BV double copy from homotopy algebras (Part 0)

Leron Borsten

Maxwell Institute for Mathematical Sciences & Heriot-Watt University, Edinburgh

Homotopy Algebra of Quantum Field Theory and Its Application March 24 - 31 2021 Yukawa Institute for Theoretical Physics, Kyoto University

Joint work 2007.13803 and 2102.11390 with Branislav Jurčo,

Hyungrok Kim (Part 1), Tommaso Macrelli (Part 2), Christian Saemann,

Martin Wolf

Gravity and gauge theory

- Gravity as a gauge theory:
 - ► Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
 - Holographic principle AdS/CFT correspondence
 ['t Hooft '93; Susskind '94; Maldacena '97]

Gravity and gauge theory

- Gravity as a gauge theory:
 - ► Gauge theory of Lorentz, (super) Poincaré or de Sitter symmetries [Utiyama '56; Kibble '61; MacDowell-Mansouri '77; Chamseddine-West '77; Stelle-West 79]
 - Holographic principle AdS/CFT correspondence
 ['t Hooft '93; Susskind '94; Maldacena '97]
- ► Here, we appeal to a third and (superficially) independent perspective:

$$\mathsf{Gravity} = \mathsf{Gauge} \times \mathsf{Gauge}$$

- ► The theme of gravity as the "square" of Yang-Mills has appeared in a variety of guises going back to the KLT relations of string theory [Kawai-Lewellen-Tye '85] Cf. Field theory [Feynman-Morinigo-Wagner; Papini '65]
- ▶ Bern-Carrasco-Johansson colour-kinematics (CK) duality and double-copy of (super) Yang-Mills (plus matter) scattering amplitudes
 [Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

$Gravity = Gauge \times Gauge$

▶ BV/BRST quantised Yang-Mills $\longrightarrow L_{\infty}$ -algebra that factorises:

$$\mathfrak{L}_{\mathsf{YM}} = \mathfrak{g} \otimes \mathfrak{V} \otimes_{\tau} \mathfrak{S}$$

► BRST-Lagrangian (or homotopy) double-copy:

lacktriangle Yang-Mills (integrands of) amplitudes double-copy to $\mathcal{N}=0$ supergravity

$Gravity = Gauge \times Gauge$

▶ BV/BRST quantised Yang-Mills $\longrightarrow L_{\infty}$ -algebra that factorises:

$$\mathfrak{L}_{\mathsf{YM}} = \mathfrak{g} \otimes \mathfrak{V} \otimes_{\tau} \mathfrak{S}$$

► BRST-Lagrangian (or homotopy) double-copy:

- lacktriangle Yang-Mills (integrands of) amplitudes double-copy to $\mathcal{N}=0$ supergravity
- Quantum gravity is the square of Yang-Mills (well, perturbatively and coupled to a Kalb-Ramond 2-form and dilaton) [2007.13803, 2102.11390]

Order of Events

1. BCJ Colour-Kinematics Duality and Double-Copy: Review

2. The BRST Lagrangian Double Copy: A Heuristic Summary

3. Colour-Kinematics Duality Redux (Hyungrok Kim: Part 1)

4. Homotopy Double Copy (Tommaso Macrelli: Part 2)

§1.

BCJ Colour-Kinematic Duality and Double-Copy

Amplitudology

► Consider pure Yang-Mills theory:

- ▶ Interested in *n*-point and *L*-loop amplitudes on Minkowski spacetime
- Conceptually clear and most direct route to reality

Amplitudology

► Consider pure Yang-Mills theory:

$$S_{\mathsf{YM}} = \frac{1}{2g^2} \int \mathrm{tr} F \wedge \star F$$

- ▶ Interested in *n*-point and *L*-loop amplitudes on Minkowski spacetime
- Conceptually clear and most direct route to reality
- Feynman diagram expansion quickly becomes unwieldy
- ► 'Going on-shell' reveals hidden structure in the madness

Amplitudes as sums over cubic diagrams

ightharpoonup Can write *n*-point *L*-loop gluon amplitude in terms of only cubic diagrams:

