Homotopy Algebras and String Theory

Homotopy algebras are a perturbative manifestation of the BV structure of some (dynamical) system.

More or less any Lagrangian field theory has a (possibly trivial) BVextension.

In this sense, every perturbative field theory (with- or without gauge invariance) gives rise to a homotopy algebra.
Not every BV-system necessarily derives from a Lagrangian system: In the geometric BV, one instead starts with a nilpotent vector field on some graded space \mathcal{F}.

If \mathcal{F} admits a symplectic form one can (re) construct an action perturbatively. This situation arises in string theory.

A unifying characterisation of BV -algebras is provided by operads.

Rep: BRST \rightarrow BV:

Mathematical setting:

$$
\begin{aligned}
S: & \tau \rightarrow R \quad \text { (BV-achiou) } \\
\left.d S\right|_{\Phi_{0}} & =0
\end{aligned}
$$

BV -data $(T, S, \Delta) \quad \Delta:$ and order differential (BV-operator)

$$
\begin{aligned}
& e^{-\frac{1}{\hbar} S} \Delta e^{\frac{1}{\hbar} S}=: \frac{2}{\hbar^{2}} \cdot(S, S)+\frac{1}{\hbar} \Delta S=0 \quad \text { (Quantum BV-master eq) } \\
& v \equiv(S, \cdot) \quad \text { defines a homological vector field } v^{2}=0 \quad(\hbar=0)
\end{aligned}
$$

Rem: a symplectic form is not required at but if ω is a non-degenerate symp. form on \boldsymbol{T} -

$$
\begin{gathered}
d S=i_{v} w \\
\left.(d S)\right|_{\Phi_{0}}=0 \quad \text { (critical point) } \Leftrightarrow v\left(\phi_{0}\right)=0
\end{gathered}
$$

We can then expand v around Φ_{0} :

$$
\begin{aligned}
& V=\underbrace{V_{\Phi_{0}}^{(0)}}_{\neq 0}+V_{\Phi_{0}}^{(1)}+v_{\Phi_{0}}^{(2)}+\cdots \\
& T_{\Phi_{0}} F \rightarrow T_{\Phi_{0}} \tilde{T}^{T_{\Phi_{0}} F} \rightarrow T_{\Phi_{0}} \mathcal{F} \otimes T_{\Phi_{0}} F
\end{aligned}
$$

Then $v^{2} \equiv 0$ is the condition that $\left\{V_{\Phi_{0}}^{(n)}\right\}_{n>0}$ define a L_{00} - algebra.

If $Q \equiv V_{\Phi_{0}}^{(1)} \quad$ and $H=\operatorname{coh}(Q)$, then $\left\{V_{\underline{\Phi}_{0}}^{(n)}\right\}_{n>0}$ induces on H the structure of a minimal $L_{00^{-}}$algebra: $\left\{\mathrm{f}^{(n)}\right\}_{n>1}$ $\widehat{\varsigma}$

Construction: (Fukaya?)
Let $\quad \boldsymbol{T}_{D_{0}} \mathcal{F} \Rightarrow \psi=\psi_{p}+\psi_{u}$

$Q^{-1}: 1 \quad \psi_{u}=-Q^{-1} l_{2}\left(\psi_{p}+Q^{-1} l_{2}(\cdots), \psi_{p}+Q^{-1} l_{2}(\cdots)\right)$

Rem: nom. perturb. lemma has wider range of applicability:
quantum, elimination of d.o.f's

Summary:
vertices

SET: $\quad \sum_{g . n}$ geometry:

$$
\begin{aligned}
& \lambda^{2} \partial \nu_{4}+\left\{\nu_{3}, \nu_{3}\right\}+\hbar \Delta \nu_{6}=0 \quad \begin{array}{l}
\text { (Master en) }
\end{array} \\
& +\quad,
\end{aligned}
$$

$$
g=0 \quad V_{n}
$$

$\|$ CF'E $S_{0, n}$ chain map

$$
\int_{\nu_{n}}^{C} \underbrace{\left(a_{n}, \cdots, a_{n}\right)}_{C+T-\text { corr. Pu }}: \underline{V}^{\otimes n} \rightarrow \varnothing
$$

