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INTRODUCTION

I Jackiw-Teitelboim (JT) gravity is a simple two dimensional model of
dilaton gravity. It arises in the near-horizon limit of a large class of
near-extremal black holes.

I It is almost a trivial theory with no local propagating degrees of
freedom in the bulk and with all the dynamics encoded entirely in the
boundary.

I The most important advantage is the analytical tractability leading to
exact results.

I It has proven to be a very useful toy model and led to some novel
insights in problems such as black hole information paradox,
understanding of AdS2/CFT1 dictionary, connections to random matrix
theory, questions related to gravity path-integrals, those tied to
cosmology etc.



DIMENSIONAL REDUCTION

I Start with the 4D theory described by the Euclidean action,

I = − 1
16πG4

(∫
d4x
√

g (R− 2Λ4 + FµνFµν) + 2
∫

d3x
√
γ K
)
.

I Solution corresponding to the Electrically charged RN black hole is

ds2 = f (r) dt2 +
dr2

f (r)
+ Φ2(r)dΩ2

2.

Here,

f (r) =

(
1− 2G4M

r
+

Q2

r2 +
r2

L2

)
, Φ(r) = r, Frt =

Q
r2 .

I f(r) has a double zero at extremality. The near horizon geometry for an
extremal RN black hole is AdS2× S2.



I Taking a spherically symmetric ansatz of the form

ds2 = gαβ dxαdxβ + Φ2dΩ2
2,

dimensionally reducing over the S2 and expanding about the attractor
value for Φ = Φ0(1 + φ), leads to the action for JT gravity, given by

IJT = −
Φ2

0

4G4

(∫
d2x
√

g R + 2
∫

dx
√
γ K
)

−
Φ2

0

2G4

(∫
d2x
√

gφ
(

R +
2
L2

2

)
+ 2

∫
dx
√
γ φK

)
+ · · ·
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JT GRAVITY

JT gravity, is a simple model of 2D gravity, involving metric and dilaton.

IJT =
1

16πG

(∫
d2x
√
−gφ(R− 2Λ)− 2

∫
∂

√
−γφK

)
Λ - Cosmological constant, φ - Dilaton
K - Extrinsic curvature of the boundary

Equations of motion are

R = 2Λ,

∇µ∇νφ− gµν∇2φ− Λ

2
gµνφ = 0

Spacetime is locally AdS everywhere for Λ = −1.



LORENTZIAN ADS

The global AdS solution is

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
φ = r

I Slices of constant extrinsic curvature are spatial slices. So, extrinsic
curvature is a potential choice for time in Lorentzian theory.

I Slices of constant extrinsic curvature are referred to as York slices.



I Wavefunctions in Lorentzian theory can be constructed by Euclidean
path integral with appropriate boundary conditions.

I Specifically, wavefunction of fixed extrinsic curvature and fixed
boundary length can be obtained by doing a Euclidean path integral
where part of the boundary is asymptotic and part is extrinsic
curvature.



I An interesting observable that is studied is the HH wavefunction
[Zhenbin ’20]

l
k = 0

I However, the matrix model interpretation of this is not yet fully well
understood [Iliesiu-Levine-Lin-Maxfield-Mezei, Levine’s talk].

I Another class of interesting observables that can be studied are the ones
slice in the bulk is a non-zero constant extrinsic curvature slice.

I Requires studying JT gravity with non-smooth boundary conditions.



I Euclidean path integral with asymptotic boundary conditions with
dilaton and length of the boundary fixed gives the partition function at
finite temperature [Witten-Stanford, Saad-Shenker-Stanford, Moitra-SSK-Trivedi,...]

φ, l →∞, β = l
φ = fixed

Z(β) = = 1
β3/2 e

2π2
β

=
∫

dE sinh
(

2π
√

E
)

e−βE

This satisfies the WDW equation

(
∂l∂φ −

1
l
∂φ − lφ

)
(elφZ(β)) = 0



VARIATIONAL PRINCIPLE

I Variation of the Euclidean AdS action for non-smooth boundaries gives,

Sbulk = −1
2

∫
d2x
√

gφ (R + 2)

δSbulk,∂ =
1
2

∫
∂

√
h
[
(φK − n · ∇φ)habδhab − 2φ δK

]
+

∑
j∈Corners

φjδθj

I Extrinsic curvature is the conjugate momentum to the dilaton. So fixing
K corresponds to imposing Neumann boundary condition for the
dilaton [Akash-Iliesiu-Kruthoff-Yang’ 20.]



