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Plan:
e Mirror symmetry and Homological mirror symmetry
e Kontsevich-Soibelman’s proposal based on SYZ torus fibration
e Fukaya category Fuk(R?) on R?
(with (the standard) symplectic form)
e Applying HPT to obtain Fuk(R?)

e Other examples and related topics



Mirror symmetry

Mirror Symmetr .
{symplectic mfds. M } é Y {complex mfds. M}

e Mirror symmetry (duality) is formulated as equivalences of various

structures on M and M.

e Physically, mirror symmetry is a duality between
A-twisted topological string (A-model) on M

and B-twisted topological string (B-model) on M.

ex. (tree) closed string: Gromov-Witten invariant from A-model,

the space of deformation of complex structure from B-model
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x Homological mirror symmetry (HMS) corresponds to the case

of tree open strings.

So, naively, we may expect it to be formulated as an equivalence of

the A_.-structures

What is nontrivial is that we have various boundary conditions for

topological open strings = A-branes and B-branes

Thus, we should consider the correspondence

Ao-category of A-branes on M %} A,-category of B-branes on M
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Mathematical formulation of HMS (Kontsevich'94) is an equivalence

Tr(Fuk(M)) ~ D’(coh(M))

of triangulated categories, where

o Fuk(M) is the Fukaya A, category of Lagrangians (A-branes)
in M,

o D%coh(M)) is the derived category of coherent sheaves (B-
branes) on M,

e a way of constructing a triangulated category Tr(C) from an

Ao-category C is also given there.



Usually, we can replace D?(coh(M)) by

(a full subcategory of) the DG category DG (hol(M))

of holomorphic vector bundles
in the sense that it usually generates D?(coh(M)) by Tr.

This DG(hol(M)) is thought of as a generalization of holomorphic

Chern-Simons theory.
— topological open SFT of the B-model

(cf. Lazaroiu'01: SFT and brane superpotentials.)



Claim: Fukaya category should be obtained

v

as a minimal model of DG(hol(M)) !!

A way of understanding HMS in this direction is proposed by
Kontsevich-Soibelman’01: HMS and torus fibration.
More explicit formulation is in

H.K'14: On some deformations of Fukaya categories.

Fuk(M) > Fuk'(M) 255 DG(hol(M))



Some of relevant works:

Stasheff'63; Homotopy associativity of H-spaces I, Il.

Fukaya'93; Morse homotopy, A°°-category, and Floer homologies.
Kontsevich'94; Homological algebra of mirror symmetry.
Fukaya'96; Morse homotopy and Chern-Simons perturbation theory.

Fukaya-Oh'97; Zero-loop open strings in the cotangent bundle

and Morse homotopy.

Kontsevich-Soibelman’'01: HMS and torus fibration.

Fukaya'05; Multivalued Morse theory, asymptopic analysis and MS.



A toy example: Fukaya category F'uk(R?)
For an object a € Ob(Fuk(R?)),

we consider a line in R? expressed as
Lo,:y=tyx+ s, , ta, Sq € R.

(called an affine Lagrangian section)

For a,b € Ob(Fuk(R)) s.t. t, # tp, the space V,; of morphisms
Is a Z-graded vector space generated by the intersection point
Vab := L, N Ly,



The Z-grading is attached as follows. Va # b € §n,

O VO = R - [Uab]r Valb — O, (ta, < tb),

a

® Vaob = 0, Valb =R [Ua,b], (ta > tb).
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The Ao-structure {m,},>1 is defined as follows.
For a fixed n > 2 and aq, ..., ap41 € Ob(Fuk(R?)) s.t.
a;j #ap forj#k=1,...,n+1,

Mn * Vajas @ @ Vapanis = Vaja Is set to be

n—+1

mn([va1a2]v e [Uanan—l—l]) — Ca1"'an+1[va1an+1]>

—Area(v
Cay---a), — L€ (v)

where, if U':= (Vg a) ---» Vapan. s Va,.qa;) forms a clockwise convex
(n + 1)-gon,

(Area(v) is the area of the (n + 1)-gon)



and c¢q,...q, ., = 0 otherwise.

n—+1

mq : Vap — Vap is set to be m; = 0 Va # b.

Figure of a cloxkwise convex polygon
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The A.-relation follows from a polygon having one nonconvex

vertex.

There exist two ways to divide it into two convex polygons.

