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I will outline a dictionary from QFTs to L∞-algebras:

n-point 1PI correlator ↔ κ(•, [•, •, · · · •]︸ ︷︷ ︸
n−1 arguments

)

antibracket ↔ inner product κ
S-matrix elements ↔ minimal model
vacuum moduli space ↔ Maurer-Cartan locus
effective theory ↔ homotopy transfer

It is based on the [Zinn–Justin 1974] antifield formalism, that assigns
a 1PI (1-particle irreducible) generating functional Γ to a solution
S of the quantum BV master equation.

(Beyond) effective field theory with homotopy transfer Alex S. Arvanitakis 2/13



HOW TO RECOGNISE AN L∞-ALGEBRA

If Cc
ab are structure constants Cc

ab of a Lie algebra g:

Q2 = 0 for Q = 1
2 Cc

abcacb ∂
∂cc ⇐⇒ Cd

[abCe
c]d = 0 .

ca has ghost number 1 (aka degree), Q increases degree by 1.

[AKSZ ‘95]

Any degree-1 differential Q with Q|z=0 = 0:

Q = ( Ca
b︸︷︷︸

∂=[•]

zb + 1
2 Ca

bc︸︷︷︸
[•,•]

zbzc + 1
3! Ca

bcd︸︷︷︸
[•,•,•]

zbzczd + . . . ) ∂
∂za

and Q2 = 0 — the Jacobi identities — defines an L∞-algebra.

One n-ary bracket

n arguments︷ ︸︸ ︷
[•, •, · · · •] for each n = 1, 2 . . .

“Ghosts” za bosonic or fermionic depending on degree mod 2.
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WHY L∞-ALGEBRAS, MORALLY?

“Meta-theorem1”: every deformation problem has an
L∞-algebra X; deformations solve

Maurer-Cartan equation:

∂v + 1
2 [v, v] + 1

3! [v, v, v] + · · · = 0 , v = vaTa ∈ X , deg v = 0 .

Solutions v mod gauge form the MC locus (or moduli space).

These define translations in ghost space

za → za + va = ev(za)

such that
evQe−v

defines an L∞-algebra whenever Q does.
Every perturbation expansion involves an L∞-algebra.
1 Now an actual theorem [Pridham, Lurie].
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L∞-ALGEBRA FOR A SCALAR QFT

Vacuum correlator generating functional for a scalar φ(x):

Z[J] = 〈0|T exp
(∫

d4x J(x)φ(x)
)
|0〉 .

Form the 1PI functional Γ in the usual way (Legendre):

Γ[Φ] ≡ log Z[J] +
∫

d4x J(x)Φ(x) , J = J[Φ] = δΓ/δΦ .

Γ is a formal power series in the classical field Φ(x).
Its Taylor coefficients around Φ = 0 give “1PI VEVs”:

δnΓ

δΦ(x1) · · · δΦ(xn)

∣∣∣
Φ=0
∝ 〈φ(x1) · · ·φ(xn)〉1PI

In perturbation theory, Γ = (kinetic term) + (all 1PI graphs).
Γ is the classical action S at tree level.
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Attempt to define L∞-algebra over the graded vector space

X = X0 ⊕ X1 , X0 = X1 = {scalar fields on R4},

with brackets [•, • · · · •] : (X0)n → X1, else zero:

[φ1, · · ·φn](x) ∝
∫

δn+1Γ

δΦ(x1) · · · δΦ(xn)δΦ(x)

∣∣∣
Φ=0

φ1(x1) · · ·φn(xn) .

Jacobi identities are automatic. Easy to see with classical
antifield

?

Φ(x) and antibracket

(Φ(x),
?

Φ(y)) = δ4(x− y) , (deg
?

Φ(x) = −1)

so that

Q = (Γ, •) = −
∫

δΓ

δΦ(x)

δ

δ
?

Φ(x)
=⇒ Q2 = 0 .
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We have an L∞-algebra if the scalar field has vanishing VEV:

Q|Φ=0 = 0 ⇐⇒ δΓ
δΦ(x) |Φ=0 = 0 ⇐⇒ 〈0|φ(x)|0〉 = 0 .

Why 1PI instead of connected or general correlators?
Consider a v in the MC locus. v ∈ X0 is a scalar field solving

∞∑
n=1

∫
1
n!

δnΓ

δΦ(x1) · · · δΦ(xn)

∣∣∣
Φ=0

v(x1) · · · v(xn) ≡ δΓ[v]

δΦ
= 0 .

v = (const.) thus extremises the [Coleman–Weinberg ‘73] potential!

Therefore we identify [ASA ’19]

vacuum moduli space ↔ Maurer-Cartan locus

(C.f. solutions of the EOM in string field theory determining
the conformal manifold of the worldsheet CFT [Sen ’90].)
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The LSZ formula for the S-matrix also has an L∞-interpretation
— as the minimal model — when expressed via Γ: [ASA ’19]

Let A[ϕ] be the generating function for non-trivial connected
S-matrix elements. Can then prove [Jevicki–Lee ’88, ASA ’19]

A[ϕ] = Γ[Φϕ] , Φϕ ∝ ϕ+O(ϕ2) solves δΓ/δΦ = 0 . (∗)

Here ϕ is an on-shell 1-particle state of renormalised mass, so

(δ2Γ/δΦ2)ϕ = 0.

