Scattering of Fast Radio Bursts in strongly magnetized electron-positron plasma

arXiv: 2310.02306

Rei Nishiura

Division of Physics and Astronomy, Kyoto University

Kunihito loka

Yukawa Institute for Theoretical Physics, Kyoto University

FRBs are the brightest radio transients, firstdiscovered in 2007.Lorimer et al. 2007

- FRBs origin is not fully understood.
- FRB 20200428 from the Galactic magnetar marked a step

Two major locations for FRB generation in the

magnetar are considered.

Magnetosphere models

Katz 2014; Lyutikov et al. 2016; Lu and Kumar 2018; Yang and Zhang 2018; Kumar and Bošnjak 2020; Cooper and Wijers 2021

Far-away models

Circumstellar

Lyubarsky 2014; Murase et al. 2016; Waxman 2017; Margalit et al. 2020; Beloborodov 2020

Coherent waves (FRBs) can be significantly attenuated by induced Compton scattering in a magnetar's magnetosphere.

Blandford and Scharlemann 1975; Wilson and Rees 1978; Wilson 1982; Lyubarskii and Petrova 1996; Lyubarsky 2008

Focus on the **cross-section** affecting the reaction rate.

In a strongly magnetized e^{\pm} plasma, scattering can be suppressed by various effects.

• X-mode waves in pair plasma experience significant suppression of scattering.

$$\sigma_{\rm X} = \frac{1}{2} \sigma_{\rm T} \left[\left(\frac{\omega}{\omega + \omega_{\rm c}} \right)^2 + \left(\frac{\omega}{\omega - \omega_{\rm c}} \right)^2 \right]$$
$$\sim \sigma_{\rm T} \left(\frac{\omega}{\omega_{\rm c}} \right)^2 \qquad , \omega_{\rm c} \equiv \frac{eB_0}{m_{\rm e}c}$$

 It is argued that the drift motion of electrons and positrons significantly cancels out the scattering. Lyubarsky 2020; Golbraikh and Lyubarsky 2023

I want to cohesively understand the scattering in magnetized e^{\pm} plasma.

Scattering of Electron-Positron (e^{\pm}) Pairs

At first glance, when e^{\pm} pairs scatter with X-mode waves, the drift motion seems to cancel out the scattering.

• Assuming the electron and positron are stationary before scattering.

 $\mathbf{F}^{\text{in}} \mathbf{Z}$

Is the same scattering cancellation effect realized in multi-particle scattering ?

Collective Thomson scattering considers the interactions among many charged particles in plasma.

Fejer 1960; Dougherty and Farley 1960; Salpeter 1960; Hutchinson 2002; Froula et al. 2012

$$\frac{d\sigma^{(1)}}{d\Omega d\omega_{1}} = \frac{3\sigma_{T}}{8\pi} S(\mathbf{k}_{1} - \mathbf{k}_{0}, \omega_{1} - \omega_{0}) \sin^{2}\theta$$
in un-magnetized ion-electron plasma

$$S(\mathbf{k}, \omega) \equiv \lim_{V,T \to \infty} \frac{\left\langle \left| \delta \widetilde{n}_{-}(\mathbf{k}, \omega) \right|^{2} \right\rangle_{\text{ensemble}}}{VTn_{e}}$$

$$Spectral \text{ density function}$$

$$\omega_{1}: \text{ scattering frequency}$$

$$\omega_{0}: \text{ incident frequency}$$

$$V: \text{ scattering region}$$

$$T: \text{ scattering time}$$

$$n_{e}: \text{ uniform density of plasma}$$

$$\delta n_{-}: \text{ density fluctuations}$$
of electrons

- We must consider a strong magnetic field.
- We must replace ions with positrons in plasma.

We must also consider scattering from positrons.