- ightharpoonup c_i: colour numerator, built from f^{abc} , read off diagram i
- $ightharpoonup n_i$: kinematic numerator, built from p, ε
- $ightharpoonup d_i$: propagator, $\prod_{\text{int. lines}} p^2$, read off diagram i

Amplitudes and cubic diagrams

Consider tree-level 4-point example as given by standard Feynman diagrams:

$$\frac{C_{S} S N_{S,1}^{F}}{S} + \frac{C_{L} E N_{E,1}^{F}}{t} + \frac{C_{L} U N_{M,1}^{F}}{U N_{M}^{F}} + \frac{C_{L} U N_$$

$$\frac{C_{s} \operatorname{sn}_{s,+}^{s}}{\operatorname{sn}_{s,+}^{s}} + \frac{C_{s} \operatorname{en}_{s,+}^{s}}{\operatorname{t}} + \frac{C_{u} \operatorname{un}_{s,+}^{s}}{\operatorname{t}} + \frac{C_{u} \operatorname{un}_{s,+}^{s}}{\operatorname{th}} + \frac{C_{u} \operatorname{un}_{s,+}^{s}}{\operatorname{un}_{s,+}^{s}}{\operatorname{th}} + \frac{C_{u} \operatorname{un}_{s,+}^{s}}{\operatorname{un}_{s,+}^{s}} + \frac{C_{u}$$

Amplitudes and cubic diagrams

Can be realised in the Lagrangian through auxiliary fields:

$$\mathcal{L}_{\mathsf{YM}} = \cdots + g^2[A_\mu, A_
u][A^\mu, A^
u] \; o \; frac{1}{2} B^{\mu
u\kappa} \,\square\, B_{\mu
u\kappa} - g(\partial_\mu A_
u + frac{1}{\sqrt{2}} \partial^\kappa B_{\kappa\mu
u})[A^\mu, A^
u]$$

► Feynman diagrams give 'cubic' amplitudes directly:

$$\frac{c_i n_i}{S_i d_i}$$

$$A_{\mathsf{YM}}^{n,L} = \int_{L} \sum_{\alpha \in \mathsf{Feynman \ diag}} \frac{\mathsf{c}_{\alpha} \mathsf{n}_{\alpha}}{\mathsf{S}_{\alpha} \mathsf{d}_{\alpha}} = \int_{L} \sum_{i \in \mathsf{cubic \ diag}} \frac{\mathsf{c}_{i} \mathsf{n}_{i}}{\mathsf{S}_{i} \mathsf{d}_{i}}$$

Example: 4-point s-channel diagram

BCJ colour-kinematics duality

ightharpoonup There is an organisation of the *n*-point *L*-loop gluon amplitude:

$$A_{YM}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{c_{i} n_{i}}{S_{i} d_{i}}$$
 such that
$$c_{i} + c_{j} + c_{k} = 0 \quad \Rightarrow \quad n_{i} + n_{j} + n_{k} = 0$$

$$c_{i} \longrightarrow -c_{i} \quad \Rightarrow \quad n_{i} \longrightarrow -n_{i}$$

[Bern-Carrasco-Johansson '08]

BCJ colour-kinematics duality

ightharpoonup There is an organisation of the *n*-point *L*-loop gluon amplitude:

$$A_{YM}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{c_i n_i}{S_i d_i}$$

such that

$$\begin{vmatrix}
c_i + c_j + c_k = 0 & \Rightarrow & n_i + n_j + n_k = 0 \\
c_i \longrightarrow -c_i & \Rightarrow & n_i \longrightarrow -n_i
\end{vmatrix}$$

[Bern-Carrasco-Johansson '08]

- ► CK duality established at tree-level [Stieberger 0907.2211, Bjerrum-Bohr-Damgaard-Vanhove 0907.1425]
- ➤ Significant evidence up to 4 loops in various (super)YM theories
 [Carrasco-Johansson '11; Bern-Davies-Dennen-Huang-Nohle '13; Bern-Davies-Dennen '14...]
- ► Quickly becomes difficult to check, even with on-shell methods
 [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

