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• We’ll consider the QM of a large number 𝐷 of 𝑁×𝑁 Hermitian matrices

This is usually hard to solve. 
However, we will consider the following limit
• First, taking large 𝑁 = planar limit.
• After that, taking a large 𝐷 limit with a proper ‘t Hooft coupling fixed.

This leads to perturbation in 1/𝐷 and we can solve = compute a thermal 
correlator !

The main result

Matrices 𝑋!"# (𝜏) 𝑖 = 1,… , 𝐷
𝐴, 𝐵 = 1,… ,𝑁

(Euclidean action)
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As you know well, the matrix model has various intersections with gravity
• ‘t Hooft expansion [‘74 t’hooft]
The clue for Gauge/Gravity. ‘t Hooft suggested taking a large number of 

colors 𝑁 → ∞ with ‘t Hooft coupling fixed and doing 1/𝑁 expansion. This 
expansion has the same structure as string theory.
• The essence of this discussion is that the field is a matrix.
• Let us consider the vacuum bubble of 
• If we define 𝜆 = 𝑔!𝑁, 𝑁 dependence are

Matrix Model is important

3/32
Planer 
(Leading)

Non-planer
(subleading)

= 𝑂 𝑁! = 𝑂 𝑁"

Φ!"

Matrix element index

Double line notation



And many important works…
• SSS [‘91 Witten, ‘92 Kontsevich] [‘19 Saad, Shenker, Stanford]
JT gravity/GUE with proper potential correspondence. PF matches.
genus expansion in JT = topological expansion in RMT.
This can be regarded as a special case of Witten-Kontsevich (TG = 

DSRMT).

• Chaotic system and RMT
In chaotic systems, the energy level spacing is expected to obey a 

Wigner-Dyson distribution, which is a characteristic behavior in RMT.

Matrix Model is important
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In particular, (commutator)^2 potential is important like
BFSS Matrix Model

Dynamics for a collection of D0-brane
Dimensional reduction of 𝑈(𝑁) Yang-Mills theory from 10 to 1 dim 
• Developing the solving method for this type of matrix model is 
important from the non-perturbative aspect of the string theory.
• However, the multi-matrix model is hard to solve in general. In fact, 
there are many references to attack this.
• e.g. Bootstrap (Numerically, @large 𝑁). The main focus is often …

+ fermion part

Commutator squared potential

[‘20 Han, Hartnoll, Kruthoff]
(with fermion part) [‘23 H. W. Lin] 

𝑋!"# (𝜏) 𝑖 = 1,… , 9
𝐴, 𝐵 = 1,… ,𝑁

5/32



(1 + 0) dim QM of a collection of 𝑁×𝑁 Hermitian matrices.
First term is Kinetic one, second term is mass one.

• Hidden index exists. 𝑋#$%
𝑖 runs from 1 to 𝐷 (the number of matrix).
A, 𝐵 runs from 1 to 𝑁 (the size of matrix).

• 𝑚" is bare mass and there are two types of coupling 𝑔# and 𝑔&. 
These have a different role in this model.

Our Model [‘24 TA, Iizuka, Kabat]

(Euclidean action)
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• If we set 𝑔# = 𝑔& = 𝑔'(, this reduces to

• This model has a BFSS-like potential. In general, it’s hopeless to 
solve this dynamics.

We consider the following two limits,
• First, we take large 𝑁 limit = only planar diagrams contribute.
• Second, we take large 𝐷 limit (with some fixed quantity) = Hopeful.

Our Model - Motivation
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• More concretely, we consider the following limit.

• As we will see later, By setting 𝑔& = 0 and taking our double-scaled limit, 
calculating the correlator comes down to a similar one of the 𝑂(𝐷)
vector model. 
(Note that there is an essential difference in whether fields are 

commutable or not.)

t’ Hooft coupling
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• Now this model has the following two couplings.

• Today, let us devote ourselves to computing the 1/𝐷 correction to 
the correlation.

Leading contribution
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• First, let us consider the leading contribution.
• Only planar diagrams survive since we take large 𝑁.

Leading contribution

𝑔#!𝑁𝐷 = :𝜆# 𝑔&!𝐷 =
1
𝑁
:𝜆&

>>
𝑖 𝑖

𝑗 𝑗

𝑖 𝑖
𝑗

𝑗

Planar but

𝑔&! !𝑁!𝐷 =
:𝜆!

