Homological perturbation theory in Homological mirror symmetry

Hiroshige Kajiura (Chiba Univ. Japan)

Homotopy Algebra of Quantum Field Theory and Its Application March 29/2021

Plan:

- Mirror symmetry and Homological mirror symmetry
- Kontsevich-Soibelman's proposal based on SYZ torus fibration
- Fukaya category $Fuk(\mathbb{R}^2)$ on \mathbb{R}^2

(with (the standard) symplectic form)

- Applying HPT to obtain $Fuk(\mathbb{R}^2)$
- Other examples and related topics

Mirror symmetry

$$\{ \text{symplectic mfds. } M \} \quad \begin{array}{c} \text{Mirror Symmetry} \\ \Leftarrow \Longrightarrow \end{array} \quad \{ \text{complex mfds. } \tilde{M} \} \\ \end{array}$$

- Mirror symmetry (duality) is formulated as equivalences of various structures on M and \check{M} .
- Physically, mirror symmetry is a duality between

A-twisted topological string (A-model) on M

and B-twisted topological string (B-model) on \check{M} .

ex. (tree) closed string: Gromov-Witten invariant from A-model, the space of deformation of complex structure from B-model

* Homological mirror symmetry (HMS) corresponds to the case of tree open strings.

So, naively, we may expect it to be formulated as an equivalence of the $A_\infty\mbox{-structures}$

What is nontrivial is that we have various boundary conditions for topological open strings \Rightarrow A-branes and B-branes

Thus, we should consider the correspondence

 A_{∞} -category of A-branes on $M \iff A_{\infty}$ -category of B-branes on \check{M}

Mathematical formulation of HMS (Kontsevich'94) is an equivalence

 $Tr(Fuk(M)) \simeq D^b(coh(\check{M}))$

of triangulated categories, where

• Fuk(M) is the Fukaya A_{∞} category of Lagrangians (A-branes) in M,

• $D^b(coh(\check{M}))$ is the derived category of coherent sheaves (B-branes) on \check{M} ,

• a way of constructing a triangulated category $Tr(\mathcal{C})$ from an A_{∞} -category \mathcal{C} is also given there.

Usually, we can replace $D^b(coh(\check{M}))$ by

(a full subcategory of) the DG category $DG(hol(\tilde{M}))$ of holomorphic vector bundles

in the sense that it usually generates $D^b(coh(M))$ by Tr.

This $DG(hol(\dot{M}))$ is thought of as a generalization of holomorphic Chern-Simons theory.

= topological open SFT of the B-model

(cf. Lazaroiu'01: SFT and brane superpotentials.)

Claim: Fukaya category should be obtained as a minimal model of $DG(hol(\check{M}))$!! A way of understanding HMS in this direction is proposed by Kontsevich-Soibelman'01: HMS and torus fibration. More explicit formulation is in

H.K'14: On some deformations of Fukaya categories.

 $Fuk(M) \supset Fuk'(M) \xrightarrow{HPT} DG(hol(\check{M}))$

Some of relevant works:

Stasheff'63; Homotopy associativity of H-spaces I, II.

Fukaya'93; Morse homotopy, A^{∞} -category, and Floer homologies.

Kontsevich'94; Homological algebra of mirror symmetry.

Fukaya'96; Morse homotopy and Chern-Simons perturbation theory.

Fukaya-Oh'97; Zero-loop open strings in the cotangent bundle and Morse homotopy.

Kontsevich-Soibelman'01: HMS and torus fibration.

Fukaya'05; Multivalued Morse theory, asymptopic analysis and MS.

