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Finite Black Hole Entropy

Bekenstein-Hawking Entropy: [Bekenstein (1973)][Hawking (1975)]
BH has finite entropy given by

Black hole horizon
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- This implies that the number of BH microstates is finite, and
therefore the spectrum is discrete
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- Thus QFT on curved background including gravitons, which
usually have an infinite local degrees of freedom, must be
modified



Tension

Black hole information paradox: [Hawking (1974)]

Hawking radiation entangled with the BH, appears to have much
larger entropy than allowed; more than BH entropy
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Fixing the gravitational path-integral:
Euclidean Wormholes

Discreteness from Euclidean Wormholes:
Adding Euclidean wormholes to the gravitational path-integral was
found to give unitary Page curve, resolving the paradox for the

Hawking radiation entropy
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Replica wormhole

[Penington (2019)][Almheiri, Engelhardt, Markolf, Maxfield (2019)][Almheiri, Mahajan, Maldacena, Zhao (2019)]
[Penignton, Shenker, Stanford, Yang(2019)][Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (2019)]



Why adding Euclidean wormholes

[Saad, Shenker, Stanford (2018)][Saad, Shenker, Stanford (2019)]
WOrkS” [Bousso, Tomasevic (2019)][Bousso, Wildenhain(2020)]

Ensemble Averaging:

In AdS/CFT, the dual of the gravitational path-integral with
Euclidean wormholes is an ensemble of microscopic theories, each
of which corresponds to microscopic gravity theory

Jackiew-Teitelboim gravity: 1+1 dilation gravity on AdS

Gravitational path-integral Matrix integral
Wormholes
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H: microscopic Hamiltonian

Sum over all possible at boundary

smooth geometries

- After ensemble averaging, the spectrum becomes smooth



Two Tensions

Continuous spectrum in perturbative gravity:

When we canonically quantize gravity, variables

like induced metric are continuous and unbounded, appears to
conflict with finite BH entropy (in microcanonical ensemble)

This is particularly relevant in the two-sided BH and its interior
length, since the interior length can be arbitrarily long

BH interior volume
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Two-sided black hole

Dual to Thermofield double state: [Maldacena (2001)]

Two sided BH
1
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Two sides are connected via smooth tr

horizon and non-traversable wormhole

Non-trivial time evolution:
Invariant under H* — H%
Non-trivial under g = gL + HE
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Classically, it has linearly growing interior volume Ve
[Susskind (2013)][Susskind, Stanford (2014)]
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Length state without wormholes

In JT gravity, we know the quantum state corresponding to fixed
geodesic length state

geodesic length L
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Hamiltonian

P = [, is the conjugate . .
momentum R

Overlap between the energy and the length eigenstate
(l|E) = 6_50/223/2]{&.2@(26_”2)

Here E denotes twice the single sided energy



Fixed timeshift state without
wormholes

In JT gravity, we know the quantum state corresponding to fixed
timeshift state
timeshift &
Hamiltonian is the canonical . o
momentum of o el T

-+ Overlap between the energy and the timeshift eigenstate
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Goal of this talk )

Non-perturbative length/timeshift states:
We consider non-perturbative realization of these states

Non-perturbative overlaps:
Overlaps with TFD states gives a “probability” for length and

timeshift
geodesic length L P(l,t)

(TFD(t)|1)]”

timeshift & P(5,t) = |(TFD(t)|6)|?

Generating function:
We also compute the generating functions

geodesic length L (™), = /dlp(l’t)e—az
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Goal of this talk @

Generating function as probe for chaotic spectrum:
These probes are similar to spectral form factor; they exhibit dip-
ramp-plateau structure at the Heisenberg time

Heisenberg time Ty := 27wp(F)
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In terms of spectrum,
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which can be used to probe “interior length” for any system



The aim of this talk @

Non-orthogonality:
The distribution P(l,t) does not give a probability distribution
because length states are not orthogonal

We perform Gram-Schmidt orthogonalization to construct an
orthonormal basis. From this basis we construct non-perturbative
length operator

However, once we include the Euclidean wormholes, we will find
discrete spectrum, consistent with the finiteness of the BH entropy!
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Applications to Bulk Physics?

Transition from BH to white hole(WH) [Stanford, Yang (2022)]
We can investigate the transition probability from BH into WH

BH can get younger, by emitting baby o | J
universes POE[I:EIVG tlr‘n/eshlf’a BH)
Further investigation may uncover observer . e
experience in the interior, like firewall |
Safe Shockwave \'/’-\\‘1
Dangerous . )
Shockwave Negative timeshift (WH)
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Construction of
Non-perturbative length &
timeshift States



Bulk quantum state from Hartle-
Hawking prescription

Generalized Hartle-Hawking prescription:

The bulk wavetfunction is given by the sum over all possible
geometries

*+ We seek for non-perturbative quantum state |/) which satisfies

Geodesic length /

E|(IITFD(8/2))| = @W

with all possible wormhole corrections, so geodesic length
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Simplification in JT

Direct connection to the multi-boundary partition function:
Since there is an unigue geodesic homologous to the boundary, the
relation to the multi-boundary partition function is simple

f AL
=
, l

- This relation allows us to write the wavefunction using disk
wavefunction



Geodesic length over-complete basis

Fixed geodesic length state is given in JT by [liesiu et.al. (2024)]
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JT gravity wave function with (Two-sided energy)
fixed length geodesic and energy

- The wavefunction is
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- We take the microcanonical ensemble and the Hilbert space

dimension is finite
N' = e®"D(Ey)AE’



Timeshift

Timeshift o :
Average of time at the left and right boundaries, conjugate to the
Hamiltonian