Plasma density fluctuations are determined by expanding the Vlasov equations for electric field variations.

$$\frac{\partial F_{\pm}}{\partial t} + \boldsymbol{v}_{0\pm} \cdot \frac{\partial F_{\pm}}{\partial r} \pm \frac{e}{m_{e}} \left(\delta \boldsymbol{E}(\boldsymbol{r},t) + \boldsymbol{v}_{0\pm} \times \boldsymbol{B}_{0} \right) \cdot \frac{\partial F_{\pm}}{\partial \boldsymbol{v}_{0\pm}} = 0$$
Electric field produced by density fluctuations
$$F_{\pm}(\boldsymbol{r},\boldsymbol{v},t) = F_{0\pm}(\boldsymbol{v}) + \delta F_{\pm}(\boldsymbol{r},\boldsymbol{v},t) = \sum_{j=1}^{N_{\pm}} \delta^{3} \left(\boldsymbol{r} - \boldsymbol{r}_{j}(t)\right) \delta^{3} \left(\boldsymbol{v} - \boldsymbol{v}_{j}(t)\right)$$
Places distribution function

Plasma distribution function

$$\widetilde{\delta n_{\pm}}(k,\omega-i\gamma) = \int d^3 \boldsymbol{\nu} \int d^3 \boldsymbol{r} \int_0^\infty dt \ e^{-(i\omega+\gamma)t+i\boldsymbol{k}\cdot\boldsymbol{r}} \ \widetilde{\delta F_{\pm}}(\boldsymbol{k},\omega,\boldsymbol{\nu})$$

 δn_{\pm} : density fluctuations for positrons/electrons

The scattering cross-section is described by four types of spectral density functions.

$$\frac{4\pi\omega_{0}}{\sigma_{\rm T}}\frac{{\rm d}\sigma^{(1)}}{{\rm d}\Omega{\rm d}\omega_{1}} = \frac{3\omega_{0}}{8\pi} \left(\frac{\omega_{0}^{2}}{\omega_{0}^{2}-\omega_{c}^{2}}\right)^{2} \left[(S_{++}+S_{+-}+S_{-+}+S_{--})(1-\sin^{2}\theta\sin^{2}\varphi) \right]$$
Direction of incident electric field: $\hat{\sigma}_{\rm Electric}$

$$+ \left(\frac{\omega_{\rm c}}{\omega_{0}}\right)^{2} (S_{++}-S_{+-}-S_{-+}+S_{--})\sin^{2}\theta \right]$$
Direction of drift motion: $\hat{\sigma}_{\rm Drift}$

$$S_{\pm\pm}(\mathbf{k},\omega) \equiv \lim_{V,T\to\infty} \frac{\left\langle \left| \widetilde{\delta n_{\pm}}(\mathbf{k},\omega) \right|^{2} \right\rangle_{\rm ensemble}}{VTn_{e}} \qquad \delta n_{\pm}: \text{ density fluctuations for positrons/electrons}$$

$$S_{\pm\mp}(\mathbf{k},\omega) \equiv \lim_{V,T\to\infty} \frac{\left\langle \widetilde{\delta n_{\pm}}(\mathbf{k},\omega) \widetilde{\delta n_{\mp}}^{*}(\mathbf{k},\omega) \right\rangle_{\rm ensemble}}{VTn_{e}}$$

Scattering Spectrum in Maxwellian Distribution

 The spectrums of waves propagating perpendicular to the magnetic field peaks at cyclotron intervals. The cross-section is consistent with single-particle scattering in the cold plasma limit.

 $\frac{\mathrm{d}\sigma_{\mathrm{cold}}^{(1)}}{\mathrm{d}\Omega\mathrm{d}\omega_{1}} = \frac{3\sigma_{\mathrm{T}}}{8\pi} \left(\frac{\omega_{0}^{2}}{\omega_{0}^{2} - \omega_{\mathrm{c}}^{2}}\right)^{2} \left[(1 - \sin^{2}\theta\sin^{2}\varphi) + \left(\frac{\omega_{\mathrm{c}}}{\omega_{0}}\right)^{2}\sin^{2}\theta \right] \delta(\omega_{1} - \omega_{0})$ \downarrow $\sigma_{\mathrm{cold}}^{(1)} = \frac{1}{2}\sigma_{\mathrm{T}} \left[\left(\frac{\omega_{0}}{\omega_{0} + \omega_{\mathrm{c}}}\right)^{2} + \left(\frac{\omega_{0}}{\omega_{0} - \omega_{\mathrm{c}}}\right)^{2} \right] = \sigma_{\mathrm{X}}$

