝑒 𝐼 𝜁𝑝ℎ𝑦𝑠 , ҧ𝜁𝑝ℎ𝑦𝑠 ; 𝛥𝐼𝑚 𝐼 𝜃 = 𝐼𝑚 𝐼 𝜁∗, ҧ𝜁∗ − 𝐼𝑚 𝐼(𝜁𝑝ℎ𝑦𝑠 , ҧ𝜁𝑝ℎ𝑦𝑠)

⚫ Look for solutions with Δ 𝐼𝑚 𝐼 𝜃 = 0, Δ 𝑅𝑒 𝐼 𝜃 < 0

Stokes phenomenon



30.

𝜏2 ∼ 𝜏2
𝑐

𝜏2 ≫ 𝜏2
𝑐

Stokes phenomenon



Stokes phenomenon

31.

⚫ For any 𝜏2 > 𝜏2
𝑐,  Stokes phenomenon at 𝜃 = 𝜋 (𝜆 < 0) for all additional saddles

⚫ Receives non-perturbative corrections at 𝜆 < 0

⚫ 𝑍 𝜏2, 𝜆 < 0 = 𝑍𝑝𝑒𝑟𝑡 𝜏2, − 𝜆 + 𝑍𝑛.𝑝 𝜏2, 𝜆 ∼ 𝑒
−
2𝜏2
𝜆
+

2

3 𝜆
3𝜏2

2+𝜋𝑐 𝜆 3+𝜋𝑐 𝜆
+ 𝑒

−
2𝜏2
𝜆
+

4𝜋𝑐

3 𝜆
+⋯

⚫ Partition function non-singular and well-defined for all 𝜏2 > 0

𝜆

𝜆 > 0𝜆 < 0

𝑍𝑝𝑒𝑟𝑡 𝜏2, 𝜆𝑍𝑝𝑒𝑟𝑡 𝜏2, −|𝜆| + 𝑍𝑛𝑝(𝜏2, 𝜆)



Stokes phenomenon

31.

⚫ Deformed density of states: 𝑍 𝜏2, 𝜆 < 0 = ∫ 𝑑𝐸 𝑔 𝐸, 𝜆 𝑒−𝜏2𝐸 = 𝑍𝑝𝑒𝑟𝑡 + 𝑍𝑛.𝑝

⚫ 𝑍𝑝𝑒𝑟𝑡 alone: complex density/spectrum at UV

⚫ Consistent with 𝜆 → −|𝜆| of flow equation solution: 𝐸𝑛 𝜆 < 0 =
2

|𝜆|
1 − 1 − |𝜆|𝐸𝑛 +

𝜆2𝑃𝑛
2

4

⚫ 𝑍𝑛.𝑝 alone implies a UV cut-off Λ:  ∫
Λ
𝑑𝐸 𝑒−𝜏2𝐸 𝑔 𝐸 ∼ 𝑒

−
2𝜏2
𝜆
+

4𝜋𝑐

3 𝜆 → Λ =
2

|𝜆|
, ln 𝑔(𝐸) =

2𝜋𝑐𝐸

3

⚫ Tow folklores of 𝜆 < 0 theories:  𝑍𝑝𝑒𝑟𝑡 v.s. 𝑍𝑛.𝑝



Stokes phenomenon

32.

⚫ However, this can’t be the whole story

⚫ 𝑍𝑝𝑒𝑟𝑡 v.s 𝑍𝑛.𝑝: mutually incompatible picture

⚫ 𝑍 𝜏2, 𝜆 < 0 for 𝜏2 < 𝜏2
𝑐:  order of (i) 𝜆 → −𝜆; (ii) 𝜏2 → 𝜏2

𝑐−

⚫ Possibly requires resolving the Hagedorn transition at 𝜆 > 0, “winding mode 

condensation”

⚫ Current integral rep of 𝑍(𝜏2, 𝜆) derived assuming unit winding, need to consider all 

winding sectors? Future work…

⚫ Exact CFT v.s. toy model: modular symmetry → infinitely many other non-

perturbative corrections 



⚫ Resurgence: a quick review

⚫ Series expansion of 𝑍(𝜏, ҧ𝜏, 𝜆): recursive method

⚫ Saddle-point analysis 

⚫ Stokes phenomenon

⚫ Discussions

Outline

33.



Summary

34.

⚫ We studied large order expansion 𝑍𝑝𝑒𝑟𝑡 𝜏, ҧ𝜏, 𝜆 = σ𝑛𝑍𝑛 𝜏, ҧ𝜏 𝜆𝑛

⚫ Recursive relation: 𝑍𝑘+1 𝜏, ҧ𝜏 =
𝜏2

𝑘+1
𝐷𝜏

𝑘
𝐷ത𝜏

𝑘
−

𝑘 𝑘+1

4𝜏2
2 𝑍𝑘 𝜏, ҧ𝜏

⚫ Efficient implementation in terms of differential ring generated by modular forms

⚫ Resurgence analysis of 𝑠𝑛 =
𝑍𝑛+1

𝑛 𝑍𝑛
at large orders reveals 𝑍𝑛.𝑝 ∼ 𝑒

2𝜏2
𝜆

⚫ Using integral rep over dynamic modular parameter, novel saddle-point origin of 𝑍𝑛𝑝:  

supported by “Regge” singularity of (integrable) 𝑍𝐶𝐹𝑇(𝜁 → 0, ҧ𝜁 → ∞)

⚫ Stokes phenomenon:  𝑍 𝜆 > 0 = 𝑍𝑝𝑒𝑟𝑡 → 𝑍 𝜆 < 0 = 𝑍𝑝𝑒𝑟𝑡 + Z𝑛.𝑝

⚫ Implication for spectral property at 𝜆 < 0:  𝑍𝑝𝑒𝑟𝑡 (complex spectrum) v.s. 𝑍𝑛.𝑝 (UV cut-off)



Outlook

35.

⚫ Other non-perturbative corrections in actual CFT results

⚫ Hagedorn transition at 𝜆 > 0: summing over all winding sectors?

⚫ Fully understand properties of 𝜆 < 0 theories 

⚫ Non-perturbative effects in other deformed observables, e.g: correlation functions; 

entanglement entropy; defect properties; etc.

⚫ Deformed integrable CFTs → deformed chaotic CFTs → deformed holographic CFTs



36.

Thank you!
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