𝐷
Single line loop = 𝑁 (size of matrix)	choices = 𝑂(𝑁)
Double line loop = D (the # of matrix) choices = 𝑂(𝐷)
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• After trial and error, the following types of diagrams contribute in 
leading order 𝑂 𝑁"𝐷" .

Leading contribution

𝑔#!𝑁𝐷 ! = :𝜆#!𝑔#!𝑁𝐷 = :𝜆#

𝑔#!𝑁𝐷 ! = :𝜆#!
Only a series of snail diagrams contribute.
From now on, only planar diagrams will be 
considered at all times. Therefore, the double line 
notation can be eliminated. 11/32



Leading contribution

= +

= + + +⋯

SD equation for
leading order

is a coefficient 
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• Let us assume

• And 1-loop integral can be performed

• Therefore, the mass of leading two-point function becomes 

Leading contribution
SD equation for
leading order

13/32



• Next, let us compute the 1/𝐷 correction.
• By using 𝑔#, Many diagrams contribute to the correction. 

The correction from 𝒈𝑨

𝑂( 𝑔#! !𝑁!𝐷) =
:𝜆#!

𝐷
)

𝑂( 𝑔#! )𝑁)𝐷!) =
:𝜆#)

𝐷 )

𝑂( 𝑔#! )𝑁)𝐷!) =
:𝜆#)

𝐷
)

𝑂( 𝑔#! *𝑁*𝐷)) =
:𝜆#*

𝐷
)

𝑂( 𝑔#! *𝑁*𝐷)) =
:𝜆#*

𝐷
)

𝑂( 𝑔#! +𝑁+𝐷*) =
:𝜆#+

𝐷
)
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• Adding snails, which is an effect of leading, the diagrams still 
becomes the 1/𝐷 order. For example,

The correction from 𝒈𝑨

𝑂( 𝑔#! +𝑁+𝐷*) =
:𝜆#+

𝐷
)

𝑂( 𝑔#! ,𝑁,𝐷-) =
:𝜆#,

𝐷
) 𝑂( 𝑔#! .𝑁.𝐷,) =

:𝜆#.

𝐷
)
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The correction from 𝒈𝑨

𝑂( 𝑔#! !𝑁!𝐷) =
:𝜆#!

𝐷
)

𝑂( 𝑔#! )𝑁)𝐷!) =
:𝜆#)

𝐷 )

𝑂( 𝑔#! )𝑁)𝐷!) =
:𝜆#)

𝐷
)

𝑂( 𝑔#! *𝑁*𝐷)) =
:𝜆#*

𝐷
)

𝑂( 𝑔#! *𝑁*𝐷)) =
:𝜆#*

𝐷
)

𝑂( 𝑔#! +𝑁+𝐷*) =
:𝜆#+

𝐷
)

• We can replace all bare propagators to dressed one.
• All the following are the 1/𝐷 corrections (using only 𝑔#).
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The correction from 𝒈𝑨
• There are three types of diagram which contributes correction
• This is all the corrections using only 𝑔#.

≈

Mass-shift
Important 17/32



• We have to consider the contribution which contains all loop (we 
call this Bubble) to calculate the correction to the 2pt function.

• Please note that only planar diagrams survive again. The following 
are all same order

Bubble contribution

𝑂( 𝑔#! !𝑁𝐷 =
:𝜆#!

𝑁𝐷
) 𝑂( 𝑔#! )𝑁!𝐷! =

:𝜆#)

𝑁𝐷
)𝑂( 𝑔#! +𝑁*𝐷* =

:𝜆#+

𝑁𝐷
)

× :𝜆#
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• Schwinger-Dyson equation can be written as

• Of course, this has an overall factor, which will be re-counted later, 
but what is important is its coefficient ratio.

Bubble contribution
× :𝜆#
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• This has a geometric sum structure

• We can perform all integrals in r.h.s. where 

Bubble contribution
× :𝜆#
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The correction from 𝒈𝑨
• There are three types of diagram which contributes correction
• This is all the corrections using only 𝑔#.

≈

Mass-shift
Important 22/32



• By using 𝑔&, there are the additional diagram which contributes. 