Colour-Kinematics via Feynman Diagrams

► Feynman diagrams yield amplitudes manifesting CK duality for tree-level amplitudes [Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13] :

$$\mathcal{L}_{YM}^{(2)} + \mathcal{L}_{YM}^{(3)} + \frac{\square}{\square} \mathcal{L}_{YM}^{(4)} + \sum_{n=5}^{\infty} \mathcal{L}_{YM}^{(n)}$$

$$= 0 \quad \text{Jacobi}$$

$$TW \quad \text{terms}$$

$$0 = \frac{3^3 A^5}{\square^2} \times 1$$

- ► Can make cubic through auxiliary field [2007.13803; 2102.11390]
- ▶ Nice homotopy interpretation, cf. Hyungrok Kim's talk

BCJ double-copy prescription

► Given CK dual amplitude of pure Yang-Mills

$$A_{YM}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{c_i n_i}{S_i d_i}$$

$$S_{\mathsf{YM}} = \frac{1}{2g^2} \int \mathrm{tr} F \wedge \star F$$

BCJ double-copy prescription

Given CK dual amplitude of pure Yang-Mills

$$A_{YM}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{c_i n_i}{S_i d_i}$$

$$S_{\mathsf{YM}} = \frac{1}{2g^2} \int \mathrm{tr} F \wedge \star F$$

► Double-copy:

$$c_i \longrightarrow n_i$$

BCJ double-copy prescription

Given CK dual amplitude of pure Yang-Mills

$$A_{YM}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{c_i n_i}{S_i d_i}$$

$$S_{\mathsf{YM}} = \frac{1}{2g^2} \int \mathrm{tr} F \wedge \star F$$

► Double-copy:

$$c_i \longrightarrow n_i$$

ightharpoonup Gives an amplitude of $\mathcal{N}=0$ supergravity

$$A_{\mathcal{N}=0}^{n,L} = \int_{L} \sum_{i \in \text{cubic diag}} \frac{n_i n_i}{S_i d_i}$$

$$S_{\mathcal{N}=0} = \frac{1}{2\kappa^2} \int \star R - \frac{1}{d-2} d\varphi \wedge \star d\varphi - \frac{1}{2} e^{-\frac{4}{d-2}\varphi} dB \wedge \star dB$$

where B is the Kalb-Ramond 2-form, φ is the dilaton

[Bern-Carrasco-Johansson '08, '10; Bern-Dennen-Huang-Kiermaier '10]

Implications

- Conceptually compelling: is gravity the square of gauge theory?
- Computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite) [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]

Implications

- Conceptually compelling: is gravity the square of gauge theory?
- Computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite) [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Perhaps surprising, but can be explained by supersymmetry and E₇₍₇₎ U-duality [Bjornsson–Green '10, Bossard–Howe–Stelle '11; Elvang–Freedman–Kiermaier '11; Bossard–Howe–Stelle–Vanhove '11]
- ▶ But at 7 loops any cancellations cannot be "consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]

Implications

- Conceptually compelling: is gravity the square of gauge theory?
- ► Computationally powerful: $\mathcal{N}=8$ supergravity four-point to 5 loops! (finite) [Bern-Carrasco-Chen-Edison-Johansson-Parra-Martinez-Roiban-Zeng '18]
- Perhaps surprising, but can be explained by supersymmetry and E₇₍₇₎ U-duality [Bjornsson–Green '10, Bossard–Howe–Stelle '11; Elvang–Freedman–Kiermaier '11; Bossard–Howe–Stelle–Vanhove '11]
- ▶ But at 7 loops any cancellations cannot be "consequences of supersymmetry in any conventional sense" [Bjornsson-Green '10]
- ▶ $D = 4, \mathcal{N} = 5$ supergravity finite to 4 loops, contrary to expectations:

"Enhanced" cancellations

[Bern-Davies-Dennen '14]

▶ Such cancellations not seen for $\mathcal{N}=8$ at 5 loops: implications unclear

Origin, validity, generality, implications and applications

- Classical double-copy of solutions
 - Non-perturbative classical double-copy → black holes from gauge theory [Monteiro-O'Connell-White '14...]
 - ► Amplitudes and the double-copy → applications to gravity wave astronomy [Kosower-Maybee-O'Connell '18; Bern-Cheung-Roiban-Shen-Solon-Zeng '19; Bern-Luna-Roiban-Shen-Zeng '20...]
- ► Geometric/world-sheet picture
 - String theory monodromy → tree-level CK duality [Bjerrum-Bohr-Damgaard-Vanhove '09]
 - Ambitwistor string theories theories and scattering equation formalism [Cachazo-He-Yuan '13 '14; Mason-Skinner '13; Adamo-Casali-Skinner '13; Adamo-Casali-Mason-Nekovar '17 '18; Geyer-Monteiro '18; Geyer-Mason '19...]