(∗) is the geometric interpretation of the minimal model of
L∞/A∞-algebras due to [Kajiura ’01, ’03].

(∗) is naturally solved recursively in Φ as a power series in ϕ.
At tree level this leads to practical recursion relations:
Berends-Giele & perturbiner methods [Macrelli Sämann Wolf ’19,

Lopez-Arcos Vélez ’19]
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THE ZINN-JUSTIN [1974] 1PI FUNCTIONAL

For (perturbative) gauge theory, we need antifields. Let S[φ,
?

φ]

be the BV master action, J classical source,
?

Φ classical antifield,

Z[J,
?

Φ] ≡
∫
Dφ exp

(
iS[φ,

?

Φ] +
∫

dx J(x)φ(x)
)

Define Γ[Φ,
?

Φ] again via Legendre with respect to J;
?

Φ is fixed:

Γ[Φ,
?

Φ] ≡ log Z[J,
?

Φ] +
∫

d4x J(x)Φ(x) , J = J[Φ,
?

Φ] = δΓ/δΦ .

Taking δ/δ
?

Φ produces terms QBRSTφ(x) inside correlators. The

Zinn-Justin Γ thus encodes expressions of the form

〈φ(x1) · · ·φ(xn)QBRSTφ(xn+1)QBRSTφ(xn+2) · · · 〉1PI

in its Taylor expansion.
(This is reviewed in e.g. [Henneaux Teitelboim] or [Gomis Paris Samuel])
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Quantum master eq. for S is classical master eq. for Γ:

(Γ,Γ) ≡
∫

dx δΓ
δΦ(x)

δΓ

δ
?
Φ(x)

= 0 ⇐⇒ ∆ exp(iS[φ,
?

φ]) = 0 .

Q ≡ (Γ, •) has Q2 = 0 iff (Γ,Γ) = 0 (Zinn-Justin equation).
This is the absence of perturbative gauge anomalies.

We thus formally associate an L∞-algebra over R[[~]] (defined
by Γ) to a loop i.e. quantum L∞-algebra over R (defined by S).

For finite-dimensional algebras this is a precise statement
under certain conditions [ASA Hull Hohm Lekeu ’21 (?)].
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HOMOTOPY TRANSFER

Homotopy transfer is the operation of constructing a
L∞-algebra on a subspace X̄ < X of an L∞-algebra X.

The 1-ary bracket ∂ makes X a cochain complex (due to Jacobi).
Homotopy transfer works if ι : X̄ ↪→ X is an isomorphism in
cohomology (under ∂̄ and ∂), + some other conds.

There is a convenient geometric interpretation again: [ASA Hull

Hohm Lekeu ’20]

if Q ≡ Qa(z)∂/∂za defines the L∞-algebra X, write

z = (z̄, z⊥)

where z̄ā are “ghosts” dual to generators of X̄. Then solve

Q(z⊥) = 0 =⇒ z⊥ = z⊥(z̄) .

This defines a formal power series extending ι : X̄ ↪→ X to a
morphism of L∞-algebras. This is a homotopy equivalence or
quasi-isomorphism: their minimal models are isomorphic.
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EFFECTIVE FIELD THEORY & HOMOTOPY TRANSFER

Tree level. Here Γ = S. The geometric interpretation says

Γ̄[z̄] = Γ[z̄, z⊥], where z⊥ solves δΓ/δz⊥ = 0 ;

integrating out means solving EOMs.

Loop level. Γ 6= S. The Γ story is the same (less trivial due to
R[[~]]-related complications). S defining a loop L∞-algebra means
homotopy transfer is more subtle; proposals generally
formalise the Losev trick: [’04, later Mnev, Cattaneo, many others]

exp(~−1S̄[z̄]) =

∫
dφ⊥ exp(~−1S[z̄, φ⊥,

?

φ⊥ = 0])

which is morally a morphism of loop L∞-algebras. (Rigorous
proposals: e.g. [Merkulov ’09, Münster & Sachs ’12, Doubek Jurčo Pulmann ’17])

The point is that integrating over a lagrangian subspace of z⊥s
implies (assuming the path integral plays nice)

∆ exp(~−1S[z]) =⇒ ∆̄ exp(~−1S̄[z̄]) = 0 .
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We have the following relation involving original (Γ,S) and
effective (Γ̄, S̄): [ASA Hull Hohm Lekeu ’21 (?)]

S 1PI−−−−→ Γ

path integral
y yhomotopy transfer

S̄ 1PI−−−−→ Γ̄

For finite-dimensional algebras satisfying conditions (most
crucially contractibility) this is again a precise statement.

Integrating out is a quasi-isomorphism between cyclic (i.e. with
inner product/antibracket) L∞-algebras Γ, Γ̄.

NB there is no locality restriction; L∞-algebras can
accommodate nonlocalities (as in e.g. closed SFT).

We could go further beyond EFT via arbitrary quasi-isos! The
cyclicity assumption seems unwarranted, c.f. [Saberi’s talk].
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