- The magnetic field still suppresses X-mode wave scattering.
- Drift motion of electrons and positrons does NOT cancel scattering.

$$\sigma_{\rm T} \longrightarrow \sigma_{\rm X}^{(1)} \sim \sigma_{\rm T} \left(\frac{\omega_0}{\omega_{\rm c}}\right)^2$$

It is necessary to incorporate the particle statistics of plasma just before scattering.

• For e^{\pm} pair scattering: The cross-terms remain.

$$\frac{\mathrm{d}\sigma_{\mathrm{drift}}^{(2)}}{\mathrm{d}\Omega} \propto \left|\widetilde{E_{\mathrm{rad}}}\right|^2 \propto \left(e^{i\boldsymbol{k}\cdot\boldsymbol{r}_+} - e^{i\boldsymbol{k}\cdot\boldsymbol{r}_-}\right)\left(e^{-i\boldsymbol{k}\cdot\boldsymbol{r}_+} - e^{-i\boldsymbol{k}\cdot\boldsymbol{r}_-}\right)$$
$$\propto 2\{1 - \cos(k_x d)\}\frac{\mathrm{d}\sigma_{\mathrm{drift}}^{(1)}}{\mathrm{d}\Omega}$$

• For collective scattering: The cross-terms averages to zero.

$$\frac{\mathrm{d}\sigma_{\mathrm{drift}}^{(N_{+}+N_{-})}}{\mathrm{d}\Omega} \propto \left|\widetilde{E_{\mathrm{rad}}}\right|^{2} \propto \left\langle \left|\widetilde{\delta n_{+}}-\widetilde{\delta n_{-}}\right|^{2}\right\rangle_{\mathrm{ensemble}}$$

$$\propto \left\langle \left\{\sum_{j=1}^{N_{-}} e^{ik \cdot r_{j}(t=0)}(\cdots) + \sum_{h=1}^{N_{+}} e^{ik \cdot r_{h}(t=0)}(\cdots)\right\} \left\{\sum_{s=1}^{N_{-}} e^{-ik \cdot r_{s}(t=0)}(\cdots) + \sum_{g=1}^{N_{+}} e^{-ik \cdot r_{g}(t=0)}(\cdots)\right\} \right\rangle_{\mathrm{ensemble}}$$

$$\propto (N_{+} + N_{-}) \frac{\mathrm{d}\sigma_{\mathrm{drift}}^{(1)}}{\mathrm{d}\Omega} + 0$$

Without a magnetic field, the collective effect does NOT appear at all in e^{\pm} plasma scattering.

Sincell and Krolik 1992

- In plasma, the response of particle groups to a single particle can be viewed as an averaged cloud (Hartree-Fock-like description).
- The radiative electric field, being charge-sign independent, results in mutually canceling radiation from the clouds.

$$\boldsymbol{E}_{\mathrm{rad}}^{\pm} = \pm \frac{e}{cR} \{ \boldsymbol{n} \times (\boldsymbol{n} \times \boldsymbol{\beta}_{\pm}) \}_{\mathrm{ret}} = \boldsymbol{E}_{\mathrm{rad}}^{+} = \boldsymbol{E}_{\mathrm{rad}}^{-}$$

12

Physical Interpretation (With Magnetic Field)

With a magnetic field, we have newly found that the cross-section retains a collective effect. arXiv: 2310.02306

Direction of incident electric field: $\hat{\sigma}_{\text{Electric}}$

Direction of drift motion: $\hat{\sigma}_{\text{Drift}}$

Multiple radiation bands have been observedin the Crab Pulsar.Hankins and Eilek 2007

 Traces of collective scattering in the pulsar magnetosphere ?