BOUNDARY CONDITIONS

(a) Sφ,h = −1
2

∫
d2x
√

gφ (R + 2)−
∫
∂

√
hφK

(b) SK,h = −1
2

∫
d2x
√

gφ (R + 2)

(c) S(φ,hφ),(K,hK) = −1
2

∫
d2x
√

gφ (R + 2)−
∫
∂φ

√
hφK +

∑
j∈Corners

φjθj

(d) S(K1,h1),(K2,h2) = −1
2

∫
d2√gφ(R + 2) +

∑
j∈Corners

φjθj

φB, lφ

K, lK K1, lK1

K2, lK2

(c) (d)

φB, lφ

(a) (b)

K < 1

K > 1



I In Poincare coordinates,

ds2 =
dx2 + dy2

y2

the curves of constant extrinsic curvature look like

x(λ) = x0 +
R sinh(λ

√
1− k2)

k + cosh(λ
√

1− k2)

y(λ) =
R
√

1− k2

k + cosh(λ
√

1− k2)

I The trajectory is a circle in the UHP,

(x− x0)
2 +

(
y +

Rk√
1− k2

)2

=
R2

1− k2



I The length of such a curve between two points (x1, y1), (x2, y2) is

lk =
1√

1− k2
cosh−1

[
1 + (1− k2)

(
(x1 − x2)

2 + (y1 − y2)
2

2y1y2

)]

I The appropriate scaling of various quantities for mixed boundaries are

φ∂A ≡ φB ∼
φb

ε
, l∂A ∼

β

ε

K∂K = k, l∂K ∼
2√

1− k2
log

(
L
√

1− k2

ε

)



ON-SHELL WAVEFUNCTION

I For mixed boundary, the contribution comes from the extrinsic
curvature and the corner terms

S∂ = −
∫
∂A

dx
√
γφ(K − 1) +

∑
j∈corners

φj θj

leading to ∫
∂A

φ(K − 1)
√
γdu =

1
2
φbr2

sβ

φBθ ' φbrc arccos(k) + 2φbrs cot(
βrs

2
)

I The on-shell wavefunction is

ΨA = e−Son-shell = exp(
1
2
φbr2

sβ − 2φbrc arccos(k) + 2φbrs cot(
βrs

2
))

L =
2
rs

sin(
βrs

2
), rc ∼ ε−1



I For the York boundaries, the contribution entirely comes from the
corner angles,

S∂ =
∑

j∈Corners

φjθj

with the value of corner angle being,

θ = arctan

 k1√(
1− k2

1

) tanh

(
1
2

l1
√

1− k2
1

)+ (k1, l1 → k2, l2)

The wavefunction is

ΨY = e−2φBθ



QUANTUM WAVEFUNCTION

I Easier to compute the wavefunction for various boundary conditions
using the boundary particle formalism[Kitaev-Suh,Zhenbin].

I The dilaton integral sets R = −2 everywhere.

I Use the Gauss-Bonnet theorem which relates the extrinsic curvature
and Ricci scalar to Euler character∫

∂A

K +

∫
∂K

K +
∑

i

(π − θi) = 2πχ− 1
2

∫
√

g R

I The next step is to write the bulk term, integral of a top-form, as a
boundary term ∫

√
g =

∫
∂

a



I The boundary action, say for the case of Dirichlet boundary, becomes

S∂ = φB

(
lA −

∫
∂A

a
)

I Can be interpreted as the worldline action for a particle in an electric
field with gauge field a.

I The partition function can be obtained by computing the propagator of
the particle with given length.