A toy example: Fukaya category $Fuk(\mathbb{R}^2)$

For an **object** $a \in Ob(Fuk(\mathbb{R}^2))$,

we consider a line in \mathbb{R}^2 expressed as

$$L_a: y = t_a x + s_a , \qquad t_a, s_a \in \mathbb{R}.$$

(called an affine Lagrangian section)

For $a, b \in Ob(Fuk(\mathbb{R}))$ s.t. $t_a \neq t_b$, the space V_{ab} of **morphisms** is a \mathbb{Z} -graded vector space generated by the intersection point $v_{ab} := L_a \cap L_b$. The \mathbb{Z} -grading is attached as follows. $\forall a \neq b \in \mathfrak{F}_N$,

•
$$V_{ab}^0 = \mathbb{R} \cdot [v_{ab}]$$
, $V_{ab}^1 = 0$, $(t_a < t_b)$,

• $V_{ab}^0 = 0$, $V_{ab}^1 = \mathbb{R} \cdot [v_{ab}]$, $(t_a > t_b)$.

The A_{∞} -structure $\{m_n\}_{n\geq 1}$ is defined as follows.

For a fixed $n \ge 2$ and $a_1, ..., a_{n+1} \in Ob(Fuk(\mathbb{R}^2))$ s.t.

$$a_j \neq a_k$$
 for $j \neq k = 1, ..., n + 1$,

 $m_n: V_{a_1a_2} \otimes \cdots \otimes V_{a_na_{n+1}} \to V_{a_1a_{n+1}}$ is set to be

$$m_n([v_{a_1a_2}], \dots, [v_{a_na_{n+1}}]) = c_{a_1\cdots a_{n+1}}[v_{a_1a_{n+1}}],$$
$$c_{a_1\cdots a_k} = \pm e^{-Area(v)}$$

where, if $\vec{v} := (v_{a_1a_2}, ..., v_{a_na_{n+1}}, v_{a_{n+1}a_1})$ forms a clockwise convex (n+1)-gon,

 $(Area(\vec{v}) \text{ is the area of the } (n+1)\text{-gon})$

and $c_{a_1 \cdots a_{n+1}} = 0$ otherwise.

 $m_1: V_{ab} \to V_{ab}$ is set to be $m_1 = 0 \ \forall a \neq b$.

Figure of a cloxkwise convex polygon

The A_{∞} -relation follows from a polygon having one nonconvex vertex.

There exist two ways to divide it into two convex polygons.

In this figure, the area X + Y + Z is divided into

(i) X + (Y + Z) or (ii) (X + Y) + Z.

Corresponding to (i) and (ii) one has

$$(i): + m_5(v_{ab}, m_4(v_{bc}, v_{cd}, v_{de}, v_{ef}), v_{fg}, v_{gh}, v_{hi})$$
$$= e^{-X - (Y + Z)} v_{ai} ,$$

$$(ii): -m_6(v_{ab}, v_{bc}, v_{cd}, v_{de}, m_3(v_{ef}, v_{fg}, v_{gh}), v_{hi})$$
$$= -e^{-(X+Y)-Z}v_{ai} .$$

Thus, we obtain

$$0 = +m_5(v_{ab}, m_4(v_{bc}, v_{cd}, v_{de}, v_{ef}), v_{fg}, v_{gh}, v_{hi}) -m_6(v_{ab}, v_{bc}, v_{cd}, v_{de}, m_3(v_{ef}, v_{fg}, v_{gh}), v_{hi}) ,$$

which is just one of the A_{∞} -relations.

The DG-categry model $\mathcal{C}_{DR}(\mathbb{R})$ of $Fuk(\mathbb{R}^2)$

• The **objects** are the same: $Ob(\mathcal{C}_{DR}(\mathbb{R})) = \{a, b, \dots\}$

• $\forall a, b \in Ob(\mathcal{C}_{DR}(\mathbb{R}))$, the space of **morphsims** is set to be $\mathcal{C}_{DR}(\mathbb{R})(a, b) = \bigoplus_{r=0,1} \Omega^r_{ab}(\mathbb{R}), \ \Omega^0_{ab} := \mathcal{S}(\mathbb{R}), \ \Omega^1_{ab} := \mathcal{S}(\mathbb{R}) \cdot dx$, where $\mathcal{S}(\mathbb{R})$ is the space of rapidly decreasing smooth functions ;

