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The main result

« We'll consider the QM of a large number D of NxN Hermitian matrices

S = /dT (8,X0, X" + ;mOT&‘ (XiX?) + ;gA”ﬁ (X' X' XIX7) — %Q%Tr (X' X7 X'X7)

(Euclidean action)

Matrices X}z (1) i=1,..,D
AB=1,..,N
This is usually hard to solve.
However, we will consider the following limit
 First, taking large N = planar limit.
« After that, taking a large D limit with a proper 't Hooft coupling fixed.

This leads to perturbation in 1/D and we can solve = compute a thermal
correlator ! 2/32



Matrix Model is important

As you know well, the matrix model has various intersections with gravity
 ‘t Hooft expansion (74 troof

The clue for Gauge/Gravity. 't Hooft suggested taking a large number of
colors N - o with 't Hooft coupling fixed and doing 1/N expansion. This
expansion has the same structure as string theory.

« The essence of this discussion is that the field is a matrix.
« Let us consider the vacuum bubble of ,— _lz Ty Ea“q,auq) n lq,4]

. 4
- If we define 1 = g?N, N dependence are I b
N ab
. O(NZ) _ O(NO) Matrix element index
Planer Non-planer Double line notation

(Leading) (subleading) 3/32



Matrix Model is important

And many important works:--

¢ SSS ['91 Witten, ‘92 Kontsevich] ['19 Saad, Shenker, Stanford]

JT gravity/GUE with proper potential correspondence. PF matches.
genus expansion in JT = topological expansion in RMT.

This can be regarded as a special case of Witten-Kontsevich (TG =
DSRMT).

Z3(B1,B2,85) = >
g=0

- Chaotic system and RMT —

In chaotic systems, the energy level spacing is expected to obey a
Wigner-Dyson distribution, which is a characteristic behavior in RMT.

3/32



Commutator squared potential

In particular, (commutator)*2 potential is important like
BFSS Matrix Model ; _ 1 [’I‘r{1 (D-X.)" — % [Xi,Xj]2}+ fermion part]

T 22t 2
. _ )(i (T) (1=1,..,9
Dynamics for a collection of DO-brane ABYY ) AB=1 .. N
Dimensional reduction of U(N) Yang-Mills theory from 10 to 1 dim

« Developing the solving method for this type of matrix model is
Important from the non-perturbative aspect of the string theory.

« However, the multi-matrix model is hard to solve in general. In fact,
there are many references to attack this.

« e.9. Bootstrap (Numerically, @large N). The main focus is often -

2 2 2 2 2 2 2
H =tr (P.-\’ + Py +m (X +Y ) — g [Xa Y] ) ['20 Han, Hartnoll, Kruthoff]
(with fermion part) ['23 H. W. Lin]
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Our Model

S = [ar 3T (0.X70,X7) + Jmad Tr (X'X) + 563 Tr (XXXOX) — 202 Tx (XXX X)
_ _ o _ (Euclidean action)
(1 + 0) dim QM of a collection of NxN Hermitian matrices.

First term is Kinetic one, second term Is mass one.

- Hidden index exists. X}p
i runs from 1 to D (the number of matrix).
A, B runs from 1 to N (the size of matrix).

* my IS bare mass and there are two types of coupling g, and g¢.
These have a different role in this model.
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Our Model - Motivation

S = /d’r Tr (8,X°0,X") + ;mOT&‘ (X*x*) + ;gATr (X’ XX X7) — %Q%TY (XX X' X7)

 If we set g, = g. = gy, this reduces to
1

29y Tr (X7, X7T%)

1 0 AN
S = /dT éTI' (HTX 87-X) A

« This model has a BFSS-like potential. In general, it's hopeless to
solve this dynamics.

We consider the following two limits,
« First, we take large N limit = only planar diagrams contribute.

« Second, we take large D limit (with some fixed quantity) = Hopeful.
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t’ Hooft coupling

S = /dT Tr (8,X'8,X") + ;mOT&‘ (XIX?) + ;gATr (X*X* X7 X7) — %Q%TY (X'X7X'X7)

« More concretely, we consider the following limit.
A=¢3N =0 with Mgy =MD fixed

Ao = géN — 0 with S\C = AcD fixed

« As we will see later, By setting g- = 0 and taking our double-scaled Iimit,
calculating the correlator comes down to a similar one of the 0(D)
vector model.

(Note that there is an essential difference in whether fields are
commutable or not.)
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Leading contribution

S = /d’r Tr (8,X°0,X") + ;mOT&‘ (X*x*) + ;gATr (X’ XX X7) — %Q%TY (XX X' X7)

« Now this model has the following two couplings.

