Homological perturbation theory in Homological mirror symmetry

Hiroshige Kajiura (Chiba Univ. Japan)

Homotopy Algebra of Quantum Field Theory and Its Application
March 29/2021

Plan:

- Mirror symmetry and Homological mirror symmetry
- Kontsevich-Soibelman's proposal based on SYZ torus fibration
- Fukaya category $F u k\left(\mathbb{R}^{2}\right)$ on \mathbb{R}^{2}
(with (the standard) symplectic form)
- Applying HPT to obtain $\operatorname{Fuk}\left(\mathbb{R}^{2}\right)$
- Other examples and related topics

Mirror symmetry

\{symplectic mfds. $M\} \stackrel{\text { Mirror Symmetry }}{\Longleftrightarrow}$ \{complex mfds. $\check{M}\}$

- Mirror symmetry (duality) is formulated as equivalences of various structures on M and \check{M}.
- Physically, mirror symmetry is a duality between

A-twisted topological string (A-model) on M and B-twisted topological string (B-model) on \check{M}.
ex. (tree) closed string: Gromov-Witten invariant from A-model, the space of deformation of complex structure from B-model

* Homological mirror symmetry (HMS) corresponds to the case of tree open strings.

So, naively, we may expect it to be formulated as an equivalence of the A_{∞}-structures

What is nontrivial is that we have various boundary conditions for topological open strings $\Rightarrow A$-branes and B-branes

Thus, we should consider the correspondence
A_{∞}-category of A-branes on $M \stackrel{\text { HMS }}{\Longleftrightarrow} A_{\infty}$-category of B-branes on \check{M}

Mathematical formulation of HMS (Kontsevich'94) is an equivalence

$$
\operatorname{Tr}(F u k(M)) \simeq D^{b}(\operatorname{coh}(\check{M}))
$$

of triangulated categories, where

- $F u k(M)$ is the Fukaya A_{∞} category of Lagrangians (A-branes) in M,
- $D^{b}(\operatorname{coh}(\check{M}))$ is the derived category of coherent sheaves (Bbranes) on \check{M},
- a way of constructing a triangulated category $\operatorname{Tr}(\mathcal{C})$ from an A_{∞}-category \mathcal{C} is also given there.

Usually, we can replace $D^{b}(\operatorname{coh}(\check{M}))$ by
(a full subcategory of) the DG category $D G(\operatorname{hol}(\check{M}))$
of holomorphic vector bundles
in the sense that it usually generates $D^{b}(\operatorname{coh}(\check{M}))$ by Tr.
This $D G(\operatorname{hol}(\check{M}))$ is thought of as a generalization of holomorphic Chern-Simons theory.
$=$ topological open SFT of the B-model
(cf. Lazaroiu'01: SFT and brane superpotentials.)

Claim: Fukaya category should be obtained as a minimal model of $\operatorname{DG}(\operatorname{hol}(\bar{M}))$!!

A way of understanding HMS in this direction is proposed by
Kontsevich-Soibelman'01: HMS and torus fibration.

More explicit formulation is in
H.K'14: On some deformations of Fukaya categories.

$$
F u k(M) \supset F u k^{\prime}(M) \xrightarrow{H P T} D G(h o l(\check{M}))
$$

Some of relevant works:

Stasheff'63; Homotopy associativity of H-spaces I, II.
Fukaya'93; Morse homotopy, A^{∞}-category, and Floer homologies.
Kontsevich'94; Homological algebra of mirror symmetry.
Fukaya'96; Morse homotopy and Chern-Simons perturbation theory.
Fukaya-Oh'97; Zero-loop open strings in the cotangent bundle and Morse homotopy.

Kontsevich-Soibelman'01: HMS and torus fibration.
Fukaya'05; Multivalued Morse theory, asymptopic analysis and MS.