In this figure, the area X + Y + Z is divided into

(VX + (Y +2) or (i) (X+Y)+2Z.
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Corresponding to (i) and (ii) one has

(Z) DT m5(vabam4(vbcavcda'Udeavef)avfgavghavhi)

_ o~ X—(Y+2)

Vai

(22) © — Mme(Vabs Ubes Ved, Vdes M3(Vef, Vfgy Vgh), Vhi)

ar -

Thus, we obtain

O — _|_m5(va,b7 m4(vbca Ueds Udes vef)a vfgv vghv vhi)

— mG(UCLIN Ubc, Uedy Ude, mS(Uefa Vfg, Ugh)a Uhi) ’

which is just one of the A_.-relations.
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The DG-categry model Cpr(R) of Fuk(R?)

o The objects are the same: Ob(Cpr(R)) = {a,b,...}

o Ya,b € Ob(Cpr(R)), the space of morphsims is set to be
Con(R)(a,b) = &,—01(R), 00, := S(R), 2, = S(R) - du,

where S(R) is the space of rapidly decreasing smooth functions ;
o a differential dgp : Q% — Q! is given by
dop := d — df p\ = elavde™ab,
where foy == fo — fo, fa = (1/2)(ta® + 54)% ;

o a product Q7% @ Q¢ — Q2" by the usual wedge product A.
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This Cpr(RR) is thought of as a topological open SFT model
(though we do not have cyclicity in this case).

Just by rewriting d as 0,

v

Cpr(R) turns out to be a subcategory of DG(hol(M = C))

consisting of line bundles.
This is thought of as the topological open SFT of B-model

(though R? <+ C is not a mirror pair in the usual sense).
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Homological perturbation theory (HPT) (1986~)
(Kadeishvili, Gugenheim, Lambe, Stasheff, Huebschmann,...)
For an A..-algebra (A, m),

strongly deformation retract (SDR) data is

L

(V. d) (A,mq) , h:A” — A" 1

7T
s.t. mih+ hmy =1dyq —tom, mTotL=1dy.

Given SDR, there exists an A -algebra (V,m’) with m)| = d(=

tomyom) and ¢, lift to Ao.-quasi-isomorphisms.
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Note that:

e There exists an explicit construction of (V,m’) and f: (V,m’) —

(A, m) (the lift of +) using "Feynman graphs”,

where the homotopy operator h play the role of the propagator.

e If d =0, then (V,m’) is a minimal A..-algebra, i.e.,

HPT reduces to Kadeishvili's minimal model theorem.

e HPT holds true just in a similar way for an A..-category.
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x Let us apply HPT to (A,m) = Cpgr(R).
Let us construct homotopy operators h,, on Cpr(R)(a,b) = Q.

o Fora#be Ob(Cpr(R)), fix € € (0,1] and define d ,, : 7, —
Qr! by
ALy = €d" = Lyraa(f,y):

We see that H, = dabdi;ab 1+ dl d.p, has only non-negative real

€;ab

eigenvalues.
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In particular,
| for e = 1], Hy is the Hamiltonian of a harmonic oscillator,

(cf. Witten's Morse theory)
[fore=0], Ho= efabﬁgrad(fab)e_fab.

(Cf. Aop ;= d — df p\ = elab . . e—Jab, )



Let ¢y : QF, — QF,, ¢t € [0,00), be a linear map satisfying 19 = Id
and "

t

dt e¢t°

Integrating the above equation over |0, o0), we obtain

dabhe;ab —+ he;abdab — Idﬂab — Pe;aba

he;ab .= / dt di'abwh Pe;ab = lim lbt-
0 ’ t— 00

We thus obtain a family of SDRs for Cpr(R) (parametrized by ¢).



In the limit ¢ — 0, HPT derives the A_.-products of Fuk(IR?).

e For example, for m5(eqp, €pc, €cd),

(PO;a,bCDR(R)(UJy b) > €4p [Uab])
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HPT implies m}(€qp, €be, €cd) =

€ab Che €cd €ab €he €cd
ma + ma
hac mo mo _hbd
P P

The concrete construction is
in H.K'09;: An A_.-structure for lines in R?.

The explanation is in HK'11; HPT and HMS.