1 . 1 .
+ 59?4 Tr (X*X*X? X7) = §gg Tr (X* X7 X' X7)
X X7
b| |c b| |c
X b < J i b C i
a d X X a dX

al |d al |d
X7 X7

« Today, let us devote ourselves to computing the 1/D correction to
the correlation.
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Leading contribution

 First, let us consider the leading contribution.
« Only planar diagrams survive since we take large N.

i i 1 Planar but

- 2 — —
gaND = Ay gch =5 4c

/'”lz
(96)*N?D = —

Single line loop = N (size of matrix) choices = O(N)

Double line loop = D(the # of matrix) choices = 0(D) 10/32



Leading contribution

« After trial and error, the following types of diagrams contribute in
leading order 0(N°DY).

gaND = 44 (95NDY* = 1

Only a series of snail diagrams contribute.
From now on, only planar diagrams will be | (G3ND)? = 12
considered at all times. Therefore, the double line 4 A

notation can be eliminated. 11/32




Leading contribution

SD tion f x dw’ .,
Iea;g;ao:ﬂcér;ror G(w) = Go(w) — cLAaGo(w)G(w) / —G (W)

is a coefficient
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Leading contribution

SD tion f S dw ,
Iea;g;ao:ﬂcér;ror G(w) = Go(w) — cLAaGo(w)G(w) / —G (W)

* Letus assume , _ 1 o— 1 cL = 2
0= 2 2 )2
w* + my w4 + mj

« And T-loop integral can be performed

/ dw' G (w / o —— T
u/z—krnl my

« Therefore, the mass of leading two-point function becomes

~ ~
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The correction from g,

« Next, let us compute the 1/D correction.
« By using g4, Many diagrams contribute to the correction.

D)
/14
0((gh)*N*D?) =)

yi
) y|
Q@ Z
0((g3)3N3D?) = 0((g2)°N>D%) =)
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The correction from g,

« Adding snails, which is an effect of leading, the diagrams still
becomes the 1/D order. For example,

15 i S i % %
0((g3)5N3D%) =2y .

A
0((gh)°N®D7) =7 0((g3)°N°D®) = —)
15/32




The correction from g,

« We can replace all bare propagators to dressed one.
 All the following are the 1/D corrections (using only g,).

0((9A)2N2D) —_) 2 ;‘  _e é % °

0((9A)3N3D2) =

0(<gA>4N4DB>=3A /
_‘
2
0((gA)3N3D2)— @ % 0((gA)*N°D*) =—)

w|w

7

® 16/32
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The correction from g,

« There are three types of diagram which contributes correction
« This Is all the corrections using only g.,.

——————————————————————————————————

'l, ’ \\\‘ 'I, , \\\‘ ,/, ---------------------------------------- \\\
| | 1 | /) 1
I | 1 | | 1
| | | 1 | |
| I | | | :
: ‘j ® L L Lo :
I I 1 9o o 11 I
| | | | | |
| | | 1 | |
| I | | | 1
| | | | | |
| | | 1 | |
I ! I 11 —® PY :
' @ P I 1 —e ® I
| —® ® o ! | i | :
|
i l i P ® o— |
| | | | | |
| | | | | 1
\ ! \ I ‘\ I,
\\\ Bubble ,/I \\\ A ,,I \ , /
. —————————————————————————— s
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Bubble contribution

« We have to consider the contribution which contains all loop (we
call this Bubble) to calculate the correction to the 2pt function.

~

/\X‘AA

~ (1)1 ’4 AN wl ’1 \ wl ,l
\-\J‘ ’/ \:J\ /’ \'\J\ /,
N R _ b3 R AN P
{ Bubble K = ; A e
L’-, N Lﬁl RN l«i’ \\
\ \
07 W2 . 55 A% S ot W5 .

« Please note that only planar diagrams survive again. The following
are all same order

12
A

ND

0((g3)?ND =



Bubble contribution

. W1 2 N, W1 ¥ \, W1 5
\_‘J\ /’ \:J\ /’ \_‘J\ ,/
\ / _ \\ / \\ ,/
A Bubble K = 3 A SR R
£ “ £ \ | “
’ \ ’ \ ’ \\
s W2 . /s W2 S s/ W2 “
. W1 , N, W1 , N, W1 J
\ _\J\ // Py \ _\J\ ,, / N\ _\J\ ,’ P
N\, / N ,/ N ‘ ’
{  Bubble ¥ = > " > Bubble K
Iri, \\ ILI \\ 'ﬁ, \\
,/ \\ ,/ \\ / \\
s W S »/ W3 S s W2 S

« Schwinger-Dyson equation can be written as

d d
B(wi—g) = %G(W)G(wl—z —w) — CB)\AD/ %G(w)G(wl_z — w)B(wi_2) cg = 1
« Of course, this has an overall factor, which will be re-counted later,

but what is important is its coefficient ratio.
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Bubble contribution

