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Last week, we learned ...

Lagrangian's homotopy algebraic structure : u,,

. For a given Lagrangian, we can solve the BV master equation Ae°»¢! =0 ,

which tells us Lagrangian's homotopy algebra p,, = u; + p, + -

1 1
Sy L] = Ew( @, 1 (@) )+ ;w( @, 1o, ) ) + -

- Homological perturbation lemma describes the Feynman graph expansion.

Hence, the path-integral P preserves the nilpotent property P u,, = poscrive P -

P . homotopy alg. of the original QFT — (loop) homotopy alg. of its effective QFT



Reminder of how to get u,,.

Quick review & notation in this talk

. Consider a master action S, [¢] =S.[¢]+ -, which solves AeSl¢1=0 .

. Write ¢ for all of fields and antifields collectively.

e.g. For QED, ¢*=A,,c,y,yw (if any, antighosts & auxiliary fields ) and their antifields.

. Rewrlte our action into the contracted form :

Splol = Y ——— [ dx iy a0 0% %
bv - (I/l+1)' apay...a,

: | 1 " a b a a
BV symplectic form: w,, = Z nt 1) dx ¢“ w, (,u a.a P @ 1) .
4 n tY



Reminder of how to get u,,.

How to get Lagrangians L

. We can always start with the contracted form of the BV action :

1
Splel = D, n+ 1) J dx 9wy, (W4, 9" 0")

. We assume that y,, , is graded symmetric »_,, =(-)"u_,,. .

which ensures the “cyclic property” = (= )dolart+a,)

/’taO a...a, /’tal...an ap, °

. Then, the condition aes=0 glves the (quantum) Lo relatlons

o™ u —Z oo wo MY, =0 - underllne denotes the rlght sum | '
my(n m)! ne e Oyl

m...al




Reminder of how to get u,,.

You can weaken L. ’s assumption :

. We can always start with the contracted form of the BV action :

1
Splepl = 2 (n 1)' de 0% @y (Hoyq) 90"

. We assume that Hayar.c s graded symmetrlc Hab. —(—)“bu ba..

T :( )ao(a1+ +a)
O 1... n

which ensures the CyCIIC property

//tal a,day
. Then, the condition aeS»=0 gives the (quantum) L. relations.

— When we relax this assumption, we get (Qquantum) Aeo .



Reminder of how to get u,,.

How to get Lagrangians A

. We can start with the contracted form of the BV action :

1
Sbv[(p] — Z n+ 1 de (pao a)aob (/’tbal...an ¢an "ot ¢a1)

n

. We just assume the “cyclic property”

_ ( - )ao(a1+...+an) /’tal. Only_

//tao dl...an ..an ao

. Then, the condition Ae’» =0 gives the (quantum) A« relations.



Reminder of how to get u,,.

How to get Lagrangians A

. We can start with the contracted form of the BV action :

1
Sbv[(p] — Z n+ 1 de (pao a)aob (/’tbal...an (pan "ot ¢a1)

n

. We just assume the “cyclic property”

_ ( - )ao(a1+...+an) /’tal. iny_

//tClO Cll...an ..Cln ao

. Then, the condition Ae’» =0 gives the (quantum) A« relations.

— Lagrangian’s (Qquantum) A algebra does not need an additional
“matrix-like structure” or “space-time non-commutativity”.

But, when n ., =(-)"*u ,, ~comes from physics, A. may be physically redundant.



My notation

The relation between u°, ., and u,, =pu +p+ -

We can get the L« relation 2 T : Y we, . ,ub . =0 from (5,,S,)=0,
’ m!(n —m)! net: tml m

These give a “component” expression.

. As we can switch from 9, j*~ 0 to di’P1~0 (jP'=j* xdx*: (D-1)-form),

we can switch from x°, . to u,: H®" - H (coder u,:T(H)— T(H)) .

( Now, Instead of dx* , we need to consider dgp“ as bases of H. )

. Then, we can obtain Lagrangian’s homotopy algebra (u,, )2 =0

where u, = pu; + p, + p3 + --- Is a coderivation acting on T(H) or S(H) .



These are what we learned last week & my notation.

What | would like to tell you today iIs as follows . ..



Today, | would like to tell you ...

Symmetry’s homotopy algebraic structure : pu,,,

1. Homotopy algebras Heym also appear in realization of given symmetries.

2. We can incorporate symmetry's Ky INtO Lagrangian's u,, and get

(ot b+ ) =0

—

= Hiotal

3. The Feynman graph expansion P = J@[¢]esfree[¢]/z preserves this

Mootal = Hgym + Hpy + -+ in the sense that Py, = p,,,, P with (p,.,)° =0



Today, | would like to tell you ...

What we can read from ug,,

4. Homotopy algebraic structure pu,,, O (i) = gy + pp, + +)> =0

- tells us how to realize symmetries in every “effective” theory.

- haturally includes 1-form symmetries, etc.

- may explain why symmetry or anomaly remains under the path-integral,
even If it may break the manifest invariance.



Plan

() Homotopy algebra u,, In the realization