To summarize,

Fukaya category is obtained

as a particular limit < "singular "
of a family of minimal models

of the topological open SFT of B-model

via HPT.
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This strategy actually works well for T2, i.e.,

M is a symplectic two-torus and M is the mirror dual elliptic curve

(T2 with a complex structure)
since R? is the covering space of T2.
H.K'21; Fukaya categories of two-tori revisited.

Remark: For this T2 case, a relation of an A..-product and an

exact triangle is explained in the above paper and

Kobayashi'17; On exact triangles consisting of stable vector bundles

on torl.

(Kobayashi also discusses its generalization to higher dim. tori. )
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General setting of Kontsevich-Soibeolman’s proposal
is based on the Strominger-Yau-Zaslow (SYZ) torus fibration:
Construct M and M as T"-fibration of the same base space B

so that M and M are related by the T-duality of the fiber T™.

By this T-duality, a Lagrangian (multi-)section in M is transformed

to a holomorphic vector bundle on M.

In Leung-Yau-Zaslow'00; From special Lagrangians to Hermitian-

Yang-Mills via Fourier-Mukai trnasform.

and Leung'05; Mirror symmetry without corrections.
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e In general, M and M have singular fibers.
A way of treating these singular fibers is discussed in

Fukaya'05; Multivalued Morse theory, asymptopic analysis and

mirror symmetry

but it seems hard to construct a HMS functor explicitly in general.
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e For a compact toric manifold M (+— non-Calabi-Yau),
we can still discuss mirror symmetry of SYZ type.

In this case, we need to modify the notion of Fukaya category
Fuk(M) since O(B) # 0.

Then, HMS is shown by applying HPT when

o M is CP™ or their products

K-Futaki'20; HMS of CP" and their products via Morse homotopy.
o M is the Hirzebruch surface F

K-Futaki'20 preprint; HMS of IF; via Morse homotopy.






Appendix

o A .-algebras

o A -categories

e On the DG-structure DG (hol(M))

e The set-up for general cases

e [he idea is to interpolate Morse homotopy

e Appendix for the SDR data we construct for Cpr(R)
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Def. [A..-algebra (Stasheff’63)]
(V,m :={my,}n>1) is an A -algebra <

V = ®,ezV" : Z-graded vector space,

m = {m, : V" — V},>1 : a collection of degree (2 — n)

multilinear maps s.t.

k—1
0= Z Zi my(v1, -, v,

k+l=n—+1 3=0

ml(Uj+1,°“ 7Uj+l)avj—|—l+17"' 7Un) .

forn=1,2,...,



k—1
0= S S mlon o

k+l=n—+1 3=0

ml(Uj+1,°“ 7Uj—|—l)avj—|—l—|—17"' 7Un) .
form=1,2,...,

where v; € VUil i =1,...,n, and |m,| = (2 — n) implies

My (U1, ey Up)| = (2 =) + o1 + -+ + |vn].
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The A-relations forn =1,2,3 :
formiy=d, my=- x,y,2z€V:
i) d*=0,
i) d(z-y) =d@)-y+ ()2 dy) |
i) (x-y)-z—x-(y-z2)=d(ms)(x,y,2).
i) < (V,d) forms a complex.
i1) < Leibniz rule of d w.r.t. to product -.

i11) - is associative up to homotopy.
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In particular, if mg = 0, the product - is strictly associative. An
Ao-algebra (V,m) with mg =my4 = --- = 0 is called a differential
graded (DG) algebra.
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Def. [A,.-morphism]
Given two A..-algebras (V,m) and (V' m'),
an As.-morphism § : (V,m) — (V' m') is a collection of degree
(1 — k) multilinear maps
fo={fr: VO = V'}i>1 s.t.

Z Z imfé(szl®'°'®f}<i)(v1,...,vn)

i>1 ky4-+kn=n

= Z + (1% @ my @ 1%7) (vy, ..., vp)

it 14j=Fk
i+l+j5=n

formn=1,2,....
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Note: the above relation for n = 1 implies f1 : V — V' forms a

chain map
fl : (V7 m) — (Vlvm/)°



Def. An A.-morphism | : (V,m) — (V' ,m') is called an A-
quasi-isomorphism iff f; : (V.,m1) — (V',m}) induces an isom.

on the cohomologies of the two complexes.

Remark. For a given As.-quasi-isomorphism §: (V,m) — (V' ,m’),

there always exists an inverse A..-quasi-isomorphism
o (Vim') — (V,m).