Z(β) = G(β, x, x)



I The exact propagator is given by [Comtet,Houston]

G(u, x1, x2) = eiϕ(x1,x2)K̃(u, x1, x2)

K̃(u, x1, x2) =

∫
dss

sinh(2πs)
2π(cosh(2πs) + cosh(2πq))

e−
us2

2

d1+2is 2F1

(
1
2
− iq + is,

1
2

+ iq + is, 1, 1− 1
d2

)
d =

√
(x1 − x2)2 + (y1 + y2)2

4y1y2

eiϕ(x1,x2) = e2q arctan
(

x2−x1
y1+y2

)
q = φB,

I In the limit of large q = φB, the propagator gives the partition function

G(u, x, x) =

∫
ds s sinh(2πs)e−

us2
2



MIXED BOUNDARY

I The particle action in this case becomes

S∂ = φB

(
lA −

∫
∂A

a
)

+ φB

(
klK −

∫
∂K

a
)

I The full wavefunction is then a product of two propagators

ΨA = ψAψK



I The asymptotic boundary contribution is

ψA = G(u, x1, x2)

I In the large q limit, of the hypergeometric function becomes

1
d1+2is 2F1

(
1
2
− iq + is,

1
2

+ iq + is, 1, 1− 1
d2

)
q→∞−−−→ eπq

πd
K2is

(
2

d∞

)
leading to

ψA '
1
d

eiϕ(x1,x2)−πφB

∫
ds s sinh(2πs)e−

us2
2 K2is

(
2

d∞

)

I For the extrinsic curvature boundary

ψK = e−φBklk+φB
∫
∂K

a



Putting together

φB, lφ

k, lk
ΨA(φB, lφ, lk, k) = = e−2φB sin−1(k)

∫
dE sinh

(
2π
√

E
)

e−βEK2i
√

E

(
2

d∞

)
d∞ = 1

φB

1√
1−k2 e

1
2 lk
√

1−k2
= L

φb

I The Bessel function is related to the energy eigenstates of the
Lorentzian theory.



LORENTZIAN SETUP

k, lk

φ = φB

I The ADM Hamiltonian of the Lorentzian theory is

H = HL + HR =
P2

k

(1 + k2)
+

4
1 + k2 e−l̃k

√
1+k2



I Eigenstates of fixed energy

ĤΨ(L, k) = EΨ(L, k)⇒ ΨE(L, k) = K2i
√

E

(
2φb

L(ik)

)
I Leads to a nice interpretation for the euclidean results.

= e−2φB sin−1(k)
∫

dE sinh
(

2π
√

E
)

e−βEK2i
√

E(2φb
L )ΨA

ρ(E) 〈lk|E〉



TWO EXTRINSIC CURVATURE BOUNDARIES

In terms of the particle picture, the action is given by

S∂ = φB

(
k1l1 −

∫
∂1

a
)

+ φB

(
k2l2 −

∫
∂2

a
)

k2

k1

ΨY = δ(d2
∞,1 − d2

∞,2) exp[2φB tan−1

 k1√
1− k2

1

tanh

(
l1
2

√
1− k2

1

)+ 2φB tan−1

 k2√
1− k2

2

tanh

(
l2
2

√
1− k2

2

)]

d∞,i =
1
φB

√
1 +

1
1− k2

i
sinh2

(
1
2

li
√

1− k2
i

)



CHECKS

I Reproduces the classical wavefunction in the classical limit. Need to
use the integral representation of the Bessel function.

Kα(x) =

∫ ∞
−∞

dξe−x cosh ξ cosh(αξ)

I Simple manipulations lead to

e−2φB arccos(k)

π2d

∫
ds s sinh(2πs) e−

us2
2 K2is

(
2

d∞

)
=

e−2φB arccos(k)

π2d

√
2π

u3/2

∫ ∞
−∞

dξ (π + iξ)e−
2

d∞
cosh ξe

2(π+iξ)2

u

= −1
2

rsβ

π2d
1

u3/2 exp

(
1
2
φbr2

sβ + 2φbrs cot(
βrs

2
)− 2φbrc arccos(k)

)



CONVOLUTION - TWO MIXED BOUNDARIES

lk
∫

dlk
β1

β2

β1 + β2=

∫
d(d2
∞)ΨA(φ, lφ, k, lk)ΨA(φ, lφ,−k, lk) ∝

∫
ds1ds2ρ(s1)ρ(s2)