Origin, validity, generality, implications and applications

- Classical double-copy of solutions
 - Non-perturbative classical double-copy → black holes from gauge theory [Monteiro-O'Connell-White '14...]
 - ► Amplitudes and the double-copy → applications to gravity wave astronomy [Kosower-Maybee-O'Connell '18; Bern-Cheung-Roiban-Shen-Solon-Zeng '19; Bern-Luna-Roiban-Shen-Zeng '20...]
- ► Geometric/world-sheet picture
 - String theory monodromy → tree-level CK duality [Bjerrum-Bohr-Damgaard-Vanhove '09]
 - Ambitwistor string theories theories and scattering equation formalism [Cachazo-He-Yuan '13 '14; Mason-Skinner '13; Adamo-Casali-Skinner '13; Adamo-Casali-Mason-Nekovar '17 '18; Geyer-Monteiro '18; Geyer-Mason '19...]
- Central question: does CK duality and/or the double copy hold to all orders?
 - Today's talks Part 1-2: yes for the double copy
 - Homotopy algebras abound!

BRST-Lagrangian Double-Copy: A Heuristic Summary

Off-shell BRST-Lagrangian double-copy

- CK duality and the double copy exposed by 'on-shell' lens
- Can we go back 'off-shell' to establish the validity of the double-copy to all orders in perturbations theory?

Off-shell BRST-Lagrangian double-copy

- CK duality and the double copy exposed by 'on-shell' lens
- ► Can we go back 'off-shell' to establish the validity of the double-copy to all orders in perturbations theory?

ightharpoonup ightarrow off-shell BRST-Lagrangian double-copy

Some ingredients

► Field theory product of BRST gauge theories and Lagrangian double-copy [Bern-Dennen-Huang-Kiermaier '10; Anastasiou-LB-Duff-Hughes-Nagy '14; LB '17; Anastasiou-LB-Duff-Nagy-Zoccali '18; LB-Jubb-Makwana-Nagy '20; LB-Nagy '20]

CK duality manifesting actions and kinematic algebras

```
[Bern-Dennen-Huang-Kiermaier '10; Tolotti-Weinzierl '13; Cheung-Shen '16; Luna-Monteiro-Nicholson-Ochirov-O'Connell-Westerberg-White '16] [Monteiro-O'Connell '11, '13; Bjerrum-Bohr-Damgaard-Monteiro-O'Connell '12; Chen-Johansson-Teng-Wang '19; Reiterer '19]
```

- Left/right factorised form of $\mathcal{N}=0$ supergravity action [Bern-Grant '99; Hohm 11; Cheung-Remmen '17]
- ► Also cf. pure spinor BRST cohomology approach to loop CK duality [Mafra—Schlotterer '14]

Step 1. Cubic tree-level CK duality manifesting Yang-Mills BRST-action (cf. Hyungrok Kim's talk):

im's talk):

$$S_{\text{BRST-CK YM}} = c_{ab}C_{ij}A^{ai}\Box A^{aj} + f_{abc}F_{ijk}A^{ai}A^{bj}A^{ck}$$

$$A' = (A, C, C, b, Aux)$$

Step 1. Cubic tree-level CK duality manifesting Yang-Mills BRST-action (cf. Hyungrok Kim's talk):

$$S_{\text{BRST-CK YM}} = c_{ab}C_{ij}A^{ai}\Box A^{aj} + f_{abc}F_{ijk}A^{ai}A^{bj}A^{ck}$$