~ w 1 ,1 ~ w 1 ,l \ (l) 1 ,'
\:J\ 4 /’ \:J\ /I \‘\"I\ /,
AN s — AN e N "
{ Bubble K = 3 o+ “  +
L: ~ k ~ L,_ S
’ S ’ S ’ S
s W2 . /s W2 S s/ W2
. W1 , N, W1 J N, W1 J
\_\J\ 4 4 \:’I\ /l \'\’I\ /’
. o) S s N ‘ 4
{  Bubble ¥ = 3 S > Bubble K
Iri, RN Iﬁ, \\ 'ﬁ, N
/’ N ’ SN ’ S
S/ Wy . . Wy S, s/ Wy

B(wi-2) = de( )G(wi—2 —w) — CB)‘AD/ g_:G(W)G(Wl—z — w)B(w1-2) cg =1
[LG(w G(w1 2 — W)

« This has a geometric sum structure
B(wi-2) =

1-|—CB)\Af2 w)G(wi—2 — w)
. : : B 1 /\A
We can perform all integrals in r.h.s. where G = R m? =m2 4+ 24
B(w) ! ! here = 4m7 + M ™
W) = winer m = m E—
! 19/32
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The correction from g,

« There are three types of diagram which contributes correction
« This Is all the corrections using only g.,.

——————————————————————————————————

'l, ’ \\\‘ 'I, , \\\‘ ,/, ---------------------------------------- \\\
| | 1 | /) 1
I | 1 | | 1
| | | 1 | |
| I | | | :
: ‘j ® L L Lo :
I I 1 9o o 11 I
| | | | | |
| | | 1 | |
| I | | | 1
| | | | | |
| | | 1 | |
I ! I 11 —® PY :
' @ P I 1 —e ® I
| —® ® o ! | i | :
|
i l i P ® o— |
| | | | | |
| | | | | 1
\ ! \ I ‘\ I,
\\\ Bubble ,/I \\\ A ,,I \ , /
. —————————————————————————— s
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The correction from g,

« By using g., there are the additional diagram which contributes.

_______________________________________________________
~

N
Planar 0((gé)*N?D) = %%) \0/

Adding snails does not
change the order of D

0

AaA

D

) - 0(g4(9e)*N°D?) =
AsA
0((g3)2N2D(g3)°N5D%) = =2 Mass-shift

O P
\ ;
\ m ’
M ---__________________________________I___F_)f)_l:-!:?_r_lj:__,/ 23/32
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SD equation up to 0(1/D)

Important Mass-shift .y SD equation

Gw)™ = w’ +mi + % (Ma(w) + e (w)) + 6my + dme + o(ﬁ) up to 1/D

=
AL -6

This is zero-temperature result.
We are interested in finite temperature case.
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Finite temperature - leading

SD tion f /
Ieaoﬁﬂ;ao:%r;ror G(w) = Go(w) — cLAaGo(w)G(w) / —G(w') cr, = 2

@Zero-temperature

25/32



Finite temperature - bubble

SD tion f : dw ,
Ieaoﬁﬂ;ao:%r;ror G(w) = Go(w) — cLAAGo(w)G(w) / —G(W) cr, =2

@Zero-temperature

@Finite temp W
(Matsubara formalism) G(wn) = Go(wn) — CLFGO(wn G(wp) Z G (wk)
1 1
* Letus assume g, = G =
w? +mg w? +m?

« We can determine the mass of leading two-point function

becomes A
mi = m¢ + Z4 coth frm,
m
« Matsubara summation of the bubble diagram can be performed in
the same way.
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Finite temperature - correction

1

G(wn) ™! = G(wn) ™' + % (Ila(wn) + He(wn)) + 6ma + dme + O (ﬁ) lSJD fqlilf;gon
p to
\2
() = —%‘%;G(wkw(wk - wn) .
1 A
Sle(wa) = —%’ﬂ—g 3 G(wr) G () Glewn — wiir)

« |[t's possible to calculate these contribution

1 B

D (Ia(wn) +lo(wn)) = —

+... in the vicinity of w? +m2 =0
w2 +m?

