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What to be discussed

Based on ERG, we would like to study gauge theory non-pertubatively.

In ERG approach to QFT, we start from a path integral with a UV momentum cutoff.

Questions:

1. How do we obtain a QFT, even perturbatively, from a path integral with a cutoff?

2. Gauge symmetry would be broken with the cutoff.

3. Non-perturbative study? Phase structure?

We will explain the present status. But it is still insufficient to reach our goal. If the

homotopy algebra resolve even a part of the problem, that would be very nice!!
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What to be discussed in answering the above questions

1. How do we obtain a QFT, even perturbatively, from a path integral with a cutoff?

Taking a scalar theory for simplicity, we explain basic ideas such as Wilsonian action,

flow equation, etc. Then we discuss the pertubative renormalizability to define a scalar

FT.

2. Gauge symmetry would be broken with the cutoff.

We will find the following:

• The situation is like the realization of the chiral symmetry on the lattice. The lattice

regularization is not compatible with a naive chiral symmetry.

• The BV antifield formalism is quite useful.

3. Non-perturbative study? Phase structure?

We dimensionless formulation of the flow equation to observe the phase structure.
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Note

In the lierature, we encounter different words for ERG, i.e., non-perturbative

renormalization group or functional renormalization group. All three of them mean

basically the same thing. Each of them has its own hisorical or conceptual backgrond.
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The content

1. Wilsonian action and Polchinski eq.

2. Perturbative renormalizability

3. 1PI action and its flow equation

4. Relations of 1PI and Wilsonican actions

5. Symmetry vs Regularization, BV formalism

• Notion of composite operators

6. Dimensionless formulation for flow eq.

7. An example: application to QED

8. Summary and Discussion: we need to achieve ...
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Wilsonian action and Polchinski eq.

We take a scalar field theory to explain basic ideas of ERG. Subjects related to

symmetry realization is to be discussed in later parts of the talk.

Consider a Euclidean path integral with the regulator function K introduced to the kinetic

term. K(x) is a function of x = p2/Λ2
0 with a momentum cutoff Λ0.

ZΛ0 =

∫
[dϕ] eSΛ0

[ϕ]

SΛ0[ϕ] = −1

2

∫
p

p2 +m2

K(p/Λ0)
ϕ(p)ϕ(−p) + SI,Λ0[ϕ],

( ∫
p

=

∫
dDp

(2π)D

)
SI,Λ0 defines the interaction at the scale Λ0. For the moment, we do not need to assume

a particular form for SI,Λ0. The propagator is K(p/Λ0)
p2+m2 and the function K determines

the propagating modes. We choose K to allow only modes with momenta below Λ0

to propagate. For that purpose we assume that the regulator function K(x) have the

following properties:
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• K(0) = 1 and K ∼ 1 for 0 ≤ x = p2/Λ2
0 ≤ 1

• K(x) is a Taylor expandable and monotonically decreasing function of x.

• Rapidly decreasing as x = p2/Λ2
0 → ∞

1

1

!
!

K(x)

The propagator K(p/Λ0)
p2+m2 allows the modes up to Λ2

0 to propagate.
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ZΛ0 =

∫
[dϕ] eSΛ0

[ϕ]

SΛ0[ϕ] = −1

2

∫
p

p2 +m2

K(p/Λ0)
ϕ(p)ϕ(−p) + SI,Λ0[ϕ],

( ∫
p

=

∫
dDp

(2π)D

)
In evaluating the path integral, we generate Feyman diagrams with the interaction vertices

from SI,Λ0 and propagators whose momenta restricted as p2 ≲ Λ2
0.

Now we introduce another cutoff Λ that is less than Λ0 and separate the modes ϕl(p)

with p2 ≲ Λ2
0 and ϕh with Λ ≲ p2 ≲ Λ2

0, i.e., the low momentum modes and the high

momentum modes. It is easy to see the propagator split into two parts:

K(p/Λ0)

p2 +m2
=
K(p/Λ)

p2 +m2
+
K(p/Λ0)−K(p/Λ)

p2 +m2

We integrate over ϕh in the path integral to find the action SΛ[ϕl]: in terms of

Feyman diagram, we collect all the graphs connected by internal lines of high momentum

modes. We show an example in the next figure.
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φ

• Interacton vertices are provided by SI,Λ0.

• The external lines are for lower momentum modes ϕl. The above figure contributes to

the interaction part of the action SΛ[ϕl].
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Rewiting ϕl as ϕ, we find

SΛ[ϕ] = −1

2

∫
p

p2 +m2

K(p/Λ)
ϕ(−p)ϕ(p) + SI,Λ[ϕ]

expSI,Λ[ϕ] ≡
∫
[dϕh] exp

{
−1

2

∫
p

p2 +m2

K(p/Λ0)−K(p/Λ)
ϕh(−p)ϕh(p) + SI,Λ0[ϕ+ ϕh]

}

The scale dependent action SΛ[ϕ] is the Wilsonian action.
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Summary: definition of Wilsonian action via path integral

Start from a theory defined at the scale Λ0,

ZΛ0 =

∫
[dϕ] eSΛ0

[ϕ] , SΛ0[ϕ] = −1

2

∫
p

p2 +m2

K(p/Λ0)
ϕ(p)ϕ(−p) + SI,Λ0[ϕ] .

Separate ϕ into the high momentum modes ϕh and the low momentum mode ϕl and

integrate over ϕh. We find a theory with the lower cutoff Λ.

ZΛ0 =

∫
[dϕl][dϕh] e

SΛ0
[ϕ] =

∫
[dϕl] e

SΛ[ϕl]

SΛ[ϕ] = −1

2

∫
p

p2 +m2

K(p/Λ)
ϕ(−p)ϕ(p) + SI,Λ[ϕ]

expSI,Λ[ϕ] ≡
∫
[dϕh] exp

{
−1

2

∫
p

p2 +m2

K(p/Λ0)−K(p/Λ)
ϕh(−p)ϕh(p) + SI,Λ0[ϕ+ ϕh]

}

This procedure defines the renormalization transformation of ERG.
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Polchinski eq.: functional differentical form for the flow equation

We now introduce a functional differential equation that describes an infinitesimal

change of the cutoff, Λ → Λ− δΛ.

We obtain SI,Λ−δΛ from SI,Λ by connecting vertices in SI,Λ with high momentum modes

propagator:

K(p/Λ)−K(p/(Λ− δΛ))

p2 +m2
∼ δΛ

∂K

∂Λ

1

p2 +m2
=
δΛ

Λ

∆(p/Λ)

p2 +m2
,

∆(p/Λ) ≡ Λ
∂K(p/Λ)

∂Λ
.
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In order to find SI,Λ−δΛ−SI,Λ in the 1st order of δΛ, we consider diagrams with a single

high momentum propagator. There are only two types of Feyman diagrams shown below.

There the high momentum propagator is indicated by the dotted lines.

Figure 1: Two types of diagrams that contribute to Polchinski equation

We reach the functional flow equation called Polchinski equation (1984)

−Λ
∂

∂Λ
SI,Λ[ϕ] =

1

2

∫
p

∆(p/Λ)

p2 +m2

(∂SI,Λ
∂ϕ(p)

∂SI,Λ
∂ϕ(−p)

+
∂2SI,Λ

∂ϕ(p)∂ϕ(−p)

)
Of course, the Polchinski equation is equivallent to the formulation with the path integral

when the initial condition is provided as SI,Λ|Λ=Λ0 = SI,Λ0.
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The function ∆(p/Λ) takes the form shown in the figure. ∆ is a derivative of K and it

takes its value around p2 ∼ Λ2.

1

1

!
!

K(x)

1

1

!
!

