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Plan:

• Mirror symmetry and Homological mirror symmetry

• Kontsevich-Soibelman’s proposal based on SYZ torus fibration

• Fukaya category Fuk(R2) on R2

(with (the standard) symplectic form)

• Applying HPT to obtain Fuk(R2)

• Other examples and related topics
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Mirror symmetry

{symplectic mfds. M}
Mirror Symmetry
⇐⇒ {complex mfds. M̌}

• Mirror symmetry (duality) is formulated as equivalences of various

structures on M and M̌ .

• Physically, mirror symmetry is a duality between

A-twisted topological string (A-model) on M

and B-twisted topological string (B-model) on M̌ .

ex. (tree) closed string: Gromov-Witten invariant from A-model,

the space of deformation of complex structure from B-model
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⋆ Homological mirror symmetry (HMS) corresponds to the case

of tree open strings.

So, naively, we may expect it to be formulated as an equivalence of

the A∞-structures

What is nontrivial is that we have various boundary conditions for

topological open strings ⇒ A-branes and B-branes

Thus, we should consider the correspondence

A∞-category of A-branes onM
HMS⇐⇒ A∞-category of B-branes on M̌
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Mathematical formulation of HMS (Kontsevich’94) is an equivalence

Tr(Fuk(M)) ≃ Db(coh(M̌))

of triangulated categories, where

• Fuk(M) is the Fukaya A∞ category of Lagrangians (A-branes)

in M ,

• Db(coh(M̌)) is the derived category of coherent sheaves (B-

branes) on M̌ ,

• a way of constructing a triangulated category Tr(C) from an

A∞-category C is also given there.
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Usually, we can replace Db(coh(M̌)) by

(a full subcategory of) the DG category DG(hol(M̌))

of holomorphic vector bundles

in the sense that it usually generates Db(coh(M̌)) by Tr .

This DG(hol(M̌)) is thought of as a generalization of holomorphic

Chern-Simons theory.

= topological open SFT of the B-model

(cf. Lazaroiu’01: SFT and brane superpotentials.)
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Claim: Fukaya category should be obtained

as a minimal model of DG(hol(M̌)) !!

A way of understanding HMS in this direction is proposed by

Kontsevich-Soibelman’01: HMS and torus fibration.

More explicit formulation is in

H.K’14: On some deformations of Fukaya categories.

Fuk(M) ⊃ Fuk′(M)
HPT→ DG(hol(M̌))
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Some of relevant works:

Stasheff’63; Homotopy associativity of H-spaces I, II.

Fukaya’93; Morse homotopy, A∞-category, and Floer homologies.

Kontsevich’94; Homological algebra of mirror symmetry.

Fukaya’96; Morse homotopy and Chern-Simons perturbation theory.

Fukaya-Oh’97; Zero-loop open strings in the cotangent bundle

and Morse homotopy.

Kontsevich-Soibelman’01: HMS and torus fibration.

Fukaya’05; Multivalued Morse theory, asymptopic analysis and MS.
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A toy example: Fukaya category Fuk(R2)

For an object a ∈ Ob(Fuk(R2)),

we consider a line in R2 expressed as

La : y = tax+ sa , ta, sa ∈ R.

(called an affine Lagrangian section)

For a, b ∈ Ob(Fuk(R)) s.t. ta ̸= tb, the space Vab of morphisms

is a Z-graded vector space generated by the intersection point

vab := La ∩ Lb.
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The Z-grading is attached as follows. ∀a ̸= b ∈ FN ,

◦ V 0
ab = R · [vab], V 1

ab = 0, (ta < tb),

◦ V 0
ab = 0, V 1

ab = R · [vab], (ta > tb).

vab

deg([vab]) = 0
La

Lb vab

deg([vab]) = 1
Lb

La
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The A∞-structure {mn}n≥1 is defined as follows.