A toy example: Fukaya category $\operatorname{Fuk}\left(\mathbb{R}^{2}\right)$
For an object $a \in \operatorname{Ob}\left(F u k\left(\mathbb{R}^{2}\right)\right)$,
we consider a line in \mathbb{R}^{2} expressed as

$$
L_{a}: y=t_{a} x+s_{a}, \quad t_{a}, s_{a} \in \mathbb{R}
$$

(called an affine Lagrangian section)
For $a, b \in \operatorname{Ob}(F u k(\mathbb{R}))$ s.t. $t_{a} \neq t_{b}$, the space $V_{a b}$ of morphisms is a \mathbb{Z}-graded vector space generated by the intersection point $v_{a b}:=L_{a} \cap L_{b}$.

The \mathbb{Z}-grading is attached as follows. $\forall a \neq b \in \mathfrak{F}_{N}$,

$$
\circ V_{a b}^{0}=\mathbb{R} \cdot\left[v_{a b}\right], \quad V_{a b}^{1}=0, \quad\left(t_{a}<t_{b}\right),
$$

$$
\circ V_{a b}^{0}=0, \quad V_{a b}^{1}=\mathbb{R} \cdot\left[v_{a b}\right], \quad\left(t_{a}>t_{b}\right)
$$

The A_{∞}-structure $\left\{m_{n}\right\}_{n \geq 1}$ is defined as follows.
For a fixed $n \geq 2$ and $a_{1}, \ldots, a_{n+1} \in \operatorname{Ob}\left(F u k\left(\mathbb{R}^{2}\right)\right)$ s.t.

$$
a_{j} \neq a_{k} \text { for } j \neq k=1, \ldots, n+1
$$

$m_{n}: V_{a_{1} a_{2}} \otimes \cdots \otimes V_{a_{n} a_{n+1}} \rightarrow V_{a_{1} a_{n+1}}$ is set to be

$$
\begin{aligned}
& m_{n}\left(\left[v_{a_{1} a_{2}}\right], \ldots,\left[v_{a_{n} a_{n+1}}\right]\right)=c_{a_{1} \cdots a_{n+1}}\left[v_{a_{1} a_{n+1}}\right], \\
& c_{a_{1} \cdots a_{k}}= \pm e^{-\operatorname{Area}(v)}
\end{aligned}
$$

where, if $\vec{v}:=\left(v_{a_{1} a_{2}}, \ldots, v_{a_{n} a_{n+1}}, v_{a_{n+1} a_{1}}\right)$ forms a clockwise convex $(n+1)$-gon,

$$
(\operatorname{Area}(\vec{v}) \text { is the area of the }(n+1) \text {-gon })
$$

and $c_{a_{1} \cdots a_{n+1}}=0$ otherwise.
$m_{1}: V_{a b} \rightarrow V_{a b}$ is set to be $m_{1}=0 \forall a \neq b$.

Figure of a cloxkwise convex polygon

The A_{∞}-relation follows from a polygon having one nonconvex vertex.

There exist two ways to divide it into two convex polygons.

In this figure, the area $X+Y+Z$ is divided into
(i) $X+(Y+Z)$ or (ii) $(X+Y)+Z$.

Corresponding to (i) and (ii) one has

$$
\begin{gathered}
(i):+m_{5}\left(v_{a b}, m_{4}\left(v_{b c}, v_{c d}, v_{d e}, v_{e f}\right), v_{f g}, v_{g h}, v_{h i}\right) \\
=e^{-X-(Y+Z)} v_{a i} \\
(i i):-m_{6}\left(v_{a b}, v_{b c}, v_{c d}, v_{d e}, m_{3}\left(v_{e f}, v_{f g}, v_{g h}\right), v_{h i}\right) \\
=-e^{-(X+Y)-Z} v_{a i}
\end{gathered}
$$

Thus, we obtain

$$
\begin{aligned}
0= & +m_{5}\left(v_{a b}, m_{4}\left(v_{b c}, v_{c d}, v_{d e}, v_{e f}\right), v_{f g}, v_{g h}, v_{h i}\right) \\
& -m_{6}\left(v_{a b}, v_{b c}, v_{c d}, v_{d e}, m_{3}\left(v_{e f}, v_{f g}, v_{g h}\right), v_{h i}\right)
\end{aligned}
$$

which is just one of the A_{∞}-relations.