From the shape of ∆, it is easy to understand that the momentum integration on the

r.h.s. is taken only around p2 ∼ Λ2 and it is finite. There is no infinity one might expect

in a FT calculation.

−Λ
∂

∂Λ
SI,Λ[ϕ] =

1

2

∫
p

∆(p/Λ)

p2 +m2

(∂SI,Λ
∂ϕ(p)

∂SI,Λ
∂ϕ(−p)

+
∂2SI,Λ

∂ϕ(p)∂ϕ(−p)

)
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For the sake of completeness, we give the flow equation for SΛ including the kinetic

term. Clearly, the flow for SI,Λ is better to remember.

−Λ
∂

∂Λ
SΛ[ϕ] =

∫
p

[∆(p/Λ)

K(p/Λ)
ϕ(p)

∂SΛ[ϕ]

∂ϕ(p)
+

1

2

∆(p/Λ)

p2 +m2

( ∂SΛ

∂ϕ(p)

∂SΛ

∂ϕ(−p)
+

∂2SΛ

∂ϕ(p)∂ϕ(−p)

)]
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Flows in coupling space

• The interaction action is a sum
of operators Oi[ϕ] multiplied by
couplings gi,

SI,Λ[ϕ] =
∑
i

gi · Oi[ϕ]

• gi are calculated via path integration
over the modes Λ2 ≲ p2 ≲ Λ2

0 and
therefore they are functions of Λ,
gi(Λ) .

• {gi(Λ)} defines a flow in the coupling
space starting from an initial point
{gi(Λ0)} .

• We will come back to this figure later
and explain the details.

Renormalized 

Trajectory

ERG 

Trajectories

✰"❑❋%❊'❈✔

✺❋❂❄❆
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Renormalizability

Up to now, we discussed the scale dependence of Wilsonican or 1PI action with an initial

action defined at Λ0. When we find a way to take a continuum limit or remove this initial

cutoff dependence, we may identify this theory with a field theory. This corresponds to

the renormalizability.

Here we discuss the point perturbatively by taking a scalar theory.

SΛ0 = −1

2

∫
p

p2 +m2

K(p/Λ0)
ϕ(−p)ϕ(p) + SI,Λ0

SI,Λ0 = −
∫
d4x

[
∆m2 · ϕ

2

2
+ ∆z · 1

2
∂µϕ∂µϕ+ (λ+∆λ) · ϕ

4

4!

]
.

The terms with ∆m2, ∆z, ∆λ are so-called conterterms that are to be determined for

an appropriate continuum limit.
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Comments are in order.

• We chose SI,Λ0 as an initial action at Λ0. It contain λϕ4 interaction other than the

counter terms. These terms are sufficient for a perturbative calculation.

• In principle, we could have started from an initial action with more interaction terms.

It would have higher derivative terms with appropriate inverse powers of Λ0.

• SI,Λ0 is the action at Λ0 and λ is the coupling defined at the same scale. There is no

concept of ’bare coupling’ in this formulation. The following perturbative calculation

is not so different from that in field theory textbooks technically. However let us

emphasize the points:

– it is a perturbation with respect to λ defined at the scale Λ0;

– all the calculation is finite and there is no U.V. divergence.̇
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We integrate out the high momentum modes in the formula,

expSI,Λ[ϕ] ≡
∫
[Dϕh] exp

[
−1

2

∫
p

p2 +m2

K0 −K
ϕh(−p)ϕh(p) + SI,Λ0[ϕ+ ϕh]

]
.

Expand SI,Λ in powers of field to define the coefficient V2n

SI,Λ[ϕ] =

∞∑
n=1

1

(2n)!

∫
p1+···+p2n=0

V2n(Λ; p1, · · · , p2n)ϕ(p1) · · ·ϕ(p2n) .

V2n is obtained in perturbative expansion of λ. As a simple example, we calculate V2

in one loop level, V(1)
2 . The following diagrams contribute to it.
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and

Figure 2: V2 in one loop

V(1)
2 (Λ; p,−p) = −λ

2

∫
q

K(q/Λ0)−K(q/Λ)

q2 +m2
− (∆m2)(1) (q̄ ≡ q/Λ)

= −λ
2

[
(Λ2

0 − Λ2)

∫
q̄

K(q̄)

q̄2
−m2 2

(4π)2
ln

Λ0

Λ
+
m4

Λ2

∫
q̄

K(q̄Λ/Λ0)−K(q̄)

q̄4(q̄2 +m2/Λ2)

]
− (∆m2)(1)

Please pay attension to the Λ0 dependence.
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Details of the calculation∫
q

K(q/Λ0)−K(q/Λ)

q2 +m2
=

∫
q

(
K(q/Λ0)−K(q/Λ)

)( 1

q2
− m2

q4
+

m4

q4(q2 +m2)

)
• The 1st integral 1/q2 terms on the r.h.s may be rewritten as follows by making the

replacement as q = Λ0q̄ or q = Λq̄

1st term = (Λ2
0 − Λ2)

∫
q̄

K(q̄)

q̄2
.

The above integral is a finite number.∫
q̄

K(q̄)

q̄2
=

∫
d4q̄

(2π)4
K(q̄)

q̄2
=

1

16π2

∫ ∞

0

dq̄2K(q̄) .
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• The 2nd integral

It is easy to roughly estimate the 2nd integral since K0 −K restrict p2 in the region

Λ2 < p2 < Λ2
0.

F (Λ0,Λ) =

∫
q

K(q/Λ0)−K(q/Λ)

q4
∼

∫ Λ2
0

Λ2
q2dq2

1

q4
= ln

Λ2
0

Λ2
.

The exact calculation is in our review article.

• The 3rd integral is finite as Λ0 → ∞

3rd term =
m4

Λ2

∫
q̄

K(q̄Λ/Λ0)−K(q̄)

q̄4(q̄2 +m2/Λ2)
→ m4

Λ2

∫
q̄

1−K(q̄)

q̄4(q̄2 +m2/Λ2)
: finite

— Realization of symmetry in the ERG approach to QFT — 22/88



Let us write our result again.

V(1)
2 (Λ; p,−p) = −λ

2

∫
q

K(q/Λ0)−K(q/Λ)

q2 +m2
− (∆m2)(1) (q̄ ≡ q/Λ)

= −λ
2

[
(Λ2

0 − Λ2)

∫
q̄

K(q̄)

q̄2
−m2 2

(4π)2
ln

Λ0

Λ
+
m4

Λ2

∫
q̄

K(q̄Λ/Λ0)−K(q̄)

q̄4(q̄2 +m2/Λ2)

]
− (∆m2)(1)

We choose the counter term (∆m2)(1) to remove the divergent terms in V(1)
2 as Λ0 → ∞.

(∆m2)(1) =
λ

2

(
−Λ2

0

∫
q̄

K(q̄)

q̄2
+m2 2

(4π)2
ln

Λ0

µ

)
.

An arbitrary scale µ is introduced here. By adding the two, we find the finite result in

the limit:

V̄(1)
2 ≡ lim

Λ0→∞

(
V(1)
2 + (∆m2)(1)

)
= −λ

2

[
−Λ2

∫
q̄

K(q̄)

q̄2
+m2 2

(4π)2
ln

Λ

µ
+
m4

Λ2

∫
q̄

1−K(q̄)

q̄4(q̄2 +m2/Λ2)

]
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In a similar manner, we can choose ∆z and ∆λ so that all the couplings V̄(1)
2n are Λ0

dependent. That defines the action S̄Λ:

SΛ ≡ lim
Λ0→∞

SΛ .

This theory is called perturbatively renormalizabile.
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• In the right figure, we find
a couple of ERG trajectories
starting from different initial
actions SΛ0 at Λ0.

• The figure shows how we tune
SΛ0, or choose the counter
terms, and find a well-defined
action S̄Λ as Λ0 → ∞.