 \circ a differential $d_{ab}: \Omega^0_{ab} \to \Omega^1_{ab}$ is given by

$$d_{ab} := d - df_{ab} \wedge = e^{f_{ab}} de^{-f_{ab}},$$

where $f_{ab} := f_a - f_b$, $f_a := (1/2)(t_a x + s_a)^2$;

 \circ a product $\Omega_{ab}^{r_{ab}} \otimes \Omega_{bc}^{r_{bc}} \to \Omega_{ac}^{r_{ab}+r_{bc}}$ by the usual wedge product \wedge .

This $\mathcal{C}_{DR}(\mathbb{R})$ is thought of as a topological open SFT model

(though we do not have cyclicity in this case).

```
Just by rewriting d as \bar{\partial},
```

 $\mathcal{C}_{DR}(\mathbb{R})$ turns out to be a subcategory of $DG(hol(\check{M} = \mathbb{C}))$ consisting of line bundles.

This is thought of as the topological open SFT of B-model

(though $\mathbb{R}^2 \leftrightarrow \mathbb{C}$ is not a mirror pair in the usual sense).

Homological perturbation theory (HPT) (1986~) (Kadeishvili, Gugenheim, Lambe, Stasheff, Huebschmann,...) For an A_{∞} -algebra (A, \mathfrak{m}) ,

strongly deformation retract (SDR) data is

$$(V,d) \xrightarrow[\pi]{\iota} (A,m_1) , \qquad h: A^r \to A^{r-1}$$

s.t. $m_1h + hm_1 = id_A - \iota \circ \pi$, $\pi \circ \iota = id_V$.

Given SDR, there exists an A_{∞} -algebra (V, \mathfrak{m}') with $m'_1 = d(= \iota \circ m_1 \circ \pi)$ and ι, π lift to A_{∞} -quasi-isomorphisms.

Note that:

• There exists an explicit construction of (V, \mathfrak{m}') and $\mathfrak{f} : (V, \mathfrak{m}') \to (A, \mathfrak{m})$ (the lift of ι) using "Feynman graphs",

where the homotopy operator h play the role of the propagator.

• If d = 0, then (V, \mathfrak{m}') is a minimal A_{∞} -algebra, i.e.,

HPT reduces to Kadeishvili's minimal model theorem.

• HPT holds true just in a similar way for an A_{∞} -category.

* Let us apply HPT to $(A, \mathfrak{m}) = \mathcal{C}_{DR}(\mathbb{R})$.

Let us construct homotopy operators h_{ab} on $\mathcal{C}_{DR}(\mathbb{R})(a,b) = \Omega_{ab}$.

• For $a \neq b \in Ob(\mathcal{C}_{DR}(\mathbb{R}))$, fix $\epsilon \in (0, 1]$ and define $d_{\epsilon;ab}^{\dagger} : \Omega_{ab}^{r} \to \Omega_{ab}^{r-1}$ by

$$d_{\epsilon;ab}^{\dagger} = \epsilon \, d^{\dagger} - \iota_{\operatorname{grad}(f_{ab})}.$$

We see that $H_{\epsilon} := d_{ab}d_{\epsilon;ab}^{\dagger} + d_{\epsilon;ab}^{\dagger}d_{ab}$ has only non-negative real eigenvalues.

In particular,

[for $\epsilon = 1$], H_1 is the Hamiltonian of a harmonic oscillator,

(cf. Witten's Morse theory)

[for
$$\epsilon = 0$$
, $H_0 = e^{f_{ab}} \mathcal{L}_{\operatorname{grad}(f_{ab})} e^{-f_{ab}}$.
(cf. $d_{ab} := d - df_{ab} \wedge = e^{f_{ab}} \cdot d \cdot e^{-f_{ab}}$.)