The DG-categry model $\mathcal{C}_{D R}(\mathbb{R})$ of $\operatorname{Fuk}\left(\mathbb{R}^{2}\right)$

- The objects are the same: $\operatorname{Ob}\left(\mathcal{C}_{D R}(\mathbb{R})\right)=\{a, b, \ldots\}$
- $\forall a, b \in \mathrm{O} b\left(\mathcal{C}_{D R}(\mathbb{R})\right)$, the space of morphsims is set to be $\mathcal{C}_{D R}(\mathbb{R})(a, b)=\oplus_{r=0,1} \Omega_{a b}^{r}(\mathbb{R}), \Omega_{a b}^{0}:=\mathcal{S}(\mathbb{R}), \Omega_{a b}^{1}:=\mathcal{S}(\mathbb{R}) \cdot d x$, where $\mathcal{S}(\mathbb{R})$ is the space of rapidly decreasing smooth functions;
- a differential $d_{a b}: \Omega_{a b}^{0} \rightarrow \Omega_{a b}^{1}$ is given by

$$
d_{a b}:=d-d f_{a b} \wedge=e^{f_{a b}} d e^{-f_{a b}}
$$

where $f_{a b}:=f_{a}-f_{b}, f_{a}:=(1 / 2)\left(t_{a} x+s_{a}\right)^{2}$;

- a product $\Omega_{a b}^{r_{a b}} \otimes \Omega_{b c}^{r_{b c}} \rightarrow \Omega_{a c}^{r_{a b}+r_{b c}}$ by the usual wedge product \wedge.

This $\mathcal{C}_{D R}(\mathbb{R})$ is thought of as a topological open SFT model
(though we do not have cyclicity in this case).
Just by rewriting d as $\bar{\partial}$,
$\mathcal{C}_{D R}(\mathbb{R})$ turns out to be a subcategory of $\operatorname{DG}(\operatorname{hol}(\check{M}=\mathbb{C}))$ consisting of line bundles.

This is thought of as the topological open SFT of B-model
(though $\mathbb{R}^{2} \leftrightarrow \mathbb{C}$ is not a mirror pair in the usual sense).

Homological perturbation theory (HPT) (1986~)

(Kadeishvili, Gugenheim, Lambe, Stasheff, Huebschmann,...)

For an A_{∞}-algebra (A, \mathfrak{m}),
strongly deformation retract (SDR) data is

$$
(V, d) \underset{\pi}{\stackrel{\iota}{\rightleftarrows}}\left(A, m_{1}\right), \quad h: A^{r} \rightarrow A^{r-1}
$$

s.t. $m_{1} h+h m_{1}=i d_{A}-\iota \circ \pi, \quad \pi \circ \iota=i d_{V}$.

Given SDR, there exists an A_{∞}-algebra $\left(V, \mathfrak{m}^{\prime}\right)$ with $m_{1}^{\prime}=d(=$ $\left.\iota \circ m_{1} \circ \pi\right)$ and ι, π lift to A_{∞}-quasi-isomorphisms.

Note that:

- There exists an explicit construction of $\left(V, \mathfrak{m}^{\prime}\right)$ and $\mathfrak{f}:\left(V, \mathfrak{m}^{\prime}\right) \rightarrow$ (A, \mathfrak{m}) (the lift of ι) using "Feynman graphs", where the homotopy operator h play the role of the propagator.
- If $d=0$, then $\left(V, \mathfrak{m}^{\prime}\right)$ is a minimal A_{∞}-algebra, i.e.,

HPT reduces to Kadeishvili's minimal model theorem.