• S̄Λ as a function of Λ gives
a curve in the coupling space.
The curve is called as the
renormalized trajectory.

• The renormalized action S̄Λ does
not know the scale Λ0.

Renormalized 

Trajectory

ERG 

Trajectories

✰"❑❋%❊'❈✔

✺❋❂❄❆

Figure 3: The renormalized trajectory
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The effective average or 1PI action ΓΛ,Λ0 and its flow equation

We consider another action with the properties:

1. in the limit of Λ → 0, it reduces to the ordinary effective action;

2. it is the sum of 1PI Feynman diagrams produced with vertices in SI,Λ0 and the high

momentum propagtor.

As we will observe later, the flow equation has a simple one-loop structure. Because

of its simplicity and robustness, the flow equation has been used for various applications.

In order to realize the 2nd point above, we need to consider the kinetic term that produces

high momentum propagator. That is achieved by replacing the kinetic term in SΛ0 as

p2 +m2

K(p/Λ0)
→ p2 +m2

K(p/Λ0)−K(p/Λ)

By this replacement, we obtain the action SΛ0,Λ that is related to SΛ0 as
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SΛ,Λ0[ϕ] = SΛ0[ϕ]−
1

2

∫
p

RΛ(p)ϕ(−p)ϕ(p)

RΛ(p) ≡ (p2 +m2)
( 1

K(p/Λ0)−K(p/Λ)
− 1

K(p/Λ0)

)
As Λ → 0, K(p/Λ) → 0 (for p2 ̸= 0) and we find

lim
Λ→0

SΛ,Λ0 = SΛ0 .

Using SΛ,Λ0[ϕ], we introduce a generating functional WΛ,Λ0 and its Legendre transform.

The latter is often called as the effective average action. In this talk, we call it as the

1PI action.

WΛ,Λ0[J ] ≡ ln
(∫

[dϕ]eSΛ,Λ0
[ϕ]+J·ϕ

)
ΓΛ,Λ0[Φ] ≡WΛ,Λ0[J ]−

∫
p

J(−p)Φ(p), Φ(p) =
δWΛ,Λ0[J ]

δJ(−p)
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As we stated already, limΛ→0 SΛ,Λ0 = SΛ0. Therefore in the same limit Λ → 0, we would

obtain the effective action ΓΛ0 to be calculated with SΛ0

lim
Λ→0

ΓΛ,Λ0 = ΓΛ0 .

With our understanding that its Λ0 dependence would be taken care of in an appropriate

continuum limit, the r.h.s. is the ordinary effective action. Therefore ΓΛ,Λ0 has the

property 1.

A comment is in order. We denote the field for the Wilsonian action is ϕ (the small

one) while for the 1PI action Φ (the large one).
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Flow eq. for the 1PI action1

The 1PI action ΓΛ,Λ0 changes as we lower the cutoff Λ. We would find a flow equation

that has the same information as the Polchinski eq. for the associated Wilsonian

action.The interaction part of the 1PI action, ΓI,Λ,Λ0 is defined as

ΓI,Λ,Λ0[Φ] ≡ ΓΛ,Λ0[Φ] +
1

2

∫
p

p2 +m2

K(p/Λ0)−K(p/Λ)
Φ(−p)Φ(p)

As we will show shortly that ΓI,Λ,Λ0 satisfies the following flow eq.

−Λ
∂

∂Λ
ΓI,Λ,Λ0[Φ] =

1

2

∫
p

(
−Λ

∂

∂Λ
RΛ(p)

)
(Γ

(2)
Λ,Λ0

)−1(p,−p)

(Γ
(2)
Λ,Λ0

)−1(p,−p) is often called as the full propagator. It is the inverse of the 2nd

functional derivative of the 1PI action.

The flow equation has a simple one-loop structure. Because of its simplicity and

robustness, the flow equation has been used for various applications.
1Bonini et. al. ’93, Ellwanger ’94, Morris ’94, Wetterich ’93
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Remarks on the flow eq. of 1PI action

ΓΛ,Λ0[Φ] ≡ ΓI,Λ,Λ0[Φ]−
1

2

∫
p

p2 +m2

K(p/Λ0)−K(p/Λ)
Φ(−p)Φ(p)

= ΓI,Λ,Λ0[Φ]−
1

2

∫
p

p2 +m2

K(p/Λ0)
Φ(−p)Φ(p)− 1

2

∫
p

RΛ(p)Φ(−p)Φ(p) ,

RΛ(p) ≡ (p2 +m2)
( 1

K(p/Λ0)−K(p/Λ)
− 1

K(p/Λ0)

)
.

In the last expression of ΓΛ,Λ0, we know

• RΛ goes to zero as Λ → 0. The remaining two terms give rise to the ordinary effective

action as Λ → 0 and Λ0 → ∞.

• In this sense, ΓΛ,Λ0[Φ] consists of two parts, i.e., a pure regulator term with RΛ and

those directly related to the effective action.
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Let us write the flow equation again.

−Λ
∂

∂Λ
ΓI,Λ,Λ0[Φ] =

1

2

∫
p

(
−Λ

∂

∂Λ
RΛ(p)

)
(Γ

(2)
Λ,Λ0

)−1(p,−p) ,

we have only the interaction part on the l.h.s.

(Γ
(2)
Λ,Λ0

)−1 is the inverse of

Γ
(2)
Λ,Λ0

[Φ] =
(
Γ
(2)
I,Λ,Λ0

[Φ]− p2 +m2

K(p/Λ0)

)
−RΛ(p)

We notice the following points:

1. (Γ
(2)
Λ,Λ0

)−1 is also a field dependent functional ;

2. the regulator function K(p/Λ) for the cutoff Λ appears only through RΛ ;

3. in (Γ
(2)
Λ,Λ0

)−1, we have the regulator function RΛ .
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In expanding (Γ
(2)
Λ,Λ0

)−1 in terms of fields, we find a set of differential equations for

couplings.

X

Figure 4: The flow of 1PI action

•
⊗

represents −Λ∂ΛRΛ .

• The full propagator (Γ
(2)
Λ,Λ0

)−1 is shown as the arrowed line:

– Blobs on the line are vertices; small dots are for fields Φ.
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Derivation of the 1PI flow equation

Ignoring the subscript Λ0 for simplicity, we write the 1PI action as

ΓΛ = −1

2

∫
p

∆−1
H (p)Φ(−p)Φ(p) + ΓI,Λ

where

∆H(p) =
K(p/Λ0)−K(p/Λ)

p2 +m2

is the high momentum propagator.

Expand ΓI,Λ to define Γ2n

ΓI,Λ =

∞∑
n=1

1

(2n)!

∫
p1,··· ,p2n

Φ(p1) · · ·Φ(p2n) Γ2n(Λ; p1, · · · , p2n) (2π)Dδ(p1 + · · · p2n)

Γ2n(Λ; p1, · · · , p2n) is the collection of 1PI diagrams with 2n external legs. We represent

it by the following diagram
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1PI

1 2n

Figure 5: A blob representing 1PI vertex
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1PI 1PI 1PI 1PI

• The derivative acting on a high momentum propagator to give a dotted line that

represents

−Λ∂Λ∆H(p) =
∆(p/Λ)

p2 +m2

• The derivative −Λ∂Λ acts on all possible ∆H in the 1PI diagram. The sum is over the

possible internal ∆H.
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1PI

1PI 1PI 1PIX

p

A B

BA

G(p,-p)

We introduce the notation G(p,−p) for the above sum and show that it is proportional

to the inverse of Γ(2).