Let $\psi_t: \Omega^r_{ab} \to \Omega^r_{ab}$, $t \in [0, \infty)$, be a linear map satisfying $\psi_0 = Id$ and

$$\frac{d\psi_t}{dt} = -H_\epsilon \psi_t.$$

Integrating the above equation over $[0,\infty)$, we obtain

$$d_{ab}h_{\epsilon;ab} + h_{\epsilon;ab}d_{ab} = Id_{\Omega_{ab}} - P_{\epsilon;ab},$$
$$h_{\epsilon;ab} := \int_0^\infty dt \ d_{\epsilon;ab}^{\dagger}\psi_t, \quad P_{\epsilon;ab} := \lim_{t \to \infty} \ \psi_t.$$

We thus obtain a family of SDRs for $\mathcal{C}_{DR}(\mathbb{R})$ (parametrized by ϵ).

In the limit $\epsilon \to 0$, HPT derives the A_{∞} -products of $Fuk(\mathbb{R}^2)$.

• For example, for $m'_3(\mathbf{e}_{ab},\mathbf{e}_{bc},\mathbf{e}_{cd})$,

HPT implies $m'_3(\mathbf{e}_{ab}, \mathbf{e}_{bc}, \mathbf{e}_{cd}) =$

 $= -e^{-(X+Y+Z)} \cdot \mathbf{e}_{ad} + 0 .$

The concrete construction is

in H.K'09; An A_{∞} -structure for lines in \mathbb{R}^2 .

The explanation is in H.K'11; HPT and HMS.

To summarize,

Fukaya category is obtained

as a particular limit \leftarrow "singular !!"

of a family of minimal models

of the topological open SFT of B-model

via HPT.

This strategy actually works well for T^2 , i.e.,

M is a symplectic two-torus and \dot{M} is the mirror dual elliptic curve $(T^2 \text{ with a complex structure})$

since \mathbb{R}^2 is the covering space of T^2 .

H.K'21; Fukaya categories of two-tori revisited.

Remark: For this T^2 case, a relation of an A_{∞} -product and an exact triangle is explained in the above paper and

Kobayashi'17; On exact triangles consisting of stable vector bundles on tori.

(Kobayashi also discusses its generalization to higher dim. tori.)

General setting of Kontsevich-Soibeolman's proposal

is based on the Strominger-Yau-Zaslow (SYZ) torus fibration:

Construct M and \check{M} as T^n -fibration of the same base space B

so that M and M are related by the T-duality of the fiber T^n .

By this T-duality, a Lagrangian (multi-)section in M is transformed to a holomorphic vector bundle on \check{M} .

In Leung-Yau-Zaslow'00; From special Lagrangians to Hermitian-Yang-Mills via Fourier-Mukai trnasform.

and Leung'05; Mirror symmetry without corrections.

- In general, M and \check{M} have singular fibers.
- A way of treating these singular fibers is discussed in
- Fukaya'05; Multivalued Morse theory, asymptopic analysis and mirror symmetry
- but it seems hard to construct a HMS functor explicitly in general.

• For a compact toric manifold M (\leftarrow non-Calabi-Yau),

we can still discuss mirror symmetry of SYZ type.

In this case, we need to modify the notion of Fukaya category Fuk(M) since $\partial(B) \neq \emptyset$.

Then, HMS is shown by applying HPT when

 $\circ \check{M}$ is $\mathbb{C}P^n$ or their products

K-Futaki'20; HMS of $\mathbb{C}P^n$ and their products via Morse homotopy.

 $\circ \check{M}$ is the Hirzebruch surface \mathbb{F}_1

K-Futaki'20 preprint; HMS of \mathbb{F}_1 via Morse homotopy.