N - )
B=DB,+ B, = 1 (224 4+ 3’\57 ( 1 ) ePm Important point is this isn’t
D\ B my \e’m™ —1 just mass shift

A is a complicated S-dependent function. 27/32



Finite temperature - correction

Glan) ™ = Glan) ™+ 7 (Laan) + e(un)) + ma -+ 5me +0 ()

D D2
1 B
D( () olin)) w2 +m7 dma + dme B
« Appropriately redefining the mass, we obtain determines
~ 1
~ 1 1 B ~ —
G(w) x _ . D
(aﬂ-+7n2+-VC§ cu2+-nﬂ-—4VQ§>

 In the leading, the pole was single, but the correction at finite
temperature decomposes the pole into a pair of poles.

mi =m? £ \/IT?
« There is no true dissipation, but there is destructive interference.
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Finite temperature and dissipation

- 1 1
G(w) x — + — 2 _ 24 4/B
<w2+m2+\/§ w2+m2—\/§) M = T VB

e retarded Green’s function which can be obtained from a Euclidean
correlator by analytically continuing

~ ~ . . 1 1
GR((U) - G(w — —Z(w +7’€)) — # (_(w +’i6)2 +m3_ + _(w +’I;6)2 +m2_)
Gr(t) = / g: e ' Gr(w)

ox 6(t) (n% sin(mt) + % sin(m_t)) o 6(t) sin(mt) cos (\gng;t)
e lifetime 7= ﬁ ~ ~/D, recurrence t= 47 ~+/D, width(rate) Ir=-= £ ~1/\D

- The dissipation is generically an 0(1/+/D) effect in many- matrlx th’?
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The role of two couplings

é(wn)_l = G(wn)_l + l (I (wp) + He(wn)) + dma + dme + O (i)

D D2
1 B
= (Ma(wn) + Mo(wy)) = —
7 (LLa(wn) +1c(wn)) o
B 1 (2044 302 1\ s
B_B1+Bz_D< B m2 (eﬂm1_1> °

 In high temperature, second term in B dominates and all the effects
of pole splits, comes from g.. The effect of g, is subleading.

« Why? The potential of our model can be rewritten as

V = gmdTe (X'X) = 208 Tr (X, X0F) + (64 — g3) Tr (X' X X0X)
Stable If g4 > g, stable

If gc > g4, unstable

* Is this instability related with? (Future direction) 30/32



Summary

S = /dT Tr (8,X'0,X") + ;mOTr (X' X?) + ;gATr (X*X*XIX7) - %Q%TY (X' X2 X' X7)

We'll consider the QM of a large number D of NxN Hermitian matrices
 First, we take large N = only planar diagrams survive.
« After that, we take large D and do perturbation in 1/D .

We computed a thermal two-point correlator to 0(1/D)

 In the leading, the pole was single, but the correction at finite
temperature decomposes the pole into a pair of poles.

« This implies a timescale for thermal dissipation ~ 0(+/D)

« At high temperatures dissipation is predominantly due to one of the

two quartic couplings.
R PINg 31/32



Future direction

« Higher order? And expansion convergent or not?
The splitting continues and additional poles develop?
« 4pt (OTOC) calculation?

In some particular limit, we can expect the order of Lyapunov
exponent in comparison with usual (commutable) vector model. Can
we perform the calculation explicitly?

« Application for Tensor models?

The fundamental dof of our model X}5(r) can be regarded as tensor.
What can we find by using the same double-scaled method?

Thank you for listening!
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Four point, OTOC (Future direction)

S = /dT Tr (8,X'0,X") + ;mo’ﬁ (X' X?) + ;gATr (X*X*XIX7) - %Q%TY (X' X2 X' X7)

When g, = 0, our model has the similar structure with (hon-commutable)
0(D) vector model. I'll introduce the simple thing which we can see soon.

« As a reference, what happens in commutable case ?

=[x (- 54) -

7,]1

This is integrable and OTOC oscillates = does not show chaos. However,
It 0(D) symmetry is slightly broken, the Lyapunov exponent is non-zero =
Sllghtly chaotic. For example [[22 Kolganov, Trunin]

Slightly chaotic!

D
1..
S=/dt[; (§¢f z-) AN Zq‘) ob +4NZ¢ ] Lyapunov ~1/D

lj-

sy mmetrlc nonsvmmet ric

Appendix



Four point, OTOC (Future direction)

S = /dT Tr (8,X'0,X") + ;mo’ﬁ (X' X?) + ;gATr (X*X*XIX7) - %Q%TY (X' X2 X' X7)

« Returning our model, if we set g, = gc = g, then part of the effect of g,
corresponds to this.

1 o
Z ngr XXX X7 Z ngr X'X'X'X") — Z 59 gTr(X* X/ X' X7)
(B Symmetric ' ¢ Nonsymmetrlc %7 The rest

Maybe slightly chaotic! Lyapunov ~1/D
There are some differences since our model is noncommutative,

But the symmetry argument still seems valid, and we should be able to
make a similar argument for our model.

« Remaining issues are the following.
1. What is the contribution of the rest terms?
2. Our model is nonconmmutable. 3. When g, # g¢?

Appendix