G(p,−q) = Γ
(2)
I,Λ(p,−q) +

∫
r

Γ
(2)
I,Λ(p,−r)∆H(r)Γ

(2)
I,Λ(r,−q) + · · ·
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that may be expressed simply

G = Γ
(2)
I,Λ + Γ

(2)
I,Λ∆HΓ

(2)
I,Λ + · · · .

Now let us calculate (Γ(2))−1. Starting from Γ
(2)
Λ = −∆−1

H + Γ
(2)
I,Λ, we find

(
Γ
(2)
Λ

)−1
=

(
−∆−1

H + Γ
(2)
I,Λ

)−1
=

[(
1− Γ

(2)
I,Λ∆H

)(
−∆−1

H

)]−1

= −
(
∆H +∆HΓ

(2)
I,Λ∆H + · · ·

)
= −

(
∆H +∆HG∆H

)
∼ −∆HG∆H

We ignored the ∆H term that produces a field independent term to the 1PI flow equation.

−Λ∂ΛΓI,Λ = 1
2

∫
p

∆
p2+m2G(p,−p)

= 1
2

∫
p
(p2 +m2) ∆

(K(p/Λ0)−K(p/Λ)2
·∆HG(p,−p)∆H

∼ −1
2

∫
p
(p2 +m2) ∆

(K(p/Λ0)−K(p/Λ))2

(
Γ
(2)
Λ

)−1
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On the last line, a field independent term is discarded. Finally, we observe

−Λ∂ΛRΛ(p) = −(p2 +m2)
∆

(K(p/Λ0)−K(p/Λ))2

and reach the flow equation for 1PI action,

−Λ∂ΛΓI,Λ =
1

2

∫
p

(
−Λ∂ΛRΛ(p)

)(
Γ
(2)
Λ (p,−p)

)−1
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Relations of 1PI and Wilsonian actions

Rewriting relations appeared in the Legendre transformation, we find

ΓI,Λ,Λ0[Φ] = SI,Λ[ϕ] +
1

2

∫
p

∆−1
H (p)(Φ− ϕ)(−p)(Φ− ϕ)(p) (1)

Φ(p) = ϕ(p) + ∆H(p)
δSI,Λ
δϕ(−p)

, ϕ(p) = Φ(p)−∆H(p)
δΓI,B,Λ
δΦ(−p)

.

The first equation (1) relates vertices or couplings of two actions.
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Symmetry vs Regularization

Now we would like to consider a field theory with gauge symmetry.

The regularization with a momentum cutoff is not compatible with the gauge

symmetry in a standard form. We have encountered a similar situation in the Lattice

theory, namely, the chiral symmetry on lattice.

A lesson from chiral symmetry on lattice

In a chiral symmetric theory, we have

SF = ψ̄Dψ, Dγ5 + γ5D = 0 ,

δψ = γ5ψ , δψ̄ = ψ̄γ5 , (2)

The difficulty to realize a chiral theory on lattice, a particular regularization for a field

theory, is summarized as the Nielsen-Ninomiya’s No-go theorem (1981).

Ginsparg and Wilson stated that we should modify the above relation by the O(a)
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breaking term,

Dγ5 + γ5D = aDRγ5D, or γ5D
−1 +D−1γ5 = aRγ5

where R is an appropriately defined local operator. The O(a) breaking depends on the

U.V. action to define a theory and is expected to dissapear in the continuum limit.

Now a solution to the GW relation is known as the Lüscher symmetry (1988)

δψ = γ5

(
1− a

R

2
D
)
ψ, δψ̄ = ψ̄

(
1− a

R

2
D
)
γ5

δS = ψ̄
(
γ5D +Dγ5 − aDRγ5D

)
ψ = 0

The lesson here is clear. The chiral symmetry survives in a modified form.

We will find the same story for gauge symmetry in ERG. Gauge symmetry survives

in a modified form even with the presence of the momentum cutoff.
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The anti-field formalism a la Batalin-Vilkovisky

For a classical gauge fixed action Scl[ϕ] for a generic gauge theory, define an extended

action as

S̄cl[ϕ, ϕ
∗] ≡ Scl[ϕ] + ϕ∗Aδϕ

A

• Here antifields ϕ∗
A are introduced as sources for the BRST transformations δϕA.

the canonical structure via the antibracket for any field variables X and Y , we define

(X,Y ) ≡ ∂rX

∂ϕA
∂lY

∂ϕ∗A
− ∂rX

∂ϕ∗A

∂lY

∂ϕA

(S̄cl, S̄cl) = 2(δScl + ϕ∗Aδ
2ϕA)

Classical master equation (CME): (S̄cl, S̄cl) = 0 ⇔ action invariance and the nilpotency.
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Generalize the consideration for S̄[ϕ, ϕ∗] that defines a quantum system via the functional

integration over ϕ.

∫
Dϕ eS̄[ϕ,ϕ

∗]

Under the BRST transformation of fields δϕA ≡ (ϕA, S̄) = ∂lS̄
∂ϕ∗

A
, the changes of the

action and the functional measure are summed up to the quantum master operator:

Σ̄[ϕ, ϕ∗] ≡ ∂rS̄

∂ϕA
∂lS̄

∂ϕ∗A
+

∂r

∂ϕA
δϕA =

1

2
(S̄, S̄) + ∆S̄ , ∆ ≡ (−)ϵA+1 ∂

r

∂ϕA
∂r

∂ϕ∗A

where ϵA ≡ ϵ(ϕA) is the Grassmann parity.

The system is BRST invariant quantum mechanically if the two contributions cancel:

Σ̄[ϕ, ϕ∗] = 0 . (QME)
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The quantum BRST transformation as

δQX ≡ (X, S̄) + ∆X

We have two important algebraic identities without assuming QME:

δQΣ̄[ϕ, ϕ
∗] = 0 ,

δ2QX = (X, Σ̄[ϕ, ϕ∗]) .

The quantum BRST transformation is nilpotent if and only if QME holds.

Also useful to remember that QME = WT identity + nilpotency.

Σ̄[ϕ, ϕ∗ = 0] = 0 is the WT identity.
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Partition functions with different scales are related as

Z̄B[J, ϕ
∗] = NJZ̄Λ[J,Φ

∗]

Z̄Λ0
[J, ϕ

∗
] =

∫
Dϕ exp

(
S̄Λ0

[ϕ, ϕ
∗
] +K

−1
0 J · ϕ

)
S̄Λ0

[ϕ, ϕ
∗
] ≡ −

1

2
ϕ ·K−1

0 D · ϕ+ SI,Λ0
[ϕ] + ϕ

∗ · δϕ

Z̄Λ[J,Φ
∗
] =

∫
DΦexp

(
S̄Λ[Φ,Φ

∗
] +K

−1
J · Φ

)
S̄Λ[Φ,Φ

∗
] ≡ −

1

2
Φ ·K−1

D · Φ + S̄I,Λ[Φ,Φ
∗
]

NJ ≡ exp
(
−
(−)ϵA

2
JAK

−1
0 K

−1
∆
AB
H JB

)
KΦ

∗
A = K0ϕ

∗
A

NJ is produced via path integral over the high momentum modes: two J are connected

by ∆H. NJ turns out to be very important. (ΦA,Φ∗
A) is a canonical pair at Λ.
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Symmetry under the scale change

The QM operator has an important property: it satisfies the linearized Polchinski equation

−Λ
∂

∂Λ
Σ̄Λ = D̄Σ̄Λ

where

D̄ ≡
∫
p

[(
K−1∆

)(
ΦA

∂l

∂ΦA
− Φ∗

A

∂l

∂Φ∗
A

)
+ (−)ϵA

(
D−1∆

)AB(∂lS̄Λ

∂ΦB
∂r

∂ΦA
+

1

2

∂l∂r

∂ΦB∂ΦA

)]
.