We may extract information about magnetic field and plasma in scattering regions.

Collective Thomson scattering in magnetized e^{\pm} plasma has revealed the following:

- Considering particle interactions, the scattering wave cancellation effect still does NOT occur.
- X-mode FRBs can extend their propagation range due to magnetic field effects but not significantly due to particle interactions.

$$\sigma_{\rm X}^{(1)} \sim \sigma_{\rm T} \left(\frac{\omega_0}{\omega_{\rm c}}\right)^2$$

$$\longrightarrow \tau_{\rm ind}^{\rm X} \sim n_{\rm e} \sigma_{\rm T} c \Delta t_{\rm FRB} \left(\frac{\omega_0}{\omega_{\rm c}}\right)^2 \frac{3\pi L_{\rm FRB}}{4r^2 m_{\rm e} \omega_0^3}$$

散乱断面積を特徴づける密度揺らぎは3つの項に分類される

$$\begin{split} \widetilde{\delta n}_{-}(\mathbf{k},\omega) &= \left(1 - \frac{H}{\varepsilon_{\rm L}}\right) \sum_{j=1}^{N_{-}} e^{i\mathbf{k}\cdot\mathbf{r}_{j}(t=0)} \times (\ensuremath{\mathbb{R}} + \ensuremath{\mathbb{T}} + \frac{H}{\varepsilon_{\rm L}} \sum_{h=1}^{N_{+}} e^{i\mathbf{k}\cdot\mathbf{r}_{h}(t=0)} \times (\ensuremath{\mathbb{R}} + \ensuremath{\mathbb{T}} + \ensuremath{\mathbb{T}} + \frac{H}{\varepsilon_{\rm L}} \sum_{h=1}^{N_{+}} e^{i\mathbf{k}\cdot\mathbf{r}_{h}(t=0)} \times (\ensuremath{\mathbb{R}} + \ensuremath{\mathbb{T}} +$$

Noncollective term

• 1. 各電子が磁場中でサイクロトロン運動していることを表す項

Collective term → 誘電率 (プラズマ効果) 依存性あり

- 2. 各電子が他の電子集団の雲に与える効果の項
- 3. 各陽電子が他の電子集団の雲に与える効果の項

Froula et al. 2012

議論 散乱スペクトルの奇妙なピーク

Collective effectありの散乱スペクトルに

鋭いピークがある

 10^{2} 鋭いピークは $\delta(\omega_1 - \omega_0)$: cold limit 縦誘電率がゼロになる 10^{-2} 規格化散乱断面積 $\sigma_{\rm Electric}$ 周波数に現れる 10^{-4} σ_{Drift} 10^{-6} 10^{-8} プラズマ固有モードの場所 10^{-10} $\theta_{\rm B} = 84^{\circ}$ $k_{\rm B}T_{\rm e} = 153 \, {\rm keV}$ 10^{-12} 10 1 ω_1/ω_c

鋭いピークが何の固有モード由来か明らかにしたい (おそらくプラズマ振動かBernstein波) 予備スライド 磁気圏から離れたモデルの問題点(1)

パルサー放射のような周期的なパルスを放つ

FRBが観測された

CHIME/FRB Collaboration et al. 2022

- 周期:数100ミリ秒
- 磁気圏から離れたモデル でこのような放射を 作れるかは不明

パルサー放射と似た機構でマグネター磁気圏で作られる?

予備スライド 磁気圏から離れたモデルの問題点 (2)

Giant pulseのようなナノ秒スケールのFRBが観測された

Nimmo et al. 2022

• FRB 20200120Eの持続時間:60 ns

磁気圏から離れたモデルでは発生場所が

マグネター表面から近すぎる

黒体放射を仮定するとFRBの輝度温度が高すぎる

Kellermann and Pauliny-Toth 1969

(放射エネルギー) ∝ (粒子数)

