(Beyond) effective field theory with homotopy transfer

Alex S. Arvanitakis

Vrije Universiteit Brussel

Homotopy Algebra of Quantum Field Theory and Its Application 2021 Yukawa Institute for Theoretical Physics, Kyoto University

March 29, 2021

Based on

- ► The L_∞-algebra of the S-matrix, ASA, [arXiv:1903.05643]
- Homotopy Transfer and Effective Field Theory I: Tree-level, ASA, Olaf Hohm, Chris Hull, Victor Lekeu [arXiv:2007.07942],...II, ...III [to appear]

I will outline a dictionary from QFTs to L_{∞} -algebras:

n -point 1PI correlator	\leftrightarrow	$\kappa(\bullet, [\bullet, \bullet, \cdots \bullet])$
		n–1 arguments
antibracket	\leftrightarrow	inner product κ
S-matrix elements	\leftrightarrow	minimal model
vacuum moduli space	\leftrightarrow	Maurer-Cartan locus
effective theory	\leftrightarrow	homotopy transfer

It is based on the [Zinn–Justin 1974] antifield formalism, that assigns a 1PI (1-particle irreducible) generating functional Γ to a solution *S* of the quantum BV master equation.

How to recognise an L_∞ -algebra

If C_{ab}^c are structure constants C_{ab}^c of a Lie algebra \mathfrak{g} :

$$Q^2 = 0$$
 for $Q = \frac{1}{2} C^c_{ab} c^a c^b \frac{\partial}{\partial c^c} \iff C^d_{[ab} C^e_{c]d} = 0$.

 c^a has *ghost number* 1 (aka *degree*), Q increases degree by 1.

[AKSZ '95]

Any degree-1 differential Q with $Q|_{z=0} = 0$:

$$Q = (\underbrace{C_b^a}_{\partial = [\bullet]} z^b + \frac{1}{2} \underbrace{C_{bc}^a}_{[\bullet,\bullet]} z^b z^c + \frac{1}{3!} \underbrace{C_{bcd}^a}_{[\bullet,\bullet,\bullet]} z^b z^c z^d + \dots) \frac{\partial}{\partial z^a}$$

and $Q^2 = 0$ — the Jacobi identities — defines an L_{∞} -algebra.

One *n*-ary bracket $\overbrace{[\bullet, \bullet, \cdots \bullet]}^{n \text{ arguments}}$ for each $n = 1, 2 \dots$ "Ghosts" z^a bosonic or fermionic depending on degree mod 2.

Why L_{∞} -algebras, morally?

"Meta-theorem¹": every deformation problem has an L_{∞} -algebra X; deformations solve

Maurer-Cartan equation:

 $\partial v + \frac{1}{2}[v,v] + \frac{1}{3!}[v,v,v] + \dots = 0, \quad v = v^a T_a \in X, \quad \deg v = 0.$ Solutions $v \mod gauge$ form the **MC locus** (or **moduli space**).

These define translations in ghost space

$$z^a \to z^a + v^a = e^v(z^a)$$

such that

$$e^{v}Qe^{-v}$$

defines an L_{∞} -algebra whenever Q does. Every perturbation expansion involves an L_{∞} -algebra.

¹ Now an actual theorem [Pridham, Lurie].

L_{∞} -Algebra for a scalar QFT

Vacuum correlator generating functional for a scalar $\phi(x)$:

$$Z[J] = \langle 0|T \exp\left(\int d^4x J(x)\phi(x)\right)|0\rangle$$
.

Form the 1PI functional Γ in the usual way (Legendre):

$$\Gamma[\Phi] \equiv \log Z[J] + \int d^4x J(x)\Phi(x), \quad J = J[\Phi] = \delta\Gamma/\delta\Phi.$$

 Γ is a formal power series in the **classical field** $\Phi(x)$. Its Taylor coefficients around $\Phi = 0$ give "1PI VEVs":

$$rac{\delta^n \Gamma}{\delta \Phi(x_1) \cdots \delta \Phi(x_n)} \Big|_{\Phi=0} \propto \langle \phi(x_1) \cdots \phi(x_n) \rangle_{1\mathrm{PI}}$$

In perturbation theory, Γ = (kinetic term) + (all 1PI graphs). Γ is the classical action *S* at tree level.