Planar 𝑂( 𝑔&! !𝑁!𝐷) =
/0!
"

1 )

The correction from 𝒈𝑪

=

Adding snails does not 
change the order of 𝐷

𝑂( 𝑔&! !𝑁!𝐷 𝑔#! +𝑁+𝐷+) =
:𝜆&! :𝜆#+

𝐷
)

≈

𝑂(𝑔#! 𝑔&! !𝑁)𝐷!) =
:𝜆# :𝜆&!

𝐷
)

Mass-shift

Important 23/32



SD equation up to 𝑶(𝟏/𝑫)

SD equation 
up to 𝟏/𝑫

Mass-shiftImportant

This is zero-temperature result.
We are interested in finite temperature case.
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Finite temperature - leading

= +

= + + +⋯

SD equation for
leading order
@Zero-temperature
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Finite temperature - bubble
SD equation for
leading order
@Zero-temperature

@Finite temp
(Matsubara formalism)

• Let us assume

• We can determine the mass of leading two-point function 
becomes

• Matsubara summation of the bubble diagram can be performed in 
the same way. 
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• It’s possible to calculate these contribution

Finite temperature - correction
SD equation 
Up to 1/D

Important point is this isn’t 
just mass shift
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• Appropriately redefining the mass, we obtain

• In the leading, the pole was single, but the correction at finite 
temperature decomposes the pole into a pair of poles.

• There is no true dissipation, but there is destructive interference.

Finite temperature - correction

determines

~
1
𝐷
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• retarded Green’s function which can be obtained from a Euclidean 
correlator by analytically continuing

• lifetime , recurrence                 , width(rate)
• The dissipation is generically an 𝑂(1/ 𝐷) effect in many-matrix th?

Finite temperature and dissipation

~ 𝐷 ~ 𝐷 ~1/ 𝐷
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• In high temperature, second term in 𝐵 dominates and all the effects 
of pole splits, comes from 𝑔&. The effect of 𝑔# is subleading.
• Why? The potential of our model can be rewritten as

• Is this instability related with? (Future direction)

The role of two couplings

Stable If 𝒈𝑨 > 𝒈𝑪, stable
If 𝒈𝑪 > 𝒈𝑨, unstable
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Summary

We’ll consider the QM of a large number 𝐷 of 𝑁×𝑁 Hermitian matrices
• First, we take large 𝑁 = only planar diagrams survive. 
• After that, we take large 𝐷 and do perturbation in 1/𝐷 .

We computed a thermal two-point correlator to 𝑂(1/𝐷)
• In the leading, the pole was single, but the correction at finite 
temperature decomposes the pole into a pair of poles.
• This implies a timescale for thermal dissipation ~ 𝑂( 𝐷)
• At high temperatures dissipation is predominantly due to one of the 
two quartic couplings. 
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• Higher order? And expansion convergent or not?
The splitting continues and additional poles develop?
• 4pt (OTOC) calculation?
In some particular limit, we can expect the order of Lyapunov 

exponent in comparison with usual (commutable) vector model. Can 
we perform the calculation explicitly?
• Application for Tensor models?
The fundamental dof of our model 𝑋#$% (𝜏) can be regarded as tensor. 

What can we find by using the same double-scaled method?

Thank you for listening!

Future direction
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When 𝑔& = 0, our model has the similar structure with (non-commutable) 
𝑂(𝐷) vector model. I’ll introduce the simple thing which we can see soon.
• As a reference, what happens in commutable case ?

This is integrable and OTOC oscillates = does not show chaos. However, 
if 𝑂(𝐷) symmetry is slightly broken, the Lyapunov exponent is non-zero = 
slightly chaotic. For example [‘22 Kolganov, Trunin]

Four point, OTOC (Future direction)

Slightly chaotic!
Lyapunov ~𝟏/𝑫

Appendix



• Returning our model, if we set 𝑔# = 𝑔& = 𝑔, then part of the effect of 𝑔&
corresponds to this.

There are some differences since our model is noncommutative, 
But the symmetry argument still seems valid, and we should be able to 
make a similar argument for our model.
• Remaining issues are the following.
1. What is the contribution of the rest terms? 
2. Our model is nonconmmutable. 3. When 𝑔# ≠ 𝑔&? 

Four point, OTOC (Future direction)

Symmetric Nonsymmetric The rest
Maybe slightly chaotic! Lyapunov ~𝟏/𝑫

Appendix