Sot $\quad \int_{\partial \mu_{v_{n}}}^{C\left(a_{1}, \ldots\right)}=\int_{\mu_{v_{n}}} C(\overbrace{\text { Qrow CFT }}^{Q_{0}}$
symplectic form:

$\xrightarrow{\text { CFT }} \omega(\cdot \cdot)$ on V

Result:

$$
\begin{aligned}
S[\phi] & =C_{2}\left(\Phi_{1} Q \Phi\right)+\sum_{n>2} C_{n}\left(\Phi^{(\otimes n}\right) \\
& =\frac{1}{2} \underset{\equiv}{\omega}\left(\Phi_{1} Q \Phi\right)+\sum_{n \geqslant 2} \frac{1}{n+1} \omega\left(\Phi_{1} \ln _{n}\left(\Phi^{n}\right)\right)
\end{aligned}
$$

$C F T_{\Sigma}$ is a BV-morphism $\Rightarrow(S, S)=O(\hbar)$

$$
\begin{aligned}
& \Rightarrow l_{2}\left(l_{2}(a, b), c\right) \pm l_{2}\left(a_{l} l_{2}(b, c)\right)= \\
& \pm Q l_{3}(a, b, c) \pm l_{3}(Q a, b, c) \pm l_{3}(a, Q b, c) \pm l_{3}(a, b, Q c)
\end{aligned}
$$

(Stasheff, Kajiura)
Or, more economically, as coderivations,

$$
\begin{gathered}
\left.L=(Q \otimes 11 \otimes \cdots \otimes 11)+(11 \otimes Q \otimes \cdots)+\left(l_{2}^{\infty} \otimes 11 \otimes \cdots\right)+\left(l_{3} \otimes\right) \cdots \cdot\right) \\
L^{2}=0 \quad \text { (plus cyclicity). }
\end{gathered}
$$

Definition: SFT is a morphism between BV algebras

- is it well defined?

Toy model:
elimination of P

$$
\begin{aligned}
& I=\int_{a}^{b}\left(p \dot{q}-\frac{1}{2 e}\left(\dot{g}^{\prime}(p, p)-m^{2}\right)\right) d T . \\
& q:[a, b] \rightarrow \mathbb{R}^{n} \underset{q(a)}{\text { Lorentzian metric on }\left(\mathscr{R}^{n}\right.} \xlongequal[\substack{\text { N world line } \\
\text { leparam. }}]{q(b)}
\end{aligned}
$$

$$
\text { Reparametrisation invariance : } \delta q=\frac{P \varepsilon^{\kappa}}{e} ; \delta e=\dot{\varepsilon} \leadsto \dot{C}
$$

BRST quantisation of the world line $\leadsto Q_{\text {BRIT }}=c(\underbrace{\left.g^{-1}\left(p_{1} p\right)-m^{2}\right)}_{=H 1}$
$\left\{\begin{array}{l}\delta e=-i c^{\circ}, \delta q=i p \frac{c}{e} \\ \delta b=H ; \delta c=\delta p=0 \text { states }\end{array}\right.$
To identify the vector space V, we look for a representation of the graded asscociative algebra

$$
\begin{array}{rr}
A=\{p, q, b, c\} & {[p, q]=1} \\
Q=C H=\left(\mathbb{P}^{2}-\omega^{2}\right) & {[b, c]=1} \\
\mathcal{Q}=-c \partial_{q}, b=\frac{\partial_{c}}{\partial c} & c^{2}=0
\end{array}
$$

$$
\text { a generic state } \bar{\phi}=\phi(q)+\phi^{*}(q) c, \operatorname{deg}(\bar{\Phi})=0
$$

$$
\begin{gathered}
H=\left.\operatorname{coh}(Q)\right|_{0}=\left\{\phi \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid\left(\square-m^{2}\right) \phi=0\right\} \\
=Q_{\text {BEST }} \leftrightarrow 0
\end{gathered}
$$