Appendix

- A_{∞} -algebras
- A_{∞} -categories
- On the DG-structure $DG(hol(\check{M}))$
- The set-up for general cases
- The idea is to interpolate Morse homotopy
- Appendix for the SDR data we construct for $C_{DR}(\mathbb{R})$

Def. $[A_{\infty}$ -algebra (Stasheff'63)] $(V, \mathfrak{m} := \{m_n\}_{n \ge 1})$ is an A_{∞} -algebra \Leftrightarrow

 $V = \oplus_{r \in \mathbb{Z}} V^r$: \mathbb{Z} -graded vector space,

 $\mathfrak{m} := \{m_n : V^{\otimes n} \to V\}_{n \geq 1}$: a collection of degree (2 - n)multilinear maps s.t.

$$0 = \sum_{k+l=n+1} \sum_{j=0}^{k-1} \pm m_k(v_1, \cdots, v_j, m_l(v_{j+1}, \cdots, v_{j+l}), v_{j+l+1}, \cdots, v_n) ,$$

for n = 1, 2, ...,

$$0 = \sum_{k+l=n+1}^{k-1} \sum_{j=0}^{k-1} \pm m_k(v_1, \cdots, v_j, m_l(v_{j+1}, \cdots, v_{j+l}), v_{j+l+1}, \cdots, v_n) ,$$

for n = 1, 2, ...,where $v_i \in V^{|v_i|}$, i = 1, ..., n, and $|m_n| = (2 - n)$ implies $|m_n(v_1, ..., v_n)| = (2 - n) + |v_1| + \dots + |v_n|.$ The A_{∞} -relations for n = 1, 2, 3:

for $m_1 = d$, $m_2 = \cdot$, $x, y, z \in V$:

i)
$$d^2 = 0$$
,
ii) $d(x \cdot y) = d(x) \cdot y + (-1)^{|x|} x \cdot d(y)$,
iii) $(x \cdot y) \cdot z - x \cdot (y \cdot z) = d(m_3)(x, y, z)$.

 $i) \Leftrightarrow (V, d)$ forms a complex.

 $ii) \Leftrightarrow$ Leibniz rule of d w.r.t. to product \cdot .

iii) · is associative **up to homotopy**.

In particular, if $m_3 = 0$, the product \cdot is strictly associative. An A_{∞} -algebra (V, \mathfrak{m}) with $m_3 = m_4 = \cdots = 0$ is called a differential graded (DG) algebra.

Def. [A_{∞} -morphism]

Given two A_{∞} -algebras (V, \mathfrak{m}) and (V', \mathfrak{m}') , an A_{∞} -morphism $\mathfrak{f} : (V, \mathfrak{m}) \to (V', \mathfrak{m}')$ is a collection of degree (1-k) multilinear maps

 $\mathfrak{f} := \{f_k : V^{\otimes k} \to V'\}_{k \ge 1} \text{ s.t.}$

$$\sum_{i\geq 1}\sum_{\substack{k_1+\dots+k_n=n\\ =n}}\pm m'_i(f_{k_1}\otimes\dots\otimes f_{k_i})(v_1,\dots,v_n)$$
$$=\sum_{\substack{i+1+j=k\\ i+l+j=n}}\pm f_k(\mathbf{1}^{\otimes i}\otimes m_l\otimes \mathbf{1}^{\otimes j})(v_1,\dots,v_n)$$

for n = 1, 2,

Note: the above relation for n = 1 implies $f_1 : V \to V'$ forms a chain map

 $f_1: (V, \mathfrak{m}) \to (V', \mathfrak{m}').$

Def. An A_{∞} -morphism $\mathfrak{f} : (V, \mathfrak{m}) \to (V', \mathfrak{m}')$ is called an A_{∞} quasi-isomorphism iff $f_1 : (V, m_1) \to (V', m_1')$ induces an isom. on the cohomologies of the two complexes.

Remark. For a given A_{∞} -quasi-isomorphism $\mathfrak{f} : (V, \mathfrak{m}) \to (V', \mathfrak{m}')$, there always exists an inverse A_{∞} -quasi-isomorphism

 $\mathfrak{f}':(V',\mathfrak{m}')\to (V,\mathfrak{m}).$

Thus, A_{∞} -quasi-isomorphisms define (homotopy) equivalence between A_{∞} -algebras.