For a fixed n ≥ 2 and a1, ..., an+1 ∈ Ob(Fuk(R2)) s.t.

aj ̸= ak for j ̸= k = 1, ..., n+ 1,

mn : Va1a2 ⊗ · · · ⊗ Vanan+1 → Va1an+1 is set to be

mn([va1a2], ..., [vanan+1]) = ca1···an+1[va1an+1],

ca1···ak = ±e
−Area(v)

where, if v⃗ := (va1a2, ..., vanan+1, van+1a1) forms a clockwise convex

(n+ 1)-gon,

(Area(v⃗) is the area of the (n+ 1)-gon)
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and ca1···an+1 = 0 otherwise.

m1 : Vab→ Vab is set to be m1 = 0 ∀a ̸= b.

0
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vab

vbc

vhi

Figure of a cloxkwise convex polygon
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The A∞-relation follows from a polygon having one nonconvex

vertex.

There exist two ways to divide it into two convex polygons.

vbc

vab

vcd

vde

vfg

vgh

vhi
via

vef
X

Y

Z

vbf veh

e
f

In this figure, the area X + Y + Z is divided into

(i) X + (Y + Z) or (ii) (X + Y ) + Z.
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Corresponding to (i) and (ii) one has

(i) : +m5(vab,m4(vbc, vcd, vde, vef), vfg, vgh, vhi)

= e−X−(Y+Z)vai ,

(ii) : −m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi)

= −e−(X+Y )−Zvai .

Thus, we obtain

0 = +m5(vab,m4(vbc, vcd, vde, vef), vfg, vgh, vhi)

−m6(vab, vbc, vcd, vde,m3(vef , vfg, vgh), vhi) ,

which is just one of the A∞-relations.
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The DG-categry model CDR(R) of Fuk(R2)

◦ The objects are the same: Ob(CDR(R)) = {a, b, . . . }

◦ ∀a, b ∈ Ob(CDR(R)), the space of morphsims is set to be

CDR(R)(a, b) = ⊕r=0,1Ω
r
ab(R), Ω0

ab := S(R), Ω1
ab := S(R) · dx,

where S(R) is the space of rapidly decreasing smooth functions ;

◦ a differential dab : Ω
0
ab→ Ω1

ab is given by

dab := d− dfab∧ = efabde−fab,

where fab := fa − fb, fa := (1/2)(tax+ sa)
2 ;

◦ a product Ω
rab
ab ⊗ Ω

rbc
bc → Ω

rab+rbc
ac by the usual wedge product ∧.
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This CDR(R) is thought of as a topological open SFT model

(though we do not have cyclicity in this case).

Just by rewriting d as ∂̄,

CDR(R) turns out to be a subcategory of DG(hol(M̌ = C))
consisting of line bundles.

This is thought of as the topological open SFT of B-model

(though R2↔ C is not a mirror pair in the usual sense).
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Homological perturbation theory (HPT) (1986∼)
(Kadeishvili, Gugenheim, Lambe, Stasheff, Huebschmann,...)

For an A∞-algebra (A,m),

strongly deformation retract (SDR) data is

(V, d)
ι

// (A,m1)
π

oo , h : Ar → Ar−1

s.t. m1h+ hm1 = idA − ι ◦ π, π ◦ ι = idV .

Given SDR, there exists an A∞-algebra (V,m′) with m′
1 = d(=

ι ◦m1 ◦ π) and ι, π lift to A∞-quasi-isomorphisms.
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Note that:

• There exists an explicit construction of (V,m′) and f : (V,m′)→
(A,m) (the lift of ι) using ”Feynman graphs”,

where the homotopy operator h play the role of the propagator.

• If d = 0, then (V,m′) is a minimal A∞-algebra, i.e.,

HPT reduces to Kadeishvili’s minimal model theorem.

• HPT holds true just in a similar way for an A∞-category.
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⋆ Let us apply HPT to (A,m) = CDR(R).

Let us construct homotopy operators hab on CDR(R)(a, b) = Ωab.

◦ For a ̸= b ∈ Ob(CDR(R)), fix ϵ ∈ (0, 1] and define d†ϵ;ab : Ω
r
ab →

Ωr−1
ab by

d†ϵ;ab = ϵ d† − ιgrad(fab).