Therefore once we find Σ̄Λ = 0 at some scale, it vanishes under the scale change. The

RG flow keeps the gauge symmetry.
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Scale change of BRST transformation

Taking ϕ∗ derivative of Z̄B[J, ϕ
∗] = NJZ̄Λ[J,Φ

∗] and using KΦ∗
A = K0ϕ

∗
A, we find

⟨K−1
0 δϕA⟩S̄Λ0

,K−1
0 J = NJ⟨K−1δΦA⟩S̄Λ,K−1J .

Recall

1

K

∂lS̄Λ

∂Φ∗
A

= K−1δΦA .

The above relation tells us the scale dependence of BRST transformation.
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Now let us find out the scale dependence

Suppose BRST transformations at Λ0,Λ are given by the following functionals,

K−1
0 δϕA = RA[ϕ, ϕ∗], K−1δΦA = RA[Φ,Φ∗]

Rewriting the relation ⟨K−1δΦA⟩S̄Λ,K−1J = N−1
J ⟨K−1

0 δϕA⟩S̄Λ0
,K−1

0 J , we find

⟨RA[Φ,Φ∗]⟩S̄Λ,K−1J = N−1
J ⟨RA[ϕ, ϕ∗]⟩S̄Λ0

,K−1
0 J

l.h.s. = RA[K∂lJ ,Φ
∗]Z̄Λ[J,Φ

∗]

r.h.s. = N−1
J RA[K0∂

l
J , ϕ

∗]Z̄Λ0[J, ϕ
∗] = N−1

J RA[K0∂
l
J , ϕ

∗]NJ · Z̄Λ[J,Φ
∗]

We observe here that J derivative acts on NJ and that produces the change.

Let us assume the transformation at Λ0 as

K−1
0 δϕA = R(1)A

B(Λ0)ϕ
B +

1

2
R(2)A

BC(Λ0)ϕ
BϕC
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Here the coefficients R(1)A
B(Λ0), R(2)A

BC(Λ0) are given at Λ0.

We are interested in how the r.h.s. changes under the flow.

• As explained shortly, the linear term changes as

[ΦA]∗ ≡ ΦA + (K0 −K)(D−1)AB
∂lS̄I,Λ
∂ΦB

• The bilinear term ϕBϕC changes as

[ΦAΦB]∗ ≡ [ΦA]∗[ΦB]∗

+ (K0 −K)(D−1)AC(K0 −K)(D−1)BD
∂l∂lS̄I,Λ
∂ΦC∂ΦD

We find the BRST transformation at Λ as

δΦA = K
(
R(1)A

B(Λ0)[Φ
B]∗ +

1

2
R(2)A

BC(Λ0)[Φ
BΦC]∗

)
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Derivation of [ΦA]∗ and notion of composite operators

Observe the relation of partition functions at Λ and Λ0

∫
Dϕ eS̄Λ0

+K−1
0 J·ϕ = NJ

∫
DΦ eS̄Λ+K

−1J·Φ ,

NJ ≡ exp
(
−(−)ϵA

2 JAK
−1
0 K−1(∆H)

ABJB

)
.

Now acting K0∂
l/∂JA, we find

⟨ϕA⟩Λ0,K
−1
0 J =

∫
Dϕ ϕA eS̄Λ0

+K−1
0 J·ϕ

= NJ

∫
DΦ

[K0

K
Φ+

(
N−1
J K0

∂l

∂JA
NJ

)
︸ ︷︷ ︸
−(−)ϵAK−1(∆H)ABJB

]
eS̄Λ+K

−1J·Φ

= NJ⟨
(
ΦA + (∆H)

AB∂
lS̄I,Λ
∂ΦB

)
⟩Λ,K−1J
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From the above derivation, we know the scale dependence of the quantity in the brace,

[
ΦA

]∗ ≡ ΦA + (∆H)
AB∂

lS̄I,Λ
∂ΦB

In referring to the Polchinski equation, we may characterize the scale dependence of[
ΦA

]∗
by saying that it follows the linearized Polchinski equation. This is the notion of

the composite operator due to Becchi.

There are couple of convenient composite opratoers. Those are explained in our

review. Obviouly, Σ̄ is the most important composite operator that tells us the presence

of BRST symmetry.
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The 1PI action Γ̄Λ0,Λ, QME and the modified ST identity

Introduce antifield dependence to 1PI action

exp
(
W̄Λ0,Λ[J, ϕ

∗]
)
≡

∫
Dϕ exp

(
−1

2
ϕ · (K0 −K)D · ϕ+ S̄I,Λ0[ϕ, ϕ

∗] +K−1
0 J · ϕ

)
Define the effective average action as

Γ̄Λ0,Λ[φΛ, ϕ
∗] ≡ W̄Λ0,Λ[J, ϕ

∗]−K−1
0 J · φΛ, φΛ(p) ≡ K0(p)

∂lW̄Λ0,Λ[J, ϕ
∗]

∂J(−p)

— Realization of symmetry in the ERG approach to QFT — 52/88



QME and the modified ST identity

The path integral average of the QM operator Σ̄Λ0[ϕ, ϕ
∗]

Σ̄1PI
Λ0,Λ

[φΛ, ϕ
∗] ≡

∫
Dϕ Σ̄Λ0[ϕ, ϕ

∗] exp
(
S̄Λ0,Λ[ϕ, ϕ

∗] +K−1
0 J · ϕ

)
/ exp[W̄Λ0,Λ[J, ϕ

∗]]

=
∂rΓ̄Λ0,Λ

∂φAΛ

∂lΓ̄Λ0,Λ

∂ϕ∗A
+ [RΛ]BA

(
−(Γ̄(2))−1

Λ0,Λ

∂l

∂φCΛ

∂lΓ̄Λ0,Λ

∂ϕ∗A
+ φBΛ

∂lΓ̄Λ0,Λ

∂ϕ∗A

)
︸ ︷︷ ︸

[RΛ(p)]BA ≡ DBA(p)
( 1

K0 −K
− 1

K0

)
→ 0 as Λ → 0

- Σ̄1PI
Λ0,Λ

= 0 is the modified Slavnov-Taylor identity. (Ellwanger 1994)

- It gives the Zinn-Justin equation in Λ → 0.
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Antifield dependence of the Wilson action

Assume the following action at Λ0

S̄Λ0[ϕ, ϕ
∗] = −1

2
ϕAK−1

0 DABϕ
B + S̄I,Λ0[ϕ, ϕ

∗] ,

S̄I,Λ0[ϕ, ϕ
∗] = SI,B[ϕ] +K0ϕ

∗
ARA[ϕ] ,

RA[ϕ] = R(1)A
Bϕ

B +
1

2
R(2)A

BCϕ
BϕC .

we obtain our final expression for the Wilsonian action:

S̄Λ[Φ, Φ
∗] = −1

2
ΦAK−1DABΦ

B +KΦ∗
ARA[Φ]

+ ln

[
exp

{K
2
Φ∗
AR

(2)A
BC

∂l

∂JB
∂l

∂JC

}
× exp

{1
2
(−)ϵ(J )J · (K0 −K)D−1 · J + SI,Λ[Φ

′]
}]

.
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S̄Λ[Φ, Φ
∗] = −1

2
ΦAK−1DABΦ

B +KΦ∗
ARA[Φ]

+ ln

[
exp

{K
2
Φ∗
AR

(2)A
BC

∂l

∂JB
∂l

∂JC

}
× exp

{1
2
(−)ϵ(J )J · (K0 −K)D−1 · J + SI,Λ[Φ

′]
}]

.

JA ≡ KΦ∗
B

(
R(1)B

A +R(2)B
CAΦ

C
)
,

Φ′A ≡ ΦA + JB(K0 −K)(D−1)BA .