We need a categorical version of these terminologies.

Def. $[A_{\infty}$ -category (Fukaya'93)] An A_{∞} -category $C \Leftrightarrow$ $Ob(C) = \{a, b, \dots\}$: a set of objects $V_{ab} := Hom_{\mathcal{C}}(a, b)$: \mathbb{Z} -graded vector space for $\forall a, b \in Ob(C)$ a collection of multilinear maps

$$\mathfrak{m} := \{m_n : V_{a_1 a_2} \otimes \cdots \otimes V_{a_n a_{n+1}} \to V_{a_1 a_{n+1}}\}_{n \ge 1}$$

degree (2-n) defining an A_{∞} -structure.

In particular, C with $m_3 = m_4 = \cdots = 0$ is called a **DG-category**.

Def. Given two A_{∞} -categories C and C', $\mathfrak{f} := \{f, f_1, f_2, ...\} : C \to C'$ is an A_{∞} -functor \Leftrightarrow

 $f: \operatorname{Ob}(\mathcal{C}) \to \operatorname{Ob}(\mathcal{C}')$ a map of objects;

a collection of multilinear maps

 $f_k : \operatorname{Hom}_{\mathcal{C}}(a_1, a_2) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{C}}(a_k, a_{k+1})$ $\to \operatorname{Hom}_{\mathcal{C}'}(f(a_1), f(a_{k+1})), \quad k = 1, 2, \dots$

degree (1-k) satisfying the defining equation of an A_{∞} -morphism. We call f an A_{∞} -quasi-isomorphism iff $f : Ob(\mathcal{C}) \to Ob(\mathcal{C}')$ is bijection and $f_1 : Hom_{\mathcal{C}}(a, b) \to Hom_{\mathcal{C}'}(f(a), f(b))$ induces an isom. on the cohomologies for $\forall a, b \in Ob(\mathcal{C})$.

The DG structure for $DG(hol(\dot{M}))$

is thought of a generalization of

DGA $(\Omega(\check{M}), d, \wedge)$ of differential forms on \check{M}

DGA $(\Omega^{0,*}(\check{M}),\bar{\partial},\wedge)$ of anti-holomorphic differential forms on \check{M}

÷

DG category $DG(hol(\check{M}))$, where each holomorphic vector bundle has a holomorphic structure $D := \bar{\partial} + A^{0,1}$, $D^2 = 0$. The differential (on the space of morphisms) is defined in a natural way by using the corresponding holomorphic structures. Hope we can take full subcategories

 $\mathcal{C} \subset Fuk(M), \qquad \mathcal{C}' \subset DG(hol(\check{M}))$

such that $Tr(\mathcal{C}) \simeq Tr(Fuk(M)), Tr(\mathcal{C}') \simeq Tr(DG(hol(\check{M}))),$

and $\mathcal{C} \simeq \mathcal{C}'$ as A_{∞} -categories. \Rightarrow This implies $Tr(\mathcal{C}) \simeq Tr(\mathcal{C}')$. In particular,

we hope to obtain the A_{∞} -quasi-isomorphism $\mathfrak{f}: \mathcal{C} \to \mathcal{C}'$ via HPT.

Outline of the plan to obtain $\mathfrak{f}: \mathcal{C} \to \mathcal{C}'$:

B: *n*-dim. mfd (equipped with tropical affine, Hessian structures!) $\cdots \rightarrow T^*B$: symplectic manifold

 $\cdots \rightarrow M := T^*B/\mathbb{Z}^n$: symplectic torus fibration

 A_{∞} -category M(B) of Morse homotopy on B: $Ob(M(B)) = C^{\infty}(B),$

For $f, g \in Ob(M(B))$, Hom(f, g) is the Morse complex of f - g.