Step 2. BRST-action double-copy (cf. Tommaso Macrelli's talk):

$$S_{\mathsf{BRST-CK}} imes ilde{S}_{\mathsf{BRST-CK}} = S_{\mathsf{DC}} = C_{ij} C_{\tilde{\imath}\tilde{\jmath}} A^{i\tilde{\imath}} \Box A^{j\tilde{\jmath}} + F_{ijk} F_{\tilde{\imath}\tilde{\jmath}\tilde{k}} A^{i\tilde{\imath}} A^{j\tilde{\jmath}} A^{k\tilde{k}}$$

Step 1. Cubic tree-level CK duality manifesting Yang-Mills BRST-action (cf. Hyungrok Kim's talk):

$$S_{\text{BRST-CK YM}} = c_{ab}C_{ij}A^{ai}\Box A^{aj} + f_{abc}F_{ijk}A^{ai}A^{bj}A^{ck}$$

Step 2. BRST-action double-copy (cf. Tommaso Macrelli's talk):

$$S_{\mathsf{BRST-CK}} imes ilde{S}_{\mathsf{BRST-CK}} = S_{\mathsf{DC}} = C_{ij} C_{\tilde{\imath}\tilde{\jmath}} A^{i\tilde{\imath}} \Box A^{j\tilde{\jmath}} + F_{ijk} F_{\tilde{\imath}\tilde{\jmath}\tilde{k}} A^{i\tilde{\imath}} A^{j\tilde{\jmath}} A^{k\tilde{k}}$$

Step 3. Double-copy BRST operator (cf. Tommaso Macrelli's talk):

$$(Q_{\mathsf{YM}}, ilde{Q}_{\mathsf{YM}}) = Q_{\mathsf{DC}} = Q_{\mathsf{diffeo}}^{\mathrm{lin}} + Q_{\mathsf{2-form}}^{\mathrm{lin}} + \cdots$$

Perfect CK duality \Rightarrow Q_{DC} is (up to quasi-isomorphisms) $Q_{\mathsf{diffeo}} + Q_{\mathsf{2-form}}$

Step 1. Cubic tree-level CK duality manifesting Yang-Mills BRST-action (cf. Hyungrok Kim's talk):

$$S_{\text{BRST-CK YM}} = c_{ab}C_{ij}A^{ai}\Box A^{aj} + f_{abc}F_{ijk}A^{ai}A^{bj}A^{ck}$$

Step 2. BRST-action double-copy (cf. Tommaso Macrelli's talk):

$$S_{\mathsf{BRST-CK}} imes ilde{S}_{\mathsf{BRST-CK}} = S_{\mathsf{DC}} = C_{ij} C_{\tilde{\imath}\tilde{\jmath}} A^{i\tilde{\imath}} \Box A^{j\tilde{\jmath}} + F_{ijk} F_{\tilde{\imath}\tilde{\jmath}\tilde{k}} A^{i\tilde{\imath}} A^{j\tilde{\jmath}} A^{k\tilde{k}}$$

Step 3. Double-copy BRST operator (cf. Tommaso Macrelli's talk):

$$(Q_{\mathsf{YM}}, ilde{Q}_{\mathsf{YM}}) = Q_{\mathsf{DC}} = Q_{\mathsf{diffeo}}^{\mathrm{lin}} + Q_{\mathsf{2-form}}^{\mathrm{lin}} + \cdots$$

Perfect CK duality \Rightarrow Q_{DC} is (up to quasi-isomorphisms) $Q_{\mathsf{diffeo}} + Q_{\mathsf{2-form}}$

Step 4. Perturbative quantum equivalence (cf. Tommaso Macrelli's talk):

on-shell tree-level CK + BRST Ward identities $\Rightarrow S_{DC} \cong S_{\mathsf{BRST}\mathcal{N}=0}$

▶ BRST-Lagrangian picture of the double-copy

- ► BRST-Lagrangian picture of the double-copy
- ► Tree-level BRST-CK duality → perturbative quantum equivalence

- ► BRST-Lagrangian picture of the double-copy
- ► Tree-level BRST-CK duality → perturbative quantum equivalence