- HPT holds true just in a similar way for an A_{∞}-category.
\star Let us apply HPT to $(A, \mathfrak{m})=\mathcal{C}_{D R}(\mathbb{R})$.
Let us construct homotopy operators $h_{a b}$ on $\mathcal{C}_{D R}(\mathbb{R})(a, b)=\Omega_{a b}$.
- For $a \neq b \in \mathrm{Ob}\left(\mathcal{C}_{D R}(\mathbb{R})\right)$, fix $\epsilon \in(0,1]$ and define $d_{\epsilon ; a b}^{\dagger}: \Omega_{a b}^{r} \rightarrow$ $\Omega_{a b}^{r-1}$ by

$$
d_{\epsilon ; a b}^{\dagger}=\epsilon d^{\dagger}-\iota_{\operatorname{grad}\left(f_{a b}\right)} .
$$

We see that $H_{\epsilon}:=d_{a b} d_{\epsilon ; a b}^{\dagger}+d_{\epsilon ; a b}^{\dagger} d_{a b}$ has only non-negative real eigenvalues.

In particular,
[for $\epsilon=1$], H_{1} is the Hamiltonian of a harmonic oscillator,

(cf. Witten's Morse theory)

$\left[\right.$ for $\left.\epsilon={ }^{'} 0^{‘}\right], \quad H_{0}=e^{f_{a b}} \mathcal{L}_{\operatorname{grad}\left(f_{a b}\right)} e^{-f_{a b}}$.
(cf. $d_{a b}:=d-d f_{a b} \wedge=e^{f_{a b}} \cdot d \cdot e^{-f_{a b}}$.)

Let $\psi_{t}: \Omega_{a b}^{r} \rightarrow \Omega_{a b}^{r}, t \in[0, \infty)$, be a linear map satisfying $\psi_{0}=I d$ and

$$
\frac{d \psi_{t}}{d t}=-H_{\epsilon} \psi_{t}
$$

Integrating the above equation over $[0, \infty)$, we obtain

$$
\begin{aligned}
& d_{a b} h_{\epsilon ; a b}+h_{\epsilon ; a b} d_{a b}=I d_{\Omega_{a b}}-P_{\epsilon ; a b}, \\
& h_{\epsilon ; a b}:=\int_{0}^{\infty} d t d_{\epsilon ; a b}^{\dagger} \psi_{t}, \quad P_{\epsilon ; a b}:=\lim _{t \rightarrow \infty} \psi_{t} .
\end{aligned}
$$

We thus obtain a family of SDRs for $\mathcal{C}_{D R}(\mathbb{R})$ (parametrized by ϵ).

In the limit $\epsilon \rightarrow 0$, HPT derives the A_{∞}-products of $\operatorname{Fuk}\left(\mathbb{R}^{2}\right)$.

- For example, for $m_{3}^{\prime}\left(\mathbf{e}_{a b}, \mathbf{e}_{b c}, \mathbf{e}_{c d}\right)$,

$$
\left(P_{0 ; a b} \mathcal{C}_{D R}(\mathbb{R})(a, b) \ni \mathbf{e}_{a b} \quad \longleftrightarrow \quad\left[v_{a b}\right]\right)
$$

HPT implies $m_{3}^{\prime}\left(\mathbf{e}_{a b}, \mathbf{e}_{b c}, \mathbf{e}_{c d}\right)=$

The concrete construction is in H.K'09; An A_{∞}-structure for lines in \mathbb{R}^{2}.

The explanation is in H.K'11; HPT and HMS.

To summarize,

Fukaya category is obtained

as a particular limit \leftarrow "singular !!"
of a family of minimal models
of the topological open SFT of B-model
via HPT.

This strategy actually works well for T^{2}, i.e.,
M is a symplectic two-torus and \check{M} is the mirror dual elliptic curve (T^{2} with a complex structure) since \mathbb{R}^{2} is the covering space of T^{2}.
H.K'21; Fukaya categories of two-tori revisited.

Remark: For this T^{2} case, a relation of an A_{∞}-product and an exact triangle is explained in the above paper and

Kobayashi'17; On exact triangles consisting of stable vector bundles on tori.
(Kobayashi also discusses its generalization to higher dim. tori.)