δ(s1 − s2)

ρ(s1)
e−u1s2

1−u2s2
2

=

∫
dsρ(s)e−(u1+u2)s2

=ZAdS(l1 + l2, φ)



MIXED BOUNDARY+ YORK BOUNDARY

∫
dlk =

β1β1

lk

l̃k
l̃k

∫
d(d2
∞)ΨA(φ, lφ, k, lk)ΨY(k, lk, k̃, l̃k) =ΨA(φ, lφ, k̃, l̃k)



CONSTRAINTS

I Can check if the states constructed earlier satisfies constraint equations.

I The WDW equation can be obtained by working in the ADM-like gauge

ds2 = N2dt2 + hij(dxi + Nidt)(dxj + Njdt)

I The local WDW equation is

δS
δN
≡ H =

√
h(−φ−D2φ+ Knα∇αφ)



ASYMPTOTIC BOUNDARY

I Conjugate momenta for the dilaton and boundary metric are

πφ = −
√

hK

π
ij
h = −

√
h

2
hijnα∇αφ

I The WDW equation becomes

H =
2√
h

hijπ
ij
hπφ −

√
hD2φ−

√
hφ

I For non-smooth boundaries, the zero mode part of the WDW constraint
get an extra contribution from the corners

H(φ)
0 = πlπφ − lφ−

∑
j∈ corners

rj · ∇φ

= πlπφ − lφ



YORK BOUNDARY

I Conjugate momenta for the extrinsic curvature slice

πK =
√

hφ

π
ij
h = −

√
hhij

2
(nα∇αφ− φK)

I For the extrinsic curvature boundary, the corner contribution is
important.

H0 = −(1− k2)πk − klπl −
∑

j∈ corners

rj · ∇φ

= −(1− k2)πk − klπl −
∑

j∈ corners

rj · ∇
(
πK√

h

)
I The wavefunctions discussed above satisfy this modified WDW

constraint, with the corner terms included.



BULK PHYSICAL TIME

I The length states |l, k〉 form a Hilbert space at the instant of time k. Can
be thought of as obtained by an evolution of the states at k = 0 by the
physical Hamiltonian Hphy,

|l, k〉 = e−i
∫ k

0 Hphy|l, k = 0〉

I In the Lorentzian theory

〈E|lk〉 =
1

d̃∞
e2iq sinh−1 kK2i

√
E

(
2

d̃∞

)
, d̃∞ =

1
φB
√

1 + k2
e

1
2 lk
√

1+k2



I Time evolution with respect to physical Hamiltonian can be obtained by

〈E|l, k + δk〉 = (1− i δk Hphys)〈E|l, k〉

which gives

Hphy = i∂k =
lk

1 + k2 i∂l −
2q√

1 + k2

I It is just a rewriting of the WDW equation(
πk −

lk
1 + k2πl −

2q√
1 + k2

)
|l, k〉 = 0



GENERAL POTENTIAL

I The action for a more general potential is

IJT =
1
2

{∫
d2x
√
−g (φR−U(φ))− 2

∫
bdy

√
−γφK

}

which give rise to the equation of motion

R−U′(φ) = 0

∇µ∇νφ− gµν∇2φ− 1
2

gµνU(φ) = 0



I Equations of motion guarantee the existence of a conserved quantity
and a Killing vector.

I Conserved quantity is

M = ∇µφ∇µφ+ W(φ), W(φ) =

∫ φ

0
U(x)dx

I Killing vector
ξµ = εµν∇νφ

I The norm of the Killing vector is

ξµξµ = W(φ)−M

I The most general metric can be written as

ds2 = − dr2

W(r)−M
+ (W(r)−M)dx2, φ = r



I We will be especially interested in our discussion of the quantum
theory in what happens for potentials which asymptote, for large −φ, to
the AdS form, i.e. where

W(φ)→ −φ2 as φ→∞

I Of particular interest will be the geometries which have AdS in the UV
and interpolate to dS spacetime in the IR

I The case of AdS and dS correspond to the potential [Anninos,Galante,

Hofman’18, Anninos, Harris’22]

UAdSdS(φ) =

{
2φ AdS
−2φ dS



I For a geometry with a horizon at r = rh, the thermodynamic quantities
are given by

T =
U(rh)

2π
, S = 2πrh

I Thermodynamic stability related to specific heat

C ≡ dE
dT
∝ dE

drh
/

dT
drh
∝ U(rh)

U′(rh)
> 0 .