Corollary: $S_{BRST-CK\ YM} \rightarrow$ 'almost BCJ numerators' that correctly double-copy:

$$A_{\mathsf{YM}}^{n,L} = \int_{L} \sum_{i \in \mathsf{cubic diag}} \frac{\mathsf{c}_{i} \, \mathsf{n}_{i}}{\mathsf{S}_{i} \, \mathsf{d}_{i}} \quad \longrightarrow \quad \int_{L} \sum_{i \in \mathsf{cubic diag}} \frac{\mathsf{n}_{i} \, \mathsf{n}_{i}}{\mathsf{S}_{i} \, \mathsf{d}_{i}} = A_{\mathcal{N}=0}^{n,L}$$

- ► BRST-Lagrangian picture of the double-copy
- ightharpoonup Tree-level BRST-CK duality ightarrow perturbative quantum equivalence

Corollary: $S_{BRST-CK\ YM} \rightarrow$ 'almost BCJ numerators' that correctly double-copy:

$$A_{\mathsf{YM}}^{n,L} = \int_{L} \sum_{i \in \mathsf{cubic\ diag}} \frac{\mathsf{c}_i \, \mathsf{n}_i}{S_i \, \mathsf{d}_i} \quad \longrightarrow \quad \int_{L} \sum_{i \in \mathsf{cubic\ diag}} \frac{\mathsf{n}_i \, \mathsf{n}_i}{S_i \, \mathsf{d}_i} = A_{\mathcal{N}=0}^{n,L}$$

- Almost': construction doesn't imply n_i satisfy perfect loop CK duality, but close enough for double-copy, cf. generalised CK duality

 [Bern-Carrasco-Chen-Johansson-Roiban '17]
- Only tree-level CK duality required to construct loop almost BCJ n_i complicated, but purely algebraic
- Is there a precise weakened notion of on-mass-shell loop CK duality?

- ► BRST-Lagrangian picture of the double-copy
- ightharpoonup Tree-level BRST-CK duality ightarrow perturbative quantum equivalence

Corollary: $S_{BRST-CK\ YM} \rightarrow$ 'almost BCJ numerators' that correctly double-copy:

$$A_{\mathsf{YM}}^{n,L} = \int_{L} \sum_{i \in \mathsf{cubic diag}} \frac{\mathsf{c}_{i} \, \mathsf{n}_{i}}{\mathsf{S}_{i} \, \mathsf{d}_{i}} \quad \longrightarrow \quad \int_{L} \sum_{i \in \mathsf{cubic diag}} \frac{\mathsf{n}_{i} \, \mathsf{n}_{i}}{\mathsf{S}_{i} \, \mathsf{d}_{i}} = A_{\mathcal{N}=0}^{n,L}$$

- Almost': construction doesn't imply n_i satisfy perfect loop CK duality, but close enough for double-copy, cf. generalised CK duality

 [Bern-Carrasco-Chen-Johansson-Roiban '17]
- Only tree-level CK duality required to construct loop almost BCJ n_i complicated, but purely algebraic
- Is there a precise weakened notion of on-mass-shell loop CK duality?
- Incorporating ideas from [Reiterer '19] we can possibly do better \rightarrow perfect CK duality, cf. Hyungrok Kim's talk

Things to come (past and future work)

- ▶ Part 1 (Hyungrok Kim): CK duality redux
- ightharpoonup homotopy realisation of CK duality for extended Hilbert space of BRST complex

Things to come (past and future work)

- Part 1 (Hyungrok Kim): CK duality redux
- ightharpoonup homotopy realisation of CK duality for extended Hilbert space of BRST complex

- ▶ Part 2 (Tommaso Macrelli): Factorisation redux
- lacktriangledown homotopy factorisation of Yang-Mills and $\mathcal{N}=0$ supergravity

Things to come (past and future work)

- ▶ Part 1 (Hyungrok Kim): CK duality redux
- ightharpoonup homotopy realisation of CK duality for extended Hilbert space of BRST complex

- ▶ Part 2 (Tommaso Macrelli): Factorisation redux
- lacktriangledown ightarrow homotopy factorisation of Yang-Mills and $\mathcal{N}=0$ supergravity

▶ Part $1 + Part 2 \Rightarrow pertubative equivalence 'gravity = gauge × gauge'$