Note we need to know the initial Wilsonian action S̄ or the action satisfying the WT

identity and the BRST transformation at Λ0.
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For QED, the Wilsonian action is simplified since R
(2)A
BC = 0.

S̄Λ[Φ, Φ
∗] = −1

2
ΦAK−1DABΦ

B +KΦ∗
ARA[Φ]

+
1

2
(−)ϵ(J )J · (K0 −K)D−1 · J + SI,Λ[Φ

′] .

JA ≡ KΦ∗
BR

(1)B
A ,

Φ′A ≡ ΦA + JB(K0 −K)(D−1)BA

= ΦA +KΦ∗
CR

(1)C
B(K0 −K)(D−1)BA

• The field variable in SI,Λ is shifted by a term linear in Φ∗.
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A remark: Variations of Wilsonian flow equations

• We have explained the Polchinski equation with a single regularization function

K(p/Λ). There are other ways to introduce regulator functions for the Wilsonian RG

flow equation: Bervillier (2004,2013,2014); Ball et al (1995); Rosten (2011); Osborn

and Twigg (2012), for example.

• Though they look very different each other in their appearances, one can understand

them in an organized manner as different implementation of regularization functions

(Igarashi, KI, Sonoda 2016).

We do not go into further details.
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Dimensionless formulation

In the formulation we have described, the Wilsonian and 1PI actions keep changing

along flows. We do not find any fixed points from flow equations. In order to find the

phase structure, we have to move to dimensionless formulation by using the momentum

cutoff Λ. Only the dimensional flow equation can be put on a computer.

Let us consider the flow equation:

Λ∂ΛΓI,Λ =
1

2

∫
p

Str
[
Λ∂ΛRΛ(p)

(
Γ
(2)
Λ

)−1
(p,−p)

]
.

• Easy to count mass dimensions for the quantities in the flow equation.

• We know that there could appear logarithmic terms like ln(Λ/µ) as we have seen in a

perturbative calculation. The wave function renormalization is of this type.
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• x̄µ = Λxµ and p̄µ = pµ/Λ, δ
d(p̄) = Λdδd(p) .

• Introduce the parameter t as

∂t = Λ∂Λ , t = ln(Λ/µ) .

• The dimensionless fields

Φ̄A(x̄) =
√
ZA Λ−dA Φ(x) ,

Φ̄A(p̄) =
√
ZA Λd−dA Φ(p) .

• ZA(t) = ZA(ln(Λ/µ)) and we define the corresponding anomalous dimension ηA as

ηA = −∂t lnZA = −Λ∂Λ lnZA .
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Now we need to make all the coefficients in expanding the 1PI by fields.

As a preparation, we write the 1PI action in two ways: they differ only in the kinetic

terms.

ΓΛ = ΓI,Λ − 1

2
ΦA(∆−1

H )ABΦ
B ≡ Γ̂Λ − 1

2
ΦA(RΛ)ABΦ

B

Γ̂Λ is given as

Γ̂Λ = −1

2
ΦA

DAB

K(p/Λ0)
ΦB + ΓI,Λ

Λ0→∞−−−−→ − 1

2
ΦADABΦ

B + ΓI,Λ

In understanding the UV side of a theory may be properly taken care of as we have seen

in a perturbative calculation, we send Λ0 to infnity to simplify expressions.
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1. Define coefficients by expanding Γ̂Λ in terms of fields

2. Replace all the quantities by their dimensionless forms

3. We may define the dimensionless coefficients

Γ̂Λ =

∞∑
n=2

∫
ddp1
(2π)d

· · · d
dpn

(2π)d
(2π)dδd(p1 + · · · pn)ΓA1,··· ,An(Λ; p1, · · · , pn)Π

n
i=1Φ

Ai(pi)

=

∞∑
n=2

∫
p̄i

ΛndΛ−d(2π)dδd(p̄1 + · · · p̄n)ΓA1,··· ,An(Λ; p1, · · · , pn)Π
n
i=1Λ

−d+dAi
Φ̄Ai(p̄i)√

ZAi
.

Define the dimensionless coefficients Γ̄A1,··· ,An

Γ̄A1,··· ,An(t; p̄1, · · · , p̄n) ≡
Λ
∑
i dAi−d√

ZA1 · · ·ZAn
ΓA1,··· ,An(Λ; p1, · · · , pn) .
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Taking the t derivative of the dimensionless coefficients

Γ̄A1,··· ,An(t; p̄1, · · · , p̄n) ≡
Λ
∑
i dAi−d√

ZA1 · · ·ZAn
ΓA1,··· ,An(Λ; p1, · · · , pn) .

we find

∂tΓ̄A1,··· ,An(t; p̄1, · · · p̄n) =
(∑

i

(
dAi +

ηAi
2

)
− d

)
Γ̄A1,··· ,An

+
Λ
∑
i dAi−d√

ZA1 · · ·ZAn

(
∂tΓA1,··· ,An|p +

∑
i

p̄µi ∂p̄µi
ΓA1,··· ,An

)
.

• The red part was included in the dimensionful flow equation.

• The t derivative on a Z factor produces an anomalous dimension ηA = −∂t lnZA.

ηA ≡ −∂t lnZA

• p derivative acts on ΓA1,··· ,An and it does not act on the delta function.
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Dimensionless flow equation

Finally, we reach the dimensionless flow equation

∂tΓ̂Λ[Φ] = (−)ϵA
1

2

∫
p

(
∂tR− ηR

)
AB

(p)

[(
Γ
(2)
Λ

)−1
]AB

(p,−p)

−d Γ̂Λ[Φ] + (dA + ηA/2)

∫
p

ΦA(p)
∂lΓ̂Λ[Φ]

∂ΦA(p)
+

∫
p

ΦA(p) p · ∂
∂p

(
∂l

∂ΦA(p)

)′

Γ̂Λ[Φ] ,

where (
∂tR− ηR

)
AB

(p) = ∂tRAB − ηARAB = −rA(p)DAB(p)

rA(p) = −∂t
(

K

1−K

)
+ ηA

K

1−K
=

2x K ′(x)(
1−K(x)

)2 + ηA
K(x)

1−K(x)
.

• The bar to indicate dimensionless quantities are ignored here.

• Expanding the dimensionless flow equation in terms of fields, we find a set of differential

equations for the dimensionless couplings defined above.
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Hierarchical Structure
of Phase Space

• Coupling space is,
generally speaking, an
infinite dimensional
space. The figure is
meant to be drawn for a
n dimensional coupling
space.

• The figure shows a typical
sets of renormalization
flows obtained with
dimensionless formulation
of the flow equation.

• Later we will see this
structure for QED.

Coupling Space

n-dim.

(n-1)-dim.

A

B

C

An initial set of 

Couplings

Renormalized 

Trajectory

flow b
flow a
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Coupling Space

n-dim.

(n-1)-dim.

A

B

C

An initial set of 

Couplings

Renormalized 

Trajectory

flow b
flow a

Explanations

• Starting from two sets of initial couplings,
we have drawn the flows a and b.

• Adding more and more flows, we start to
observe structures.

– Three points, A, B and C, are fixed
points of the flow equation.

– The point A is a sink of all the flows
starting from initial points located on
the left of the (n − 1) dimensional
boundary manifold, the critical surface.

– On the (n − 1) subspace, we find a
similar structure: the point B as a sink
and the (n − 2) dim. critical surface
(the line in the figure). The point C is
again a sink.
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Coupling Space

n-dim.

(n-1)-dim.

A

B

C

An initial set of 

Couplings

Renormalized 

Trajectory

flow b
flow a

• The point C has (n − 2) irrelevant
(shrinking) directions and two relevant
(extending) directions, one on the (n− 1)
dim. plane and the other coming out of
the plane.

• The point B has one relevant and (n− 1)
irrelevant directions.

