Global Particle Simulation of Pulsar Magnetospheres

Shota Kisaka (Hiroshima Univ.)

Collaborator : Shinpei Shibata (Yamagata Univ.)

FRB and Pulsar Magnetosphere

DM

Metzger+ 19

Lu+ 20

- Pulsar emit coherent radio pulse.
- Progenitor of Galactic FRB is **SGR J1935+2154**, a strongly magnetized neutron star.

 Most proposed FRB models consider the phenomena in the magnetosphere or the plasma wind from the magnetosphere.

Plasma properties in the pulsar magnetosphere is important to consider the generation and **Propagation of FRBs.**

Contents

1. Introduction

2. Global particle simulation of magnetosphere

3. Localized pair injection in global simulation

Log Frequency (Hz)

Bühler & Blandford 14

Local Particle Simulations Local kinetic simulation of electromagnetic cascade.

Dissipation at Outer Region

Contents

1. Introduction

2. Global particle simulation of magnetosphere

3. Localized pair injection in global simulation

 $\frac{\partial \mathbf{E}}{\partial t} = c(\nabla \times \mathbf{B}) - 4\pi \mathbf{j}, \quad \nabla \cdot \mathbf{E} = 4\pi \rho_{\rm e}, \quad \nabla \cdot \mathbf{B} = 0$ $\frac{\partial \mathbf{B}}{\partial t} = -c(\nabla \times \mathbf{E}), \quad d(\gamma m \mathbf{v})/dt = q(\mathbf{E} + \boldsymbol{\beta} \times \mathbf{B})$

Particle Injection Models

Philippov & Spitkovsky 14 Kalapothelakos+ 18, 23 Brambillia+ 18 $\sigma > \sigma_{th}$

Chen & Beloborodov 14, Philillov+ 15a, 15b, Philippov & Spitkovsky 18, Hu & Beloborodov 22 Bransgrove+ 22

Cerutti+ 15, 16a, 16b, 17, Hakobyan+ 23 Kalapothelakos+ 18, Brambillia+ 18

Surface injection

These models can supply particles throughout the magnetospheres.

Surface Injection

Dissipation region (=Emission region) : Current sheet

y-threshold Model Gap opens at the return current region. $E_{\parallel} \& E_{\parallel}$ accelerations

Bransgrove+ 22

Contents

1. Introduction

2. Global particle simulation of magnetosphere

3. Localized pair injection in global simulation

PICsar2D

Belyaev 15a, 15b, 17

Axisymmetric aligned rotator

Cell number : Light cylinder radius : Particle per cell : Surface B-field : 4096 (log r) × 2048 (cos θ) R_{lc}/R_{ns} = 4 10000 (surface) B₀ = 10⁴ G

Initial B-field :Vacuum dipoleParticles :Electrons and Positrons

Particle injection

•Surface plasma injection : $\dot{n} \propto |E \cdot B|$

• Pair injection :

 $\begin{array}{l} \mbox{Surface (} r_{inj} = R_{ns}, 0^{\circ} < \theta_{inj} < 180^{\circ}) \\ \mbox{Null} & (0.64 < r_{inj}/R_{lc} < 0.69 , 53^{\circ} < \theta_{inj} < 57^{\circ}, 123^{\circ} < \theta_{inj} < 127^{\circ}) \\ \mbox{Sheet} & (0.95 < r_{inj}/R_{lc} < 1.05, 85^{\circ} < \theta_{inj} < 95^{\circ}) \\ \mbox{Injection rate : ~ 10 } n_{GJ} \mbox{ in each step} \end{array}$

Surface Injection

Dissipation region : Current sheet
E₁ acceleration

Null Injection

Current distribution

No particle in middle altitude \rightarrow Small current

-0.2

-0.6

-0.8

Pairs are separated by weak E-field at the injection region. \rightarrow Weak E₁₁ acc.

Null Injection

• E_{\perp} acceleration • No significant dissipation

Sheet Injection

Current distribution

No particle in middle altitude \rightarrow small current

1.0

0.8

-0.2

-0.4

-0.6

-0.8

-1.0

Pairs are not easily separated because of large inertia. → Particles are extracted from the NS to connect the current circuit.

Sheet Injection

We performed 2D PIC simulation for a global pulsar magnetosphere with the localized pair injection models.

Local injection \rightarrow Localized current \rightarrow Low Poynting flux Injection at large r \rightarrow extended closed region \rightarrow Low Poynting flux

Injection at $r < R_{lc} \rightarrow Low$ dissipation E_{\perp} acceleration Injection at $r > R_{lc} \rightarrow$ High dissipation $E_{\perp} \& E_{||}$ accelerations \rightarrow Null or surface injection? Localized sheet injection model is unrealistic?