\longrightarrow massive scalar field ϕ plus anti field ϕ^{*}
Symplectic form: $\omega(\underline{\Phi}, \Psi)=\int d c \int d \underset{q}{n} \bar{\Phi} \Psi$

$$
\text { BV-action: } \quad S[\Phi]=\omega(\Phi \underline{\Phi})
$$

\therefore no gauge invanance.
Rem: At this point one may forget about the world line and simply consider representations of the graded associative algebra generated by $\{p, q, b, c\}$ with a nilpotent element Q .

This leads to interesting generalisations describing Yang-Mills theory, Gravity,
(Dai, Huang, Siegel; Bonezzi, Meyer, I.S.)

For the string, $\quad\{q, b, c\}$ are replaced by $q \in\left(\begin{array}{c}\left(S^{\prime \prime}, \mathbb{R}^{n}\right), \\ \left.\operatorname{Ta}^{x}, b\right] \\ C(\sigma)\end{array},\left\{\begin{array}{l}C \in T \sum_{g n}, \text { odd vf on } \sum_{g n} \\ b \in(T \Sigma)^{\otimes 2} \text { sgml. tensor }\end{array}\right.\right.$
$\leadsto A$ is infinite dimensional (... $[L, L]_{+}=0$
$[L+\delta L, L+\delta L]=0$
Uniqueness:

$$
L \leadsto L+\delta L<\left[\begin{array}{l}
\text { coderivation } \\
{[L, \delta L]=0}
\end{array}\right.
$$

$\sim d_{c} \equiv\left[L_{1} \cdot\right]$
Chevalley-Eilenberg differential
with non-trivial deformations of L given by the cohomology of $d c$

The. (w/N.Moeller): $\quad \operatorname{coh}\left(d_{c}\right)=\varnothing$
\leadsto (local) background independence.

$$
\begin{aligned}
N^{2}=0 \stackrel{\text { Pert. }}{\Longrightarrow} & {[L L L]=0 } \\
& C H(S, S)=o(t)=\hbar A S
\end{aligned}
$$

Rem: Again, one may forget about the world sheet and replace $\not \subset$ by some other (infinite dimensional) graded Lie algebra and construct a coderivation L such that $\left[\begin{array}{l}\text { L }, L]=0 .\end{array}\right.$
perturbative substitute for $v^{2}=0$

geometric vertices on supermoduli space are obscure
Here, $[L, L]=0$ can be solved recursively with suitable initial conditions on ℓ_{2}
(w/ Erler, Konopka;)

Rem: This problem can also be addressed directly within the BV-master equation. $\overline{\text { (Sen) }}$

Quantum BV :

$$
\begin{array}{l}
\sum_{\substack{g_{1}+g_{2}=g \\
i_{1}+i_{2}=n}} \sum_{\sigma} l_{i_{1}+1}^{g_{1}} \circ(\ell_{i_{2}}^{g_{2}} \wedge \underbrace{11 \wedge \cdots \wedge 11}_{i_{1}}) o v+\ell_{n+2}^{g-1}\left(\omega^{-1} \wedge \Lambda 1 \wedge \cdots \wedge 11\right.
\end{array} \underbrace{}_{n-1})=0
$$

alternatively, one may lift ω^{-1} to a (strict) coderivation of order 2: $D\left(\omega^{-1}\right)$

then

$$
\begin{aligned}
& \mathcal{L}=L+D\left(\omega^{-1}\right) \in \underset{\sim}{\operatorname{CODER}(\hbar, S V)} \\
&=\bigoplus_{n=1}^{\infty} \hbar^{n-1} \operatorname{coder}^{n}(S V) \\
& V \otimes V \otimes V \cdots
\end{aligned}
$$

with $[h, h]=0 \quad \mathrm{IBL} \mathrm{m}_{\infty}$-algebra (Cieliebak, Fukaya, Latschev)

Summary:

