
Homotopy Algebras and String Theory

Homotopy algebras are a perturbative manifestation of the BV structure of 
some (dynamical) system. 
 
More or less any Lagrangian field theory has a (possibly trivial) BV-
extension.  
 
In this sense, every perturbative field theory (with- or without gauge in-
variance) gives rise to a homotopy algebra.
Not every BV-system necessarily derives from a Lagrangian system: In 
the geometric BV, one instead starts with a nilpotent vector field on 
some graded space     .  
 
If        admits a symplectic form one can (re) construct an action 
perturbatively. This situation arises in string theory.

A unifying characterisation of BV-algebras is provided by operads.
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Or, more economically, as coderivations,

is a BV-morphism

(Stasheff, Kajiura)



Definition:  SFT is a morphism between BV algebras

is it well defined? is it unique?
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BRST quantisation of the world line 

To identify the vector space V, we look for a representation of the graded 
asscociative algebra 

a generic state



massive scalar field plus anti field 

BV-action

Rem: At this point one may forget about the world line and simply consider          
representations of the graded associative algebra generated by {p,q,b,c} with a 
nilpotent element Q.

This leads to interesting generalisations describing Yang-Mills theory, 
Gravity, ....

Symplectic form

Dai, Huang, Siegel; Bonezzi, Meyer, I.S.
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Chevalley-Eilenberg differential 

Uniqueness:

with non-trivial deformations of L given by the cohomology of 

For the string, are replaced by

coderivation

Thm. (w/N.Moeller) :     coh(d  )= 0



Rem: Again, one may forget about the world sheet and replace       by some 
other (infinite dimensional) graded Lie algebra and construct a coderivation 
L such that [L,L]=0.

superpartners

geometric vertices on supermoduli space are obscure

Here, [L,L]= 0 can be solved recursively with suitable initial conditions on

w/ Erler, Konopka; ..........

Rem: This problem can also be adressed directly within the BV-master equation. 
(Sen) 
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Rem: cyclicity is allways assumed here
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alternatively, one may lift        to a (strict) coderivation of order 2:

IBL     algebra  (Cieliebak, Fukaya, Latschev)



homotopy algebra 

Feynman transform 
of mod. operads

decomposition of mod. space