(放射エネルギー) ∝ (粒子数)²

FRBは粒子集団からのコヒーレント放射である

予備スライド 誘導コンプトン散乱

散乱反応率が入射光の占有数に比例して増幅される

- FRBの減衰度合いは散乱光の増幅因子で特徴づけられる 散乱光。 ("有効的"光学的厚さ: τ_{ind}) $n(\omega, \mathbf{\Omega}) \equiv n_0 e^{\tau_{\text{ind}}}$ FRB発生 散乱光の占有数 散乱光の種 FRB *σ*_T:トムソン断面積 $3\pi\sigma_{\rm T}L_{\gamma}n_{\rm e}c\Delta t_{\rm FRB}$ Lyubarsky 2008 $\tau_{\rm ind} =$ $4r_0^2 m_e \omega^3$ L_{ν} :FRBの光度 *r*₀:FRBの発生場所 $\sim 2 \times 10^{22} \frac{L_{\gamma,42} n_{e,14} c \Delta t_{,-3}}{r_8^2 \omega_{GHz}^3} \gg 1$ ω : FRBの周波数 ∆t_{FRB}:FRBのパルス幅
- 幅広いパラメーター範囲でFRBが大きく減衰する

予備スライド 誘導コンプトン散乱の描像

散乱光はFRBのパルスの中にいる間だけ成長する

予備スライド 電子・陽電子のE×B ドリフトによる影響

一様磁場中に電場が加わると電荷に依らない運動が生じる

$$v_{\perp} = c \frac{E \times B}{B^2}$$

• 電子と陽電子のドリフト方向は同じ

・ ドリフトで生じる電流は打ち消す
 $j_{+}^{drift} + j_{-}^{drift} \sim 0$

E×Bドリフトの描像

散乱においてこの効果を考えたら散乱が 抑制されるのではないか? Lyubarsky 2020

予備スライド 散乱による電子・陽電子の運動

強磁場中の散乱粒子はドリフト運動が支配的

$$\begin{split} j_{\pm y}^{\text{particle}}(\mathbf{r},t) &\simeq i \frac{e^2 E_0}{m_e} \frac{\omega_0}{\omega_0^2 - \omega_c^2} e^{-i\omega_0 t} \delta^3 (\mathbf{r} - \mathbf{r}_{\pm}) = \mathcal{O}(\omega_c^{-2}) \\ & \land \\ j_{\pm z}^{\text{particle}}(\mathbf{r},t) &\simeq \mp \frac{e^2 E_0}{m_e} \frac{\omega_c}{\omega_0^2 - \omega_c^2} e^{-i\omega_0 t} \delta^3 (\mathbf{r} - \mathbf{r}_{\pm}) = \mathcal{O}(\omega_c^{-1}) \\ & \vdash \forall d \in \mathbb{R} \end{split}$$

予備スライド電子・陽電子対の散乱

電子・陽電子対が作る電流・電場

陽電子の寄与

•

• 電子・陽電子各々が作る電流密度を足し合わせる

 $\boldsymbol{j}_{\mathrm{p}}(\boldsymbol{r},t) = \left[e\boldsymbol{v}_{+}\delta\left(x-\frac{d}{2}\right)-e\boldsymbol{v}_{-}\delta\left(x+\frac{d}{2}\right)\right]\delta(y)\delta(z)$

放射電場は電磁場ポテンシャルの波動方程式 から求める

$$\begin{bmatrix} \left(k^2 - \frac{\omega^2}{c^2}\right) \tilde{\phi}(\mathbf{k}, \omega) = 4\pi \tilde{\rho}_{\rm p} & \tilde{E}(\mathbf{k}, \omega) = -i\mathbf{k}\tilde{\phi}(\mathbf{k}, \omega) + i\frac{\omega}{c}\tilde{A}(\mathbf{k}, \omega) \\ \left(k^2 - \frac{\omega^2}{c^2}\right)\tilde{A}(\mathbf{k}, \omega) = \frac{4\pi}{c}\tilde{J}_{\rm p} \end{bmatrix}$$