General setting of Kontsevich-Soibeolman's proposal

is based on the Strominger-Yau-Zaslow (SYZ) torus fibration:
Construct M and \check{M} as T^{n}-fibration of the same base space B
so that M and \check{M} are related by the T-duality of the fiber T^{n}.
By this T-duality, a Lagrangian (multi-)section in M is transformed to a holomorphic vector bundle on \check{M}.

In Leung-Yau-Zaslow'00; From special Lagrangians to Hermitian-Yang-Mills via Fourier-Mukai trnasform.
and Leung'05; Mirror symmetry without corrections.

- In general, M and \check{M} have singular fibers.

A way of treating these singular fibers is discussed in
Fukaya'05; Multivalued Morse theory, asymptopic analysis and mirror symmetry
but it seems hard to construct a HMS functor explicitly in general.

- For a compact toric manifold $\bar{M}(\longleftarrow$ non-Calabi-Yau), we can still discuss mirror symmetry of SYZ type.

In this case, we need to modify the notion of Fukaya category $F u k(M)$ since $\partial(B) \neq \emptyset$.

Then, HMS is shown by applying HPT when

- \check{M} is $\mathbb{C} P^{n}$ or their products

K-Futaki'20; HMS of $\mathbb{C} P^{n}$ and their products via Morse homotopy.

- \check{M} is the Hirzebruch surface \mathbb{F}_{1}

K-Futaki'20 preprint; HMS of \mathbb{F}_{1} via Morse homotopy.

Thank you :"

Appendix

- A_{∞}-algebras
- A_{∞}-categories
- On the DG-structure $D G(h o l(\check{M}))$
- The set-up for general cases
- The idea is to interpolate Morse homotopy
- Appendix for the SDR data we construct for $\mathcal{C}_{D R}(\mathbb{R})$

Def. [A_{∞}-algebra (Stasheff'63)]
$\left(V, \mathfrak{m}:=\left\{m_{n}\right\}_{n \geq 1}\right)$ is an A_{∞}-algebra \Leftrightarrow
$V=\oplus_{r \in \mathbb{Z}} V^{r}: \mathbb{Z}$-graded vector space,
$\mathfrak{m}:=\left\{m_{n}: V^{\otimes n} \rightarrow V\right\}_{n \geq 1}:$ a collection of degree $(2-n)$ multilinear maps s.t.

$$
\begin{aligned}
0= & \sum_{k+l=n+1} \sum_{j=0}^{k-1} \pm m_{k}\left(v_{1}, \cdots, v_{j}\right. \\
& \left.m_{l}\left(v_{j+1}, \cdots, v_{j+l}\right), v_{j+l+1}, \cdots, v_{n}\right)
\end{aligned}
$$

for $n=1,2, \ldots$,

$$
\begin{aligned}
0= & \sum_{k+l=n+1} \sum_{j=0}^{k-1} \pm m_{k}\left(v_{1}, \cdots, v_{j}\right. \\
& \left.m_{l}\left(v_{j+1}, \cdots, v_{j+l}\right), v_{j+l+1}, \cdots, v_{n}\right)
\end{aligned}
$$

for $n=1,2, \ldots$,
where $v_{i} \in V^{\left|v_{i}\right|}, i=1, \ldots, n$, and $\left|m_{n}\right|=(2-n)$ implies

$$
\left|m_{n}\left(v_{1}, \ldots, v_{n}\right)\right|=(2-n)+\left|v_{1}\right|+\cdots+\left|v_{n}\right|
$$

The A_{∞}-relations for $n=1,2,3$:
for $m_{1}=d, m_{2}=\cdot, \quad x, y, z \in V:$
i) $d^{2}=0$,
ii) $\quad d(x \cdot y)=d(x) \cdot y+(-1)^{|x|} x \cdot d(y)$,
iii) $(x \cdot y) \cdot z-x \cdot(y \cdot z)=d\left(m_{3}\right)(x, y, z)$.
$i) \Leftrightarrow(V, d)$ forms a complex.
ii) \Leftrightarrow Leibniz rule of d w.r.t. to product \cdot
iii) • is associative up to homotopy.