Positive timeshift state corresponds to BH (expanding interior),
while negative timeshift state corresponds to WH (contracting
interior)
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Non-perturbative Overlaps
and Probe of Chaos



Length and Timeshift distribution

Overlaps:
If length/timeshift states are orthogonal, the following overlaps

define probability distribution for length/timeshift
geodesic length L
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We compute these overlaps by using sine-kernel for density of

state two point function, corresponding to all genus contributions
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Length distribution

Length:
At large [ and sufficiently large AE, we can approximate
sin” ((tl + t)%)

(tl+t)2 |

Classical peak
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Length Generating Function

Dip-ramp-plateau behavior:
Generating function exhibits dip-ramp-plateau behavior, reaching
plateau at the Heisenberg time
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As we take smaller q, it diverges and the ramp disappears, I.e.
early exponential decay is followed immediately by the plateau



Probe for Chaotic Spectrum

Generating function as probe for chaotic spectrum:
The length generating function can be written as

(e=aly, ~ Z acos ((E1 — Eq)t)

Er B (El — E2)2 —+ 2(E1 -+ EQ)O{2

We can apply this quantity in any system to probe “internal length”

We studied SYK model and indeed find the dip-ramp-plateau
behavior
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Spectral Complexity and Length?

Limit:
Taking small a gives the spectral complexity [Gabor, lliesiu, Mezei (2021)]
Spectral complexity Divergence
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However, there are several problems relating the length and the
spectral complexity

Length states are not orthogonal to each other
Divergent in a
- Qualitatively different from finite a (only classical + plateau)

These suggest that the interior length can be probed well only
when a is sufficiently large



Timeshift distribution

Timeshift:
It is directly related the spectral form factor

1 Z(0+i(t — 0))]?

PP(5,t) := (TFD(t)|6) (5| TFD(t)) = Z(0)?
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Because the timeshift state is also microcanonical TFD state
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Timeshift Generating Function

Positive and Negative part:
We divide into two parts;

00 0
timeshift o (e7, = / doP(6,t)e” (e _; = / doP(6,t)e™°
0 — 00

We again find the dip-ramp-plateau behavior, reaching plateau at
the Heisenberg time
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Spectral representation:
For any system
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Timeshift?

Pathological Limit:
If we consider the natural definition

L . d —ad ad
(0) 1= = Jim (7)o () )
we arrive at
(0) =0

This is not reproducing the classical early time behavior () ~ ¢

- Again this suggests the above limit does not lead to faithful bulk
description, and highly dependent on regularization scheme

- Only when a is sufficiently large, we can use it to probe the bulk



Non-perturbative Length and
Timeshift Operators



Non-orthogonality

Non-zero Overlap for all states:

The overlap becomes constant for large |t — ¢;| or |t — §]

This implies that
Length states cannot be eigenstates of an Hermitian operator.
For example no Hermitian operator like

[y = 1]1)
Thus P(l,t) and P(d,t) are not probability distribution
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Non-orthogonality makes naive
resolution of identity ill-defined

[MM] [MM, Ruan, Shibuya, Yano (To appear)]
The length states give the resolution of identity on the disk

o0 E0—|—AE/2
/ a1 (V1] = eSo/ JE Do (E)EYE| =1 Disk

However, with Euclidean wormholes

/_ a0 £T  Wormholes

The left hand side is actually divergent for TFD state

(TFD| [/Z dl\l)(l!} 'TFD) = o



Construction of baby-universe
corrected length state

We have non-orthogonal length state

‘Zl>, ‘12>, ’l3>, (ll <ly <l3 < )

We identify corrected length states by removing shorter length
states by Gram-Schmidt procedure
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Continuing this process many times, we will reach

N

N .
In terms of shorter
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for dimension N of the microcanonical window



Orthogonalization via replica trick

This Gram-Schmidt procedure seems hard to perform, but we can
do so by considering this manifestly positive operator

Sm] ==Y ) (L]
1=1
whose nonzero positive eigenstates are spanned by
U)NE L JIINE e )Y (L <o <0 <)

Thus the projector onto this subspace can be obtained via
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Non-perturbative length operator

The corrected length operator is now given by

N
ENP _ le|lz>NP<lz’NP
1=1
+ The spectrum is unchanged, except it terminates at i=N

Length probability distribution is conveniently written as (assuming
continuity)

D(l) = Tr[%}s[l]}

Length probability distribution P(/) on TFD state is conveniently
written as

Pli] = (TFD(1)| 5 Pl TED(1)



Length/timeshift Spectrum and
Probability

We consider perturbative expansion in terms of ¢;and 9 up to
second order. The results are already highly non-trivial

Spectrum:

Density of states turns out to be uniform but terminates at
Heisenberg time (in unit of ¢; and ¢)
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Length Probability

Probability distribution:

Early time: Classical peak + constant probability to have shorter
interior length. Classical linear growth, and small variance

Late time: Uniform probability, no peak. Saturation but large

variance
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Timeshift Probability

Probability distribution:

Early time: Classical peak + constant probability to have smaller
timeshift absolute value. Classical linear growth, and small variance
Late time: Uniform probability, no peak. Saturation but large

variance
t < Thy/2 t > 3T /2
Early time Late time 1
2t° —
Wt — S —— T
‘s A O(t—9) (1 72 ) I\ 1
-112{ '
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In particular, it is equally possible to have BH and WH at late
time (Susskind’s grey hole)
PBH(t) = PVH(1) = =



Summary and Future Directions

[Summary]
- We constructed non-perturbative length and timeshift states and
operators

Proposed new quantities probing “interior length” in arbitrary
systems

[Future directions]
Full order calculation

Non-perturbative Hilbert space in de Sitter space
DSSYK model [Okuyama, M.M, Mori, work in progress]

Relation to Krylov state complexity etc