Thus, the horizon in dS has negative specific heat.



I Thus, we shall consider the potential of the qualitative form as Fig. 1
and it can be modeled crudely as below [Anninos,Harris’22]

U(φ) =


cφ φ < φ1, (c > 2)

U0 − αφ φ1 < φ < φ2

2φ φ2 < φ

cφ

U(φ)

4πT

2φ

φ1 φ2
φ

Figure. The potential U(φ) we consider in this paper. This admits Centaur geometry. Here
c > 2.



CANONICAL QUANTIZATION

I Working in the ADM gauge with radial coordinate r playing the role of
time,

ds2 = N2dr2 + g1(dx + N⊥dr)2

I Hamiltonian and Momentum constraints become

0 = H ≡ δIJT

δN
= 2πφπg1

√
g1 +

(
φ′
√g1

)′
− 1

2
√

g1U

0 = P ≡ δIJT

δN⊥
= 2g1π

′
g1

+ πg1g
′
1 − πφφ′

[cf. Sandip’s talk]



SOLUTIONS

I On a slice of constant dilaton, φ′ = 0, general solutions can be written as

Ψ(φ) =

∫
dM

(
ρ+(M)e`

√
W(φ)−M + ρ−(M)e−`

√
W(φ)−M

)
.

I For Euclidean AdS2 the coefficients functions are

ρ+(M) = sinh(2π
√

M) , ρ−(M) = 0 .



ON-SHELL ACTION

I The on-shell value of the action for fixed length and value of the dilaton
on the boundary in the asymptotic limit,

l� 1 , W(φb)� 1 ,
l

W(φb)
= fixed ,

is given by

Z = e−Ion-shell = e−
βM∗

2 +2πφh ≡ e−βE∗+2πφh

where M∗ should be thought of as a function of temperature, given by

M∗ =

∫ rh

0
U(r), rh = U−1(4πT)



CENTAUR WAVEFUNCTION AT FIXED T

I The location of the horizon is obtained by solving for φh

φh =

{
4πT

c φh < φ1

2πT φh > φ2

I The partition function at finite temperature, obtained by evaluating the
on-shell action, is given by

Z(β) = θ(β − βc)e−βF1 + θ(βc − β)e−βF2

F1 = −4π2

cβ2

F2 = −2π2

β2 +
2π2

β2
c

(
1− 2

c

)
Tc =

1
2π

√
cφ1φ2

2



I The entropy and the density of states are given by

S =

2π
√

2M
c T < Tc

2π
√

M− 4π2
(
1− 2

c

)
T2

c T > Tc

and so

ρ ≈

{
e2π
√

2M
c for small M

e2π
√

M−M̃0 for large M

I The density of states show that the number of degrees of freedom are
decreased due to the presence of IR dS bubble.



SUMMARY

I Natural to use York time in AdS. Wavefunctions specified by constant
extrinsic curvature can be constructed from Euclidean path integrals.

I Constructed wavefunction corresponding to a general class of
observables

I Carried out some basic checks of the wavefunctions, matching with the
on-shell calculation in the classical limit, taking inner product to give
expected results.

I The wavefunctions satisfy a modified WDW equation where the corner
terms play an important role.

I Explored Centaur geometries with a dS bubble embedded inside AdS
and computed density of states in WKB limit.



SOME OPEN QUESTIONS

I Understand how to compute the mixed boundary wavefunctions in the
second order formalism directly.

I Compute the mixed boundary wavefunction away from the asymptotic
region.

I Study the implications of the modified TT̄ equation.

I Relation to Cauchy slice holography? [Onkar-Kruthoff-Pawel, Goncalo-Rifath-Wall,..]

I Compute the full path integral for Centaur geometry and obtain the full
Density of States.

I Relation to deformed SYK models? [cf. Shira’s talk]
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