In particular, if $m_{3}=0$, the product • is strictly associative. An A_{∞}-algebra (V, \mathfrak{m}) with $m_{3}=m_{4}=\cdots=0$ is called a differential graded (DG) algebra.

Def. [A_{∞}-morphism]

Given two A_{∞}-algebras (V, \mathfrak{m}) and $\left(V^{\prime}, \mathfrak{m}^{\prime}\right)$, an A_{∞}-morphism $\mathfrak{f}:(V, \mathfrak{m}) \rightarrow\left(V^{\prime}, \mathfrak{m}^{\prime}\right)$ is a collection of degree ($1-k$) multilinear maps

$$
\begin{aligned}
& \mathfrak{f}:=\left\{f_{k}: V^{\otimes k} \rightarrow V^{\prime}\right\}_{k \geq 1} \text { s.t. } \\
& \sum_{i \geq 1} \sum_{k_{1}+\cdots+k_{n}=n} \pm m_{i}^{\prime}\left(f_{k_{1}} \otimes \cdots \otimes f_{k_{i}}\right)\left(v_{1}, \ldots, v_{n}\right) \\
& =\sum_{\substack{i+1+j=k \\
i+l+j=n}} \pm f_{k}\left(\mathbf{1}^{\otimes i} \otimes m_{l} \otimes \mathbf{1}^{\otimes j}\right)\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

for $n=1,2, \ldots$.

Note: the above relation for $n=1$ implies $f_{1}: V \rightarrow V^{\prime}$ forms a chain map

$$
f_{1}:(V, \mathfrak{m}) \rightarrow\left(V^{\prime}, \mathfrak{m}^{\prime}\right)
$$

Def. An A_{∞}-morphism $\mathfrak{f}:(V, \mathfrak{m}) \rightarrow\left(V^{\prime}, \mathfrak{m}^{\prime}\right)$ is called an $A_{\infty^{-}}$ quasi-isomorphism iff $f_{1}:\left(V, m_{1}\right) \rightarrow\left(V^{\prime}, m_{1}^{\prime}\right)$ induces an isom. on the cohomologies of the two complexes.

Remark. For a given A_{∞}-quasi-isomorphism $\mathfrak{f}:(V, \mathfrak{m}) \rightarrow\left(V^{\prime}, \mathfrak{m}^{\prime}\right)$, there always exists an inverse A_{∞}-quasi-isomorphism

$$
\mathfrak{f}^{\prime}:\left(V^{\prime}, \mathfrak{m}^{\prime}\right) \rightarrow(V, \mathfrak{m})
$$

Thus, A_{∞}-quasi-isomorphisms define (homotopy) equivalence between A_{∞}-algebras.

We need a categorical version of these terminologies.
Def. [A_{∞}-category (Fukaya'93)]
An A_{∞}-category $\mathcal{C} \Leftrightarrow$
$\mathrm{Ob}(\mathcal{C})=\{a, b, \cdots\}:$ a set of objects
$V_{a b}:=\operatorname{Hom}_{\mathcal{C}}(a, b): \mathbb{Z}$-graded vector space for $\forall a, b \in \mathrm{Ob}(\mathcal{C})$
a collection of multilinear maps

$$
\mathfrak{m}:=\left\{m_{n}: V_{a_{1} a_{2}} \otimes \cdots \otimes V_{a_{n} a_{n+1}} \rightarrow V_{a_{1} a_{n+1}}\right\}_{n \geq 1}
$$

degree $(2-n)$ defining an A_{∞}-structure.
In particular, \mathcal{C} with $m_{3}=m_{4}=\cdots=0$ is called a DG-category.