電子の寄与

 $B_0 \boldsymbol{e}_{\boldsymbol{x}}$

 $\boldsymbol{E}_{\mathbf{x}}^{\mathrm{in}}$

d

予備スライド電子・陽電子対の散乱

電子・陽電子対が出す散乱エネルギー

• 単位時間当たりの散乱エネルギーの時間平均

$$\begin{pmatrix} P^{(2)} \end{pmatrix} = \begin{pmatrix} P_y^{(2)} \end{pmatrix} + \begin{pmatrix} P_z^{(2)} \end{pmatrix}$$
80字運動の
小さい方向 先きい方向
(ドリフト方向)
$$= \frac{4e^4 E_0^2}{3m_e^2 c^3} \frac{\omega_0^4}{(\omega_0^2 - \omega_c^2)^2} + \frac{2e^4 E_0^2}{15m_e^2 c^3} \frac{\omega_0^2 \omega_c^2}{(\omega_0^2 - \omega_c^2)^2} \left(\frac{\omega_0 d}{c}\right)^2$$

$$= \mathcal{O}\left(\left(\frac{\omega_0}{\omega_c}\right)^4\right) + \mathcal{O}\left(\left(\frac{\omega_0}{\omega_c}\right)^2 \left(\frac{\omega_0 d}{c}\right)^2\right)$$
b 1 波の打ち消し効果
$$\sim 10^{-12} \frac{\omega_g^2}{d_{-5}^2}$$

ドリフト運動に起因する放射が大きく抑制される

予備スライド 電子・陽電子プラズマの散乱

プラズマの一様密度成分からの散乱は無視できる

Bekefi 1966

散乱波 波長:λ

 $\mathbf{j}_{\text{plasma}}(\mathbf{r},t) = e\mathbf{v}_{+}(\mathbf{r},t)[\mathbf{v}_{e} + \delta n_{+}(\mathbf{r},t)] - e\mathbf{v}_{-}(\mathbf{r},t)[\mathbf{v}_{e} + \delta n_{-}(\mathbf{r},t)]$

陽電子の寄与

電子の寄与

- 散乱波の半波長分離れた一様プラズマの薄い板のペアを考える
- 薄い板からの散乱波は互いに完全に
 キャンセルする
- 散乱領域全体に渡って
 同様の議論が成り立つ

なは互いに完全に Alta T = C = -様プラズマ $(2n+1)\pi c$ ω $(2n+1)\pi c$ ω

電磁波の散乱はプラズマの密度揺らぎにより生じる

予備スライド電子・陽電子プラズマの散乱

プラズマ密度揺らぎの評価

プラズマ密度揺らぎは散乱前の粒子集団に対する
 無衝突ボルツマン方程式から求まる

$$\frac{\partial F_{\pm}}{\partial t} + \boldsymbol{v}_{0\pm} \cdot \frac{\partial F_{\pm}}{\partial \boldsymbol{r}} \pm \frac{e}{m_{e}} \left(\delta \boldsymbol{E}(\boldsymbol{r},t) + \boldsymbol{v}_{0\pm} \times \boldsymbol{B}_{0} \right) \cdot \frac{\partial F_{\pm}}{\partial \boldsymbol{v}_{0\pm}} = 0$$

散乱前に密度揺らぎ サイクロトロン運動

 $F_{\pm}(\boldsymbol{r},\boldsymbol{v},t) = F_{0\pm}(\boldsymbol{v}) + \delta F_{\pm}(\boldsymbol{r},\boldsymbol{v},t) = \sum_{j=1}^{N_{\pm}} \delta^{3} \left(\boldsymbol{r} - \boldsymbol{r}_{j}(t) \right) \delta^{3} \left(\boldsymbol{v} - \boldsymbol{v}_{j}(t) \right)$

$$\widetilde{\delta n_{\pm}}(k,\omega-i\gamma) = \int d^3 \nu \int d^3 r \int_0^\infty dt \ e^{-(i\omega+\gamma)t+ik\cdot r} \ \delta \widetilde{F}_{\pm}(k,\omega,\nu)$$