Attempt to define L_{∞} -algebra over the graded vector space

$$X = X_0 \oplus X_1$$
, $X_0 = X_1 = \{\text{scalar fields on } \mathbb{R}^4\}$

with brackets $[\bullet, \bullet \cdots \bullet] : (X_0)^n \to X_1$, else zero:

$$[\phi_1,\cdots\phi_n](x)\propto\int \frac{\delta^{n+1}\Gamma}{\delta\Phi(x_1)\cdots\delta\Phi(x_n)\delta\Phi(x)}\Big|_{\Phi=0}\phi_1(x_1)\cdots\phi_n(x_n).$$

Jacobi identities are automatic. Easy to see with **classical antifield** $\overset{*}{\Phi}(x)$ and antibracket

$$(\Phi(x), \stackrel{\star}{\Phi}(y)) = \delta^4(x-y), \quad (\deg \stackrel{\star}{\Phi}(x) = -1)$$

so that

$$Q = (\Gamma, \bullet) = -\int \frac{\delta\Gamma}{\delta\Phi(x)} \frac{\delta}{\delta\Phi(x)} \implies Q^2 = 0.$$

We have an L_{∞} -algebra if the scalar field has vanishing VEV:

$$Q|_{\Phi=0} = 0 \iff \frac{\delta\Gamma}{\delta\Phi(x)}|_{\Phi=0} = 0 \iff \langle 0|\phi(x)|0\rangle = 0$$

Why 1PI instead of connected or general correlators? Consider a v in the MC locus. $v \in X_0$ is a scalar field solving

$$\sum_{n=1}^{\infty} \int \frac{1}{n!} \frac{\delta^n \Gamma}{\delta \Phi(x_1) \cdots \delta \Phi(x_n)} \Big|_{\Phi=0} v(x_1) \cdots v(x_n) \equiv \frac{\delta \Gamma[v]}{\delta \Phi} = 0.$$

v = (const.) thus extremises the [Coleman–Weinberg '73] potential!

Therefore we identify [ASA '19]

vacuum moduli space \leftrightarrow Maurer-Cartan locus

(C.f. solutions of the EOM in string field theory determining the conformal manifold of the worldsheet CFT [Sen '90].)

The LSZ formula for the S-matrix also has an L_{∞} -interpretation — as the *minimal model* — when expressed via Γ : [ASA '19]

Let $\mathcal{A}[\varphi]$ be the generating function for non-trivial connected S-matrix elements. Can then prove [Jevicki–Lee '88, ASA '19]

$$\mathcal{A}[\varphi] = \Gamma[\Phi_{\varphi}], \qquad \Phi_{\varphi} \propto \varphi + \mathcal{O}(\varphi^2) \quad \text{solves} \quad \delta\Gamma/\delta\Phi = 0. \quad (*)$$

Here φ is an on-shell 1-particle state of *renormalised mass*, so

$$(\delta^2 \Gamma / \delta \Phi^2) \varphi = 0.$$

(*) is the **geometric interpretation** of the minimal model of L_{∞}/A_{∞} -algebras due to [Kajiura '01, '03].

(*) is naturally solved recursively in Φ as a power series in φ . At tree level this leads to practical recursion relations: Berends-Giele & perturbiner methods [Macrelli Sämann Wolf '19, Lopez-Arcos Vélez '19]

THE ZINN-JUSTIN [1974] 1PI FUNCTIONAL

For (perturbative) gauge theory, we need antifields. Let $S[\phi, \dot{\phi}]$ be the BV master action, *J* classical source, $\dot{\Phi}$ classical antifield,

$$Z[J, \Phi] \equiv \int \mathcal{D}\phi \exp\left(iS[\phi, \Phi] + \int dx J(x)\phi(x)\right)$$

Define $\Gamma[\Phi, \Phi]$ again via Legendre with respect to *J*; Φ is fixed:

$$\Gamma[\Phi, \overset{\star}{\Phi}] \equiv \log Z[J, \overset{\star}{\Phi}] + \int d^4x J(x) \Phi(x) , \quad J = J[\Phi, \overset{\star}{\Phi}] = \delta \Gamma / \delta \Phi .$$

Taking $\delta/\delta \Phi$ produces terms $Q_{\text{BRST}}\phi(x)$ inside correlators. The

Zinn-Justin Γ thus encodes expressions of the form

$$\langle \phi(x_1) \cdots \phi(x_n) Q_{\text{BRST}} \phi(x_{n+1}) Q_{\text{BRST}} \phi(x_{n+2}) \cdots \rangle_{1\text{PI}}$$

in its Taylor expansion. (This is reviewed in e.g. [Henneaux Teitelboim] or [Gomis Paris Samuel])

Quantum master eq. for *S* is *classical* master eq. for Γ :

$$(\Gamma, \Gamma) \equiv \int dx \, \frac{\delta\Gamma}{\delta\Phi(x)} \frac{\delta\Gamma}{\delta\Phi(x)} = 0 \iff \Delta \exp(iS[\phi, \phi]) = 0 \,.$$

 $Q \equiv (\Gamma, \bullet)$ has $Q^2 = 0$ iff $(\Gamma, \Gamma) = 0$ (*Zinn-Justin equation*). This is the absence of perturbative gauge anomalies.