• Fukaya, Oh'93,'97: M(B) is equivalent to the full subcategory of $Fuk(T^*B)$ consisting of Lagrangian sections graph(df).

• M(B) is A_{∞} -quasi-isomorphic to a DG category DG(B)

via HPT

where Ob(DG(B)) = Ob(M(B)), $Hom_{DG(B)}(f,g) = \Omega(B)$, $D = d + df \wedge$

- Extend these stories to torus fibrations
- The DG structure in DG(B) corresponds to that in $DG(hol(\tilde{M}))$ where $\check{M} := TB/\mathbb{Z}^n$ is the dual torus fibration of M.

(cf. forms on $B \leftrightarrow$ anti-hol. forms on TB)

This strategy works well for $M = \mathbb{R}^2$ and T^2 (H.K)

Appendix for the SDR data

 $P_{\epsilon;ab}$ defines a projection;

$$P_{\epsilon;ab}\Omega^0_{ab} = \operatorname{Ker}(d_{ab}:\Omega^0_{ab} \to \Omega^1_{ab}),$$
$$P_{\epsilon;ab}\Omega^1_{ab} = \operatorname{Ker}(d^{\dagger}_{\epsilon;ab}:\Omega^1_{ab} \to \Omega^0_{ab}).$$

The cohomologies $P_{\epsilon;ab}\Omega_{ab} := \bigoplus_{r=0,1} P_{\epsilon;ab}\Omega_{ab}^r$ are spanned by the gaussians:

$$P_{\epsilon;ab}\Omega_{ab} = \{ const \cdot e^{f_{ab}} \}, \qquad t_a < t_b$$
$$P_{\epsilon;ab}\Omega_{ab} = \{ const \cdot e^{-\frac{1}{\epsilon}(f_{ab})}dx \}, \quad t_a > t_b.$$

We choose bases $\mathbf{e}_{\epsilon;ab}$ of $P_{\epsilon;ab}\Omega_{ab}$ by normalizing

$$\mathbf{e}_{\epsilon;ab}(x_{ab}) = 1 , \qquad t_a < t_b$$
$$\int_{-\infty}^{\infty} \mathbf{e}_{\epsilon;ab} = 1 , \qquad t_a > t_b.$$

In the limit $\epsilon \to 0$, the degree one base $\mathbf{e}_{\epsilon;ab}$ $(t_a > t_b)$ becomes the **delta function** localized at the point x_{ab} $(= x(v_{ab}))$.

In the limit $\epsilon \to 0$, $h_{ab} := \lim_{\epsilon \to 0} h_{\epsilon;ab}$ and $P_{ab} := \lim_{\epsilon \to 0} P_{\epsilon;ab}$ turn out to be

$$h_{ab} = \int_0^\infty dt e^{f_{ab}} \varphi_t^* (e^{-f_{ab}} \iota_{\operatorname{grad}(f_{ab})}),$$

$$P_{ab} = \lim_{t \to \infty} e^{f_{ab}} \varphi_t^* e^{-f_{ab}} ,$$

where $\varphi_t:\mathbb{R}\to\mathbb{R}$ is the flow defined by

$$\frac{d\varphi_t}{dt} = \operatorname{grad}(f_{ab}), \qquad \varphi_0 = Id.$$

For example, for the following case:

$$\begin{aligned} h_{ab}(\delta(x-p)dx) \\ &= \int_0^\infty dt e^{f_{ab}} \varphi_t^* e^{-f_{ab}} \delta(x-p) \frac{df_{ab}}{dx}(x) \\ &= e^{f_{ab}}(\varphi_t^* e^{-f_{ab}})|_{\varphi_t(x)=p}(x), \end{aligned}$$

 $h_{ab}(\delta(x-p)dx)$ for $t_a < t_b$ and $x_{ab} < p$ turns out to be

Flow of $\operatorname{grad}(f_{ab})$

(step function twisted by $e^{f_{ab}}$).