無限小の減衰因子

予備スライド 電子・陽電子プラズマの散乱

プラズマ密度揺らぎの評価

プラズマ密度揺らぎは散乱前の粒子集団に対する
 無衝突ボルツマン方程式から求まる

磁化プラズマの密度揺らぎはHughes et al. (1988)
 により導出されている

 $\widetilde{\delta n}_{-}(\mathbf{k},\omega) = \alpha_{-}(\mathbf{k},\omega) \sum_{j=1}^{N_{-}} e^{i\mathbf{k}\cdot\mathbf{r}_{j}(t=0)} \times (\mbox{ergent} + \beta_{-}(\mathbf{k},\omega) \sum_{h=1}^{N_{+}} e^{i\mathbf{k}\cdot\mathbf{r}_{h}(t=0)} \times (\mbox{line} + \beta_{-}(\mathbf{k},\omega) \sum_{h=1}^{N_{+}} e$

予備スライド 電子・陽電子プラズマの散乱

Spectral density functionの評価

- 同じ粒子同士の積の項のみ初期位相が打ち消して残る (j = s, h = gの項)
- 他の項は粒子運動のランダム性により平均してゼロになる

予備スライド 散乱における磁場の有無による違い

磁場無しの場合電子・陽電子プラズマ中の散乱は collective effect (誘電率依存性) が完全に打ち消す Sincell and Krolik 1992

磁場ありの場合、粒子の運動方向によってcollective effect が異なる

磁場ありの場合散乱断面積にcollective effectが残る ことが新たに分かった 磁場無しの場合電子・陽電子プラズマ中の散乱は collective effect (誘電率依存性) が完全に打ち消す Sincell and Krolik 1992

彼らの主張:「1つのテスト電子に応答する陽電子集団が電子分布の「hole」とちょうど反対方向に動くからである。」

あんま分からん... もっと良い物理的解釈?

 電子・陽電子はイオン・電子と違って質量と電荷の大きさが等しいので collective effect が完全に打ち消すのは不思議ではない

議論 磁場あり電子・陽電子プラズマからの散乱

磁場ありの場合散乱断面積にcollective effectが残る ことが新たに分かった

磁場ありの場合、粒子の運動方向によってcollective effect が異なる

$$S_{++} + S_{+-} + S_{-+} + S_{--} = 4\sqrt{\pi} \sum_{l=-\infty}^{+\infty} \exp\left\{-\frac{1}{2}\left(\frac{v_{\text{th}}k_{\perp}}{\omega_{\text{c}}}\right)^{2}\right\} I_{l} \left[\frac{1}{2}\left(\frac{v_{\text{th}}k_{\perp}}{\omega_{\text{c}}}\right)^{2}\right] \frac{\exp\left[-\left(\frac{\omega-l\omega_{\text{c}}}{k_{x}v_{\text{th}}}\right)^{2}\right]}{k_{x}v_{\text{th}}}$$
入射電場方向: $\hat{\sigma}_{\text{Electric}}$

$$\varepsilon_{\text{L}}: 縦誘電率 \quad H: 電気感受率$$

$$S_{++} - S_{+-} - S_{-+} + S_{--} \quad \text{FUフト運動方向:} \ \hat{\sigma}_{\text{Drift}}$$
$$= 4\sqrt{\pi} \left\{ 1 - 4\text{Re} \left(\frac{H}{\epsilon_{\text{L}}}\right) + 4 \left|\frac{H}{\epsilon_{\text{L}}}\right|^2 \right\} \sum_{l=-\infty}^{+\infty} \exp\left\{ -\frac{1}{2} \left(\frac{\nu_{\text{th}} k_{\perp}}{\omega_{\text{c}}}\right)^2 \right\} I_l \left[\frac{1}{2} \left(\frac{\nu_{\text{th}} k_{\perp}}{\omega_{\text{c}}}\right)^2 \right] \frac{\exp\left[-\left(\frac{\omega - l\omega_{\text{c}}}{k_x \nu_{\text{th}}}\right)^2 \right]}{k_x \nu_{\text{th}}}$$