We thus formally associate an L_{∞} -algebra over $\mathbb{R}[[\hbar]]$ (defined by Γ) to a *loop* i.e. *quantum* L_{∞} -algebra over \mathbb{R} (defined by *S*).

For finite-dimensional algebras this is a precise statement under certain conditions [ASA Hull Hohm Lekeu '21 (?)].

HOMOTOPY TRANSFER

Homotopy transfer is the operation of constructing a L_{∞} -algebra on a subspace $\overline{X} < X$ of an L_{∞} -algebra X.

The 1-ary bracket ∂ makes X a cochain complex (due to Jacobi). Homotopy transfer works if $\iota : \overline{X} \hookrightarrow X$ is an *isomorphism in cohomology* (under $\overline{\partial}$ and ∂), + some other conds.

There is a convenient **geometric interpretation** again: [ASA Hull Hohm Lekeu '20]

if
$$Q \equiv Q^a(z)\partial/\partial z^a$$
 defines the L_∞ -algebra X , write
 $z = (\bar{z}, z^\perp)$

where $\bar{z}^{\bar{a}}$ are "ghosts" dual to generators of \bar{X} . Then solve

$$Q(z^{\perp}) = 0 \implies z^{\perp} = z^{\perp}(\bar{z}) \,.$$

This defines a formal power series extending $\iota : \overline{X} \hookrightarrow X$ to a morphism of L_{∞} -algebras. This is a *homotopy equivalence* or *quasi-isomorphism*: their minimal models are isomorphic.

EFFECTIVE FIELD THEORY & HOMOTOPY TRANSFER

Tree level. Here $\Gamma = S$. The geometric interpretation says

 $ar{\Gamma}[ar{z}] = \Gamma[ar{z}, z^{\perp}], \quad ext{where} \quad z^{\perp} \quad ext{solves} \quad \delta\Gamma/\delta z^{\perp} = 0 \,;$

integrating out means solving EOMs.

Loop level. $\Gamma \neq S$. The Γ story is the same (less trivial due to $\mathbb{R}[[\hbar]]$ -related complications). *S* defining a loop L_{∞} -algebra means homotopy transfer is more subtle; proposals generally formalise the *Losev trick*: ['04, later Mnev, Cattaneo, many others]

$$\exp(\hbar^{-1}ar{S}[ar{z}]) = \int d\phi^{\perp} \exp(\hbar^{-1}S[ar{z},\phi^{\perp},\phi^{\perp}=0])$$

which is morally a morphism of loop L_{∞} -algebras. (Rigorous proposals: e.g. [Merkulov '09, Münster & Sachs '12, Doubek Jurčo Pulmann '17])

The point is that integrating over a lagrangian subspace of z^{\perp} s implies (assuming the path integral plays nice)

$$\Delta \exp(\hbar^{-1}S[z]) \implies \bar{\Delta} \exp(\hbar^{-1}\bar{S}[\bar{z}]) = 0.$$

We have the following relation involving original (Γ, S) and effective $(\overline{\Gamma}, \overline{S})$: [ASA Hull Hohm Lekeu '21 (?)]

$$\begin{array}{ccc} S & \stackrel{1\mathrm{PI}}{\longrightarrow} & \Gamma \\ \text{path integral} & & & \downarrow \text{homotopy transfer} \\ & \bar{S} & \stackrel{1\mathrm{PI}}{\longrightarrow} & \bar{\Gamma} \end{array}$$

For finite-dimensional algebras satisfying conditions (most crucially *contractibility*) this is again a precise statement.

Integrating out is a quasi-isomorphism between cyclic (i.e. with inner product/antibracket) L_{∞} -algebras $\Gamma, \overline{\Gamma}$.

NB there is no locality restriction; L_{∞} -algebras can accommodate nonlocalities (as in e.g. closed SFT).

We could go further *beyond* EFT via *arbitrary* quasi-isos! The cyclicity assumption seems unwarranted, c.f. [Saberi's talk].