• The flow from B to A is the renormalized
trajectory that defines a field theory: the
points A and B are the I.R. and U.V. fixed
points respectively for the field theory.
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Application to QED

This part is based on an on-going work in collaboration with

Y. Echigo, Y. Igarashi, J. Pawlowski and Y. Takahashi

• We consider QED with a massless fermion with ERG.

• Dimensionaless flow equations are solved numerically to find the phase structure.

• To see the consistency with some earlier results, the anomalous mass dimension γm is

evaluated at the UV fixed point.

• Conditions out of the modified WT identity are considered.
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Properties of Wilsonian and 1PI actions

Wilson action 1PI action
SΛ[ϕ] ΓΛ[Φ]

Diagrams Connected 1PI
Gauge symmetry mod. WT id. ‘mod. Slavnov-Taylor id.’
RG flow eq. Polchinski eq. 1PI flow eq.

Two actions are related via a Legendre transformation.

ΓI,Λ[Φ] = SI,Λ[ϕ]−
1

2
(Φ− ϕ)∆H

−1(Φ− ϕ)

Φ− ϕ = −∆H
∂lSI,Λ
∂ϕ

= −∆H
∂lΓI,Λ
∂Φ

where ∆H ≡ (1 − K)D−1 is the high momentum propagator that allows momentum

modes above the cutoff k to propagate. (A remark:Λ0 is sent to the infinity and we have

(1−K) in ∆H)

Our strategy Use WT id. for Wilson action and find RG flows for 1PI action.
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WT identity: ΣΛ[ϕ] = 0.

(cf. Ellwanger (1994), Ellwanger et. al.(1996), Igarashi et.al. (2009) and (2016))

ΣΛ[ϕ] = ZeZ
1/2
3

∫
p

[
∂SΛ

∂aµ(p)
(−ipµ)c(p) +

∂rSΛ

∂c̄(p)
ξ−1pµaµ(p)

]
−i e

∫
p,q

[
∂rSΛ

∂ψα(q)

K(q)

K(p)
ψα(p)−

K(p)

K(q)
ψ̄α̂(−q)

∂lSΛ

∂ψ̄α̂(−p)

]
c(q − p)

−i e
∫
p,q

Uβα̂(−q, p)
[

∂lSΛ

∂ψ̄α̂(−p)
∂rSΛ

∂ψβ(q)
− ∂l∂rSΛ

∂ψ̄α̂(−p)∂ψβ(q)

]
c(q − p)

Uβα̂(−q, p) ≡
[
K(q)

(
1−K(p)

)
/p

−
K(p)

(
1−K(q)

)
/q

]
βα̂

• ϕA are also renormalised fields with the same Z factors as ΦA.

• Ze is for a finite renormalisation of the gauge coupling.

• ZeZ
1/2
3 appears in the WT identity.
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• Why Z factors in the WT identity? In deriving the WT identity, we start from the

known symmetry at some scale and observe how it changes under the scale change.

• The flow equation and the WT identity (or the master equation in BV formalism) are

formally compatible if we include all the possible couplings.

1. Perturbative renormalizability has been discussed (e.g. Bonini et al (1997), Igarashi,

Sonoda, KI (2009)).

2. The Wilson action with a finite cut-off may be constructed explicitly based on the

flow and master equations (Igarashi, Morris, KI(2019)). Tim Morris will explain this

in the next talk.

• For a practical calculation, we must restrict the number of possible couplings,

a truncation of the action is inevitable. We do not yet know a scheme

for the truncation that keep consistency of the flow equation and symmetry

requirement.
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Ansatz to 1PI action for renormalised field Φ in Local Potential Approximation

(Igarashi et. al. J. Phys. A (2016))

ΓΛ[Φ] =
1

2
ΦADABΦ

B + ΓI,Λ[Φ]

ΓI,Λ[Φ] =
h
(aa)
µν

2
AµAν + 0 · Ψ̄Ψ + e · Ψ̄AΨ+GS and GV · Ψ̄ΨΨ̄Ψ ,

h(aa)µν (t, p) = PTµνT (t, p2) + PLµνL(t, p2) .

• PTµν = δµν − pµpν/p
2, PLµν = pµpν/p

2, the projection operators.

• T (t, p2), L(t, p2), α(t) ≡ e2(t), GS(t) and GV (t) are scale dependent and to be

determined with flow equations and WT identity.
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Ansatz to 1PI action in concrete

ΓΛ[Φ] =
1

2
ΦADABΦ

B + ΓI,Λ[Φ]

=
1

2

∫
p

Aµ(−p)
[
PTµν

{
p2 + T (t, p2)

}
+ PLµν

{
ξ−1p2 + L(t, p2)

}]
Aν(p)

+

∫
p

[
C̄(−p)ip2C(p) + Ψ̄(−p)/pΨ(p)

]
−e(t)

∫
p,q

Ψ̄(−p)/Aµ(p− q)Ψ(q) +
1

2

∫
p1,··· ,p4

(2π)4δ4(p1 + p2 + p3 + p4)

×
[
GS(t)

{(
Ψ̄(p1)Ψ(p2)

) (
Ψ̄(p3)Ψ(p4)

)
−
(
Ψ̄(p1)γ5Ψ(p2)

) (
Ψ̄(p3)γ5Ψ(p4)

)}
+GV (t)

{(
Ψ̄(p1)γµΨ(p2)

) (
Ψ̄(p3)γµΨ(p4)

)
+
(
Ψ̄(p1)γ5γµΨ(p2)

) (
Ψ̄(p3)γ5γµΨ(p4)

)}]
,
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Flow equation for photon two-point part of 1PI action, T and L

T and L are functions of x = p2 and t = lnΛ/µ.

By using the notation

Dx ≡ x ∂
∂x − 1, Dt ≡ ∂

∂t − ηA(α(t), ξ(t)) ,

the flow equations are

(Dx − 1
2Dt)T (t, x) + ηA

2 x = α C
(0)
T (x) + αηψ C

(1)
T (x) ,

(Dx − 1
2Dt)L(t, x)− x

2Dtξ(t)
−1 = α C

(0)
L (x) + αηψ C

(1)
L (x) ,

• α(t) and ηA,ψ(α(t), ξ(t)) are t-dependent coefficients.

• C
(i)
T,L are coefficients functions of x = p2.

• Extracting x-linear terms from flow eqs., we find:
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– Anomalous dimentions ηA are determined algebraically.

– Flow eq. of ξ, the gauge parameter, Dtξ(t)
−1 = 0, or

∂tξ = −ηAξ

The Landau gauge ξ = 0 is consistent with the flow of ξ.

• The rest are differential equations for T (t, x = p2) and L(t, x).

Choosing the regulator function as K(x) = exp(−x),
we find differential equations for T , L in the lowest order in α,

(x∂x − 1)T (t, x) = − α(t)

8π2x2

{
4 +

2x3

3
−
(
4 + 2x− x2

)
exp(−x/2)

}
,

(x∂x − 1)L(t, x) = α(t)

8π2x2

{
12− 8x−

(
12− 2x− x2

)
exp(−x/2)

}
,

where α ≡ e2.

— Realization of symmetry in the ERG approach to QFT — 74/88



These differential equations can be solved analytically to give

T (t, x) =
α(t)

6π2x2

[
1−

(
1 +

x

2
− x2

)
exp(−x/2) + x3

2

∫ x

0

e−u/2 − 1

u
du

]
,

L(t, x) = − α(t)

2π2x2

[
1− x−

(
1− x

2

)
exp(−x/2)

]
.

Two constants of integrations: one is related to the finite amount of wave function

renormalisation for the photon field and the other is fixed by comparing the functional

forms of L(t, x) here and that obtained from the WT identity.