Def. Given two A_{∞}-categories \mathcal{C} and $\mathcal{C}^{\prime}, \mathfrak{f}:=\left\{f, f_{1}, f_{2}, \ldots\right\}: \mathcal{C} \rightarrow$ \mathcal{C}^{\prime} is an A_{∞}-functor \Leftrightarrow
$f: \mathrm{O} b(\mathcal{C}) \rightarrow \mathrm{Ob}\left(\mathcal{C}^{\prime}\right)$ a map of objects;
a collection of multilinear maps

$$
\begin{aligned}
f_{k}: \operatorname{Hom}_{\mathcal{C}}(& \left.a_{1}, a_{2}\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{C}}\left(a_{k}, a_{k+1}\right) \\
& \rightarrow \operatorname{Hom}_{\mathcal{C}^{\prime}}\left(f\left(a_{1}\right), f\left(a_{k+1}\right)\right), \quad k=1,2, \ldots
\end{aligned}
$$

degree ($1-k$) satisfying the defining equation of an A_{∞}-morphism.
We call \mathfrak{f} an A_{∞}-quasi-isomorphism iff $f: \mathrm{Ob}(\mathcal{C}) \rightarrow \mathrm{Ob}\left(\mathcal{C}^{\prime}\right)$ is bijection and $f_{1}: \operatorname{Hom}_{\mathcal{C}}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{C}^{\prime}}(f(a), f(b))$ induces an isom. on the cohomologies for $\forall a, b \in \mathrm{O} b(\mathcal{C})$.

The DG structure for $D G(h o l(\check{M}))$

is thought of a generalization of
DGA $(\Omega(\check{M}), d, \wedge)$ of differential forms on \check{M}

DGA $\left(\Omega^{0, *}(\check{M}), \bar{\partial}, \wedge\right)$ of anti-holomorphic differential forms on \check{M}

DG category $D G(h o l(\check{M}))$, where each holomorphic vector bundle has a holomorphic structure $D:=\bar{\partial}+A^{0,1}, D^{2}=0$. The differential (on the space of morphisms) is defined in a natural way
by using the corresponding holomorphic structures.

Hope we can take full subcategories

$$
\mathcal{C} \subset F u k(M), \quad \mathcal{C}^{\prime} \subset D G(\operatorname{hol}(\check{M}))
$$

such that $\operatorname{Tr}(\mathcal{C}) \simeq \operatorname{Tr}(F u k(M)), \operatorname{Tr}\left(\mathcal{C}^{\prime}\right) \simeq \operatorname{Tr}(D G(\operatorname{hol}(\check{M})))$, and $\mathcal{C} \simeq \mathcal{C}^{\prime}$ as A_{∞}-categories. $\quad \Rightarrow \quad$ This implies $\operatorname{Tr}(\mathcal{C}) \simeq \operatorname{Tr}\left(\mathcal{C}^{\prime}\right)$.

In particular,
we hope to obtain the A_{∞}-quasi-isomorphism $\mathfrak{f}: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ via HPT.

Outline of the plan to obtain $\mathfrak{f}: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$:
B : n-dim. mfd (equipped with tropical affine, Hessian structures!)
$\cdots \rightarrow T^{*} B$: symplectic manifold
$\cdots \rightarrow M:=T^{*} B / \mathbb{Z}^{n}$: symplectic torus fibration
A_{∞}-category $M(B)$ of Morse homotopy on B :
$O b(M(B))=C^{\infty}(B)$,
For $f, g \in \operatorname{Ob}(M(B)), \operatorname{Hom}(f, g)$ is the Morse complex of $f-g$.

- Fukaya, Oh'93,'97: $M(B)$ is equivalent to the full subcategory of $\operatorname{Fuk}\left(T^{*} B\right)$ consisting of Lagrangian sections graph $(d f)$.
- $M(B)$ is A_{∞}-quasi-isomorphic to a DG category $D G(B)$

> via HPT
where $O b(D G(B))=O b(M(B))$,

$$
\operatorname{Hom}_{D G(B)}(f, g)=\Omega(B), \quad D=d+d f \wedge
$$

- Extend these stories to torus fibrations
- The DG structure in $D G(B)$ corresponds to that in $D G(\operatorname{hol}(\check{M}))$ where $\check{M}:=T B / \mathbb{Z}^{n}$ is the dual torus fibration of M. (cf. forms on $B \leftrightarrow$ anti-hol. forms on $T B$)