Thus, Asc-quasi-isomorphisms define (homotopy) equivalence

between A..-algebras.
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We need a categorical version of these terminologies.

Def. [A..-category (Fukaya’93)]
An A, .-category C <

Ob(C) ={a,b,---} : a set of objects
Vap := Home(a, b) : Z-graded vector space for Va,b € Ob(C)

a collection of multilinear maps
m .= {mn . Va1a2 ® vt ® Vanan—l—l % Valan+1}n21

degree (2 — n) defining an A..-structure.

In particular, C with ms = my = --- = 0 Is called a DG-category.
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Def. Given two A, -categories C and C’, §:={f, f1, f2,..-} : C —

C’ is an A,.-functor &
f:0b(C) — Ob(C") a map of objects;
a collection of multilinear maps
fr : Home(ag,a2) ® - - - ® Home (ag, agi1)
— Home/(f(ar), flak41)), k=1,2,..
degree (1 — k) satisfying the defining equation of an A..-morphism.

We call § an A..-quasi-isomorphism iff f : Ob(C) — Ob(C’) is
bijection and f; : Home(a,b) — Home/(f(a), f(b)) induces an
isom. on the cohomologies for Va,b € Ob(C).
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The DG structure for DG (hol(M))
is thought of a generalization of

DGA (Q(M),d, N) of differential forms on M
DGA (Q%*(M), 0, A) of anti-holomorphic differential forms on M

DG category DG (hol(M)), where each holomorphic vector bundle
has a holomorphic structure D := 9 + A%!, D2 = 0. The
differential (on the space of morphisms) is defined in a natural way

by using the corresponding holomorphic structures.
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Hope we can take full subcategories
C C Fuk(M),  C' C DG(hol(M))
such that Tr(C) ~ Tr(Fuk(M)), Tr(C") ~ Tr(DG(hol(M))),

and C ~ C" as A,.-categories. = This implies Tr(C) ~ Tr(C’).

In particular,

we hope to obtain the A..-quasi-isomorphism §f: C — C’ via HPT.
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Outline of the plan to obtain §: C — C”:

B: n-dim. mfd (equipped with tropical affine, Hessian structures!)
.- — T B: symplectic manifold

-+ — M :=T*B/Z"™: symplectic torus fibration

A.-category M (B) of Morse homotopy on B:
Ob(M(B)) = C>*(B),
For f,g € Ob(M(B)), Hom(f,g) is the Morse complex of f — g.

e Fukaya, Oh'93,'97: M (B) is equivalent to the full subcategory of
Fuk(T*B) consisting of Lagrangian sections graph(df).
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e M (B) is As-quasi-isomorphic to a DG category DG(B)
via HPT
where Ob(DG(B)) = Ob(M (B)),
Hompgp)(f,9) =UB), D =d+dfA

e Extend these stories to torus fibrations

v

e The DG structure in DG(B) corresponds to that in DG(hol(M))
where M := TB/Z" is the dual torus fibration of M.

(cf. forms on B < anti-hol. forms on T'B)

This strategy works well for M = R? and T% (H.K)
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Appendix for the SDR data

Pk.qp defines a projection;

P.. aanb = Ker(dab Q ab " Q )
PG aanb — Kel“(d CLb le — Q )

The cohomologies P 2ap := @r=0,1Fear{2., are spanned by the

gaussians:

Pe.apQar, = { const - el ab |2 ty, < tp

Pe.apQap = { const - e~ c(fab) dy bty >t
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We choose bases ec.qp of Pe.qp2qp by normalizing
ee;ab(wab) =1 ) ta <ty

00
/ Ceab — 1, ta > tp.
— 00

In the limit € — 0, the degree one base e..qy (t, > tp) becomes the

delta function localized at the point z,;, (= x(vaep)).
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In the limit € = 0, Aqp := limc_,0 le.qp and Pgp := lim._,g Pe.qp turn

out to be -
hap = / dtefabSO:(e_fab ’/grad(fab))v
0

where ¢, : R — R is the flow defined by

d
% = grad(fup), wo = 1d.



For example, for the following case:

hap(6(x — p)dx)
— / dtefabgpre_fabé(x _ p)
0

= elab(pye 1) |y (a)=p(2),

df ab
dx

()
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hap(0(x — p)dx) for t, < tp and x4, < p turns out to be

Flow of grad(f.s)

| I
]

Lab p X

(step function twisted by e/ab).