The gauge mass term

Both T and L produce a constant term for small x = p2, 3α/16π2,

that will be a gauge mass (3α/16π2)Λ2 once the dimensionality is recovered.

The gauge mass term vanishes as the IR cutoff k goes to zero.
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Flow equations for α = e2, GS, GV : t ≡ lnΛ/µ

∂α

∂t
= (ηA + 2ηψ)α− 6α

(4π)2
(
1− 2

9
ηψ

)
(GS − 4GV ) + 2α2ξI(4)

∂GS
∂t

= 2(1 + ηψ)GS − 3

(4π)2

(
1− 2

9
ηψ

)
(3GS − 8GV )GS

+αGS
(
ηAs

(1) + ηψs
(2) + s(3)

)
+ α2

(
ηAs

(4) + ηψs
(5) + s(6)

)
∂GV
∂t

= 2(1 + ηψ)GV +
3

2(4π)2

(
1− 2

9
ηψ

)
G2
S

+αGV
(
ηAv

(1) + ηψv
(2) + v(3)

)
+ α2

(
ηAv

(4) + ηψv
(5) + v(6)

)
• I(4), s(i), v(i) are coefficients functions of α and ξ that depend on the regulator

function K.

• The anomalous dimensions, ηi ≡ −∂tlnZi are also functions of α and ξ.
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Hierarchical Phase Structure: a funnel halved by the α = 0 plane.

0

α

C2:

Extra FP

B: UV FP

A: IR FP
The Origin

 C1: mod 

NJL FP

0

G

 G

The Critical Surface

Figure 6: Four fixed points and critical surface and lines
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Coupling Space

n-dim.

(n-1)-dim.

A

B

C

An initial set of 

Couplings

Renormalized 

Trajectory

flow b
flow a

0

α

C2:

Extra FP

B: UV FP

A: IR FP
The Origin

 C1: mod 

NJL FP

0

G

 G

The Critical Surface
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Four fixed points

Fixed Point # of Rel. ops. (α,GS, GV )
A: I.R. 0 The origin
B: U.V. 1 (13.5, 6.99, 0.573)
C1: mod. NJL 2 (0, 26.3, − 3.29)
C2: extra 2 (0,−105, − 52.6)

• The numerical calculations are done in Landau gauge.

• Flows on the α = 0 plane stay on the plane. That is the modified NJL model.

• Aoki et. al.2 studied the same system with different regularisation functions and

identified the critical coupling without flowing the gauge coupling.

– Overall phase structure is similar.

– Some higher order terms are also included here.

2PTP 97 (1997) 479

— Realization of symmetry in the ERG approach to QFT — 79/88



Flows in general gauge

UV f.p.

Renormalized Trajectories

Two relevant directions

0

Figure 7: Flows with ξ

• Unique UV fixed point with ξ = 0.

• At the UV fixed point,

there are two relevant directions:

one stays on ξ = 0 plane;

another has non-zero ξ component.

• The ξ-axis is the IR fixed line.
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Anomalous mass dimension γm at the UV fixed point

Add mf ψ̄ψ to ΓI,k and find γm defined by the flow, ∂tmf = −(1 + γm)mf +O(m3
f).

γm = −ηψ +
3GS

4π2

(
1 −

2

9
ηψ

)
−

α

(4π)2

∫ ∞

0

dxK(1 −K)
2
[
xKA(3T

2
+ ξL

2
) + 2Kψ(3T + ξL)

]
where KA(ψ) ≡ −2x+ ηA(ψ)(1 −K),

T (x) ≡
[
x+ (1 −K(x))T (x)

]
, L(x) ≡

[
x+ ξ(1 −K(x))L(x)

]

+

Figure 8: Blobs indicate mf ψ̄ψ operators.
To obtain γm, the regulator Rk should be
inserted to internal propagators.

Our value, γm = 1.078, is to be

compared to 1.177 (Aoki et. al.).

Differences are : 1) correct identi-

-fication of the UV fixed point;

2) choice of regulator function; 3)

higher order corrections are included.
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Conditions from the WT identity in Landau gauge

1st WT relation: AµC terms in the WT id.

For the ansatz ΓI,k = h
(aa)
µν AµAν/2 + e · Ψ̄AΨ+GS and GV · Ψ̄ΨΨ̄Ψ ,

h
(aa)
µν (p) = PTµνT (p) + PLµνL(p) ,

we obtain the condition on L as 1st WT relation,

pµh
(aa)
µν (p) = pνL(t, p) =

e2(t)

ZeZ
1/2
3

∫
q

Tr [U(p− q, q)γν] .

This gives rise the same funciton obtained from the RG flow eq. except the proportionality

constant.

L(t, x) = 1

ZeZ
1/2
3

· α(t)
2π2x2

{
1− x−

(
1− x

2

)
exp(−x/2)

}
.

• The same function for L(t, x) are obtained via flow equation as well as WT identity,

except the proportionality constant. We may regard this as an evidence of perturbative

consistency.
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• Yet, flow equations for T and L have higher order contributions in α = e2.

2nd WT relation: Ψ̄ΨC terms in the WT id.

ZeZ
1/2
3 = 1− 3

32π2

(
GS − 4GV + αI(α)

)
where I(α) ≡

∫ ∞

0

dxK(x)
(
1−K(x)

)
xT (x, α)

• The 2nd term is the one-loop contribution in the Ψ̄ΨC terms of the WT id.

(1 − ZeZ
1/2
3 )(/p− /q) −

∫
l

[(
2GS − 8GV

)
+ 2e

2
(1 −K(l

2
))T (l

2
)

]
U(−q − l, p+ l)

−e2
∫
l

(1 −K(l))

l2
{T (l

2
) − ξL(l

2
)}/lU(−q − l, p+ l)/l = 0
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Conditions from the WT identity in Landau gauge

• 1st relation: ZeZ
1/2
3 = 1.

• 2nd relation: ZeZ
1/2
3 = 1− 3

32π2

(
GS − 4GV + αI(α)

)
where I(α) ≡

∫∞
0
dxK(x)

(
1−K(x)

)
xT (x, α)
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Remarks on our study of QED

• From 80’ to 90’s there was a big activity studying strong coupling gauge theories

via SD approach as well as functional RG. The present system, QED with massless

fermion, was a typical example.

To my knowledge, however, in earlier studies of the system flow equations were solved

only partially and, strictly speaking, the UV fixed point had not been identified.

• As a physical quantity, the mass anomalous dimension γm is calculated and it found

out to be close to the known results.

• The modified WT identity is also investigated.

Flow eq. and WT id. produced the same funcion L in the lowest order in perturbation.
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Summary and Discussion: we need to achieve ...

• We have explained

1. Wilsonian and 1PI actions, their flow equations and the continuum limit

2. BV formalism is powerful enough to treat the modified gauge symmetry due to the

cutoff.

3. Dimensionless formalism to find a phase structure

• We observed the formal compatibility of flow equations and QME. The compatibility

can be confirmed in a perturbative expansion. This will be explained in Tim Morris’

talk.

• However, for a practical application beyond a perturbative study, we need to introduce

a truncated action as an ansatz. This truncation causes the real problem.

A systematic approach to improve the situation is much needed.
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Other RG approaches, consistent with gauge symmetry

• Improvement in numerical approach: at the ERG 2020 conference, Coralie Schneider

gave a talk on modified Slavnov-Taylor identity in YM theory and explained a newly

developed Mathematica package to study the problem numerically. Their paper is now

in the arXiv.

• Gauge invariant regularization is proposed (Morris 2000) and studied perturbatively.

• Proposal of a new exact renormalization group based on the idea of gradient flow

(Sonoda and Suzuki 2021)
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Thank you for your attention

UV

IR

R.T.
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