We see that Hϵ := dabd
†
ϵ;ab + d†ϵ;abdab has only non-negative real

eigenvalues.
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In particular,

[ for ϵ = 1 ], H1 is the Hamiltonian of a harmonic oscillator,

(cf. Witten’s Morse theory)

[ for ϵ = ‘0‘ ], H0 = efabLgrad(fab)e
−fab.

(cf. dab := d− dfab∧ = efab · d · e−fab. )



21

Let ψt : Ω
r
ab → Ωr

ab, t ∈ [0,∞), be a linear map satisfying ψ0 = Id

and
dψt

dt
= −Hϵψt.

Integrating the above equation over [0,∞), we obtain

dabhϵ;ab + hϵ;abdab = IdΩab
− Pϵ;ab,

hϵ;ab :=

∫ ∞

0

dt d†ϵ;abψt, Pϵ;ab := lim
t→∞

ψt.

We thus obtain a family of SDRs for CDR(R) (parametrized by ϵ).



22

In the limit ϵ→ 0, HPT derives the A∞-products of Fuk(R2).

• For example, for m′
3(eab, ebc, ecd),

(P0;abCDR(R)(a, b) ∋ eab ←→ [vab])

a

b c

d

X Y Z

xxcdxdaxbcxab
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HPT implies m′
3(eab, ebc, ecd) =

eab ebc ecd

−hac
Pad

m2

m2

+

eab ebc ecd

−hbd
Pad

m2

m2

= −e−(X+Y+Z) · ead + 0 .

The concrete construction is

in H.K’09; An A∞-structure for lines in R2.

The explanation is in H.K’11; HPT and HMS.
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To summarize,

Fukaya category is obtained

as a particular limit ← ”singular !!”

of a family of minimal models

of the topological open SFT of B-model

via HPT.
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This strategy actually works well for T 2, i.e.,

M is a symplectic two-torus and M̌ is the mirror dual elliptic curve

(T 2 with a complex structure)

since R2 is the covering space of T 2.

H.K’21; Fukaya categories of two-tori revisited.

Remark: For this T 2 case, a relation of an A∞-product and an

exact triangle is explained in the above paper and

Kobayashi’17; On exact triangles consisting of stable vector bundles

on tori.

(Kobayashi also discusses its generalization to higher dim. tori. )
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General setting of Kontsevich-Soibeolman’s proposal

is based on the Strominger-Yau-Zaslow (SYZ) torus fibration:

Construct M and M̌ as Tn-fibration of the same base space B

so that M and M̌ are related by the T-duality of the fiber Tn.

By this T-duality, a Lagrangian (multi-)section in M is transformed

to a holomorphic vector bundle on M̌ .

In Leung-Yau-Zaslow’00; From special Lagrangians to Hermitian-

Yang-Mills via Fourier-Mukai trnasform.

and Leung’05; Mirror symmetry without corrections.
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• In general, M and M̌ have singular fibers.

A way of treating these singular fibers is discussed in

Fukaya’05; Multivalued Morse theory, asymptopic analysis and

mirror symmetry

but it seems hard to construct a HMS functor explicitly in general.
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• For a compact toric manifold M̌ (←− non-Calabi-Yau),

we can still discuss mirror symmetry of SYZ type.

In this case, we need to modify the notion of Fukaya category

Fuk(M) since ∂(B) ̸= ∅.

Then, HMS is shown by applying HPT when

◦ M̌ is CPn or their products

K-Futaki’20; HMS of CPn and their products via Morse homotopy.

◦ M̌ is the Hirzebruch surface F1

K-Futaki’20 preprint; HMS of F1 via Morse homotopy.
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Thank you !!
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Appendix

• A∞-algebras

• A∞-categories

• On the DG-structure DG(hol(M̌))

• The set-up for general cases

• The idea is to interpolate Morse homotopy

• Appendix for the SDR data we construct for CDR(R)
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Def. [A∞-algebra (Stasheff’63)]

(V,m := {mn}n≥1) is an A∞-algebra ⇔

V = ⊕r∈ZV
r : Z-graded vector space,

m := {mn : V ⊗n → V }n≥1 : a collection of degree (2 − n)

multilinear maps s.t.