This strategy works well for $M=\mathbb{R}^{2}$ and T^{2} (H.K)

Appendix for the SDR data

$P_{\epsilon ; a b}$ defines a projection;

$$
\begin{aligned}
& P_{\epsilon ; a b} \Omega_{a b}^{0}=\operatorname{Ker}\left(d_{a b}: \Omega_{a b}^{0} \rightarrow \Omega_{a b}^{1}\right) \\
& P_{\epsilon ; a b} \Omega_{a b}^{1}=\operatorname{Ker}\left(d_{\epsilon ; a b}^{\dagger}: \Omega_{a b}^{1} \rightarrow \Omega_{a b}^{0}\right) .
\end{aligned}
$$

The cohomologies $P_{\epsilon ; a b} \Omega_{a b}:=\oplus_{r=0,1} P_{\epsilon ; a b} \Omega_{a b}^{r}$ are spanned by the gaussians:

$$
\begin{array}{ll}
P_{\epsilon ; a b} \Omega_{a b}=\left\{\text { const } \cdot e^{f_{a b}}\right\}, & t_{a}<t_{b} \\
P_{\epsilon ; a b} \Omega_{a b}=\left\{\text { const } \cdot e^{-\frac{1}{\epsilon}\left(f_{a b}\right)} d x\right\}, & t_{a}>t_{b} .
\end{array}
$$

We choose bases $\mathbf{e}_{\epsilon ; a b}$ of $P_{\epsilon ; a b} \Omega_{a b}$ by normalizing

$$
\begin{array}{ll}
\mathbf{e}_{\epsilon ; a b}\left(x_{a b}\right)=1, & t_{a}<t_{b} \\
\int_{-\infty}^{\infty} \mathbf{e}_{\epsilon ; a b}=1, & t_{a}>t_{b}
\end{array}
$$

In the limit $\epsilon \rightarrow 0$, the degree one base $\mathbf{e}_{\epsilon ; a b}\left(t_{a}>t_{b}\right)$ becomes the delta function localized at the point $x_{a b}\left(=x\left(v_{a b}\right)\right)$.

In the limit $\epsilon \rightarrow 0, h_{a b}:=\lim _{\epsilon \rightarrow 0} h_{\epsilon ; a b}$ and $P_{a b}:=\lim _{\epsilon \rightarrow 0} P_{\epsilon ; a b}$ turn out to be

$$
\begin{aligned}
& h_{a b}=\int_{0}^{\infty} d t e^{f_{a b}} \varphi_{t}^{*}\left(e^{-f_{a b}} \iota_{\operatorname{grad}\left(f_{a b}\right)}\right), \\
& P_{a b}=\lim _{t \rightarrow \infty} e^{f_{a b}} \varphi_{t}^{*} e^{-f_{a b}},
\end{aligned}
$$

where $\varphi_{t}: \mathbb{R} \rightarrow \mathbb{R}$ is the flow defined by

$$
\frac{d \varphi_{t}}{d t}=\operatorname{grad}\left(f_{a b}\right), \quad \varphi_{0}=I d
$$

For example, for the following case:

$$
\begin{aligned}
& h_{a b}(\delta(x-p) d x) \\
& =\int_{0}^{\infty} d t e^{f_{a b}} \varphi_{t}^{*} e^{-f_{a b}} \delta(x-p) \frac{d f_{a b}}{d x}(x) \\
& =\left.e^{f_{a b}}\left(\varphi_{t}^{*} e^{-f_{a b}}\right)\right|_{\varphi_{t}(x)=p}(x)
\end{aligned}
$$

$h_{a b}(\delta(x-p) d x)$ for $t_{a}<t_{b}$ and $x_{a b}<p$ turns out to be

Flow of $\operatorname{grad}\left(f_{a b}\right)$

(step function twisted by $e^{f_{a b}}$).