0 =
∑

k+l=n+1

k−1∑
j=0

± mk(v1, · · · , vj,

ml(vj+1, · · · , vj+l), vj+l+1, · · · , vn) ,

for n = 1, 2, ...,
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0 =
∑

k+l=n+1

k−1∑
j=0

± mk(v1, · · · , vj,

ml(vj+1, · · · , vj+l), vj+l+1, · · · , vn) ,

for n = 1, 2, ...,

where vi ∈ V |vi|, i = 1, ..., n, and |mn| = (2− n) implies

|mn(v1, ..., vn)| = (2− n) + |v1|+ · · ·+ |vn|.
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The A∞-relations for n = 1, 2, 3 :

for m1 = d, m2 = ·, x, y, z ∈ V :

i) d2 = 0 ,

ii) d(x · y) = d(x) · y + (−1)|x|x · d(y) ,

iii) (x · y) · z − x · (y · z) = d(m3)(x, y, z).

i) ⇔ (V, d) forms a complex.

ii) ⇔ Leibniz rule of d w.r.t. to product ·.

iii) · is associative up to homotopy.
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In particular, if m3 = 0, the product · is strictly associative. An

A∞-algebra (V,m) with m3 = m4 = · · · = 0 is called a differential

graded (DG) algebra.
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Def. [A∞-morphism]

Given two A∞-algebras (V,m) and (V ′,m′),

an A∞-morphism f : (V,m) → (V ′,m′) is a collection of degree

(1− k) multilinear maps

f := {fk : V ⊗k → V ′}k≥1 s.t.∑
i≥1

∑
k1+···+kn=n

±m′
i(fk1 ⊗ · · · ⊗ fki)(v1, ..., vn)

=
∑

i+1+j=k
i+l+j=n

±fk(1⊗i ⊗ml ⊗ 1⊗j)(v1, ..., vn)

for n = 1, 2, ....
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Note: the above relation for n = 1 implies f1 : V → V ′ forms a

chain map

f1 : (V,m)→ (V ′,m′).
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Def. An A∞-morphism f : (V,m) → (V ′,m′) is called an A∞-

quasi-isomorphism iff f1 : (V,m1) → (V ′,m′
1) induces an isom.

on the cohomologies of the two complexes.

Remark. For a given A∞-quasi-isomorphism f : (V,m)→ (V ′,m′),

there always exists an inverse A∞-quasi-isomorphism

f′ : (V ′,m′)→ (V,m).

Thus, A∞-quasi-isomorphisms define (homotopy) equivalence

between A∞-algebras.
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We need a categorical version of these terminologies.

Def. [A∞-category (Fukaya’93)]

An A∞-category C ⇔

Ob(C) = {a, b, · · · } : a set of objects

Vab := HomC(a, b) : Z-graded vector space for ∀a, b ∈ Ob(C)

a collection of multilinear maps

m := {mn : Va1a2 ⊗ · · · ⊗ Vanan+1 → Va1an+1}n≥1

degree (2− n) defining an A∞-structure.

In particular, C with m3 = m4 = · · · = 0 is called a DG-category.
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Def. Given two A∞-categories C and C′, f := {f, f1, f2, ...} : C →
C′ is an A∞-functor ⇔

f : Ob(C)→ Ob(C′) a map of objects;

a collection of multilinear maps

fk : HomC(a1, a2)⊗ · · · ⊗HomC(ak, ak+1)

→ HomC′(f(a1), f(ak+1)), k = 1, 2, ...

degree (1−k) satisfying the defining equation of an A∞-morphism.

We call f an A∞-quasi-isomorphism iff f : Ob(C) → Ob(C′) is

bijection and f1 : HomC(a, b) → HomC′(f(a), f(b)) induces an

isom. on the cohomologies for ∀a, b ∈ Ob(C).
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The DG structure for DG(hol(M̌))

is thought of a generalization of

DGA (Ω(M̌), d,∧) of differential forms on M̌
...

DGA (Ω0,∗(M̌), ∂̄,∧) of anti-holomorphic differential forms on M̌
...

DG category DG(hol(M̌)), where each holomorphic vector bundle

has a holomorphic structure D := ∂̄ +A0,1, D2 = 0. The

differential (on the space of morphisms) is defined in a natural way

by using the corresponding holomorphic structures.
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Hope we can take full subcategories

C ⊂ Fuk(M), C′ ⊂ DG(hol(M̌))

such that Tr(C) ≃ Tr(Fuk(M)), Tr(C′) ≃ Tr(DG(hol(M̌))),

and C ≃ C′ as A∞-categories. ⇒ This implies Tr(C) ≃ Tr(C′).

In particular,

we hope to obtain the A∞-quasi-isomorphism f : C → C′ via HPT.
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Outline of the plan to obtain f : C → C′:

B: n-dim. mfd (equipped with tropical affine, Hessian structures!)

· · · → T ∗B: symplectic manifold

· · · → M := T ∗B/Zn: symplectic torus fibration

A∞-category M(B) of Morse homotopy on B:

Ob(M(B)) = C∞(B),

For f, g ∈ Ob(M(B)), Hom(f, g) is the Morse complex of f − g.

• Fukaya, Oh’93,’97: M(B) is equivalent to the full subcategory of

Fuk(T ∗B) consisting of Lagrangian sections graph(df).
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• M(B) is A∞-quasi-isomorphic to a DG category DG(B)

via HPT

where Ob(DG(B)) = Ob(M(B)),

HomDG(B)(f, g) = Ω(B), D = d+ df∧

• Extend these stories to torus fibrations

• The DG structure in DG(B) corresponds to that in DG(hol(M̌))

where M̌ := TB/Zn is the dual torus fibration of M .

(cf. forms on B ↔ anti-hol. forms on TB)

This strategy works well for M = R2 and T 2 (H.K)
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Appendix for the SDR data

Pϵ;ab defines a projection;

Pϵ;abΩ
0
ab = Ker(dab : Ω

0
ab→ Ω1

ab),

Pϵ;abΩ
1
ab = Ker(d†ϵ;ab : Ω

1
ab→ Ω0

ab).

The cohomologies Pϵ;abΩab := ⊕r=0,1Pϵ;abΩ
r
ab are spanned by the

gaussians:

Pϵ;abΩab = { const · efab }, ta < tb

Pϵ;abΩab = { const · e−
1
ϵ(fab)dx }, ta > tb.
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We choose bases eϵ;ab of Pϵ;abΩab by normalizing

eϵ;ab(xab) = 1 , ta < tb∫ ∞

−∞
eϵ;ab = 1 , ta > tb.

In the limit ϵ→ 0, the degree one base eϵ;ab (ta > tb) becomes the

delta function localized at the point xab (= x(vab)).
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In the limit ϵ→ 0, hab := limϵ→0 hϵ;ab and Pab := limϵ→0Pϵ;ab turn

out to be

hab =

∫ ∞

0

dtefabφ∗
t (e

−fab ιgrad(fab)),

Pab = lim
t→∞

efab φ∗
t e

−fab ,

where φt : R→ R is the flow defined by

dφt

dt
= grad(fab), φ0 = Id.
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For example, for the following case:

hab(δ(x− p)dx)

=

∫ ∞

0

dtefabφ∗
te

−fabδ(x− p)dfab
dx

(x)

= efab(φ∗
te

−fab)|φt(x)=p(x),
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hab(δ(x− p)dx) for ta < tb and xab < p turns out to be

Flow of grad(fab)

xab xp

efab−fab(p)
1b

a

vab

(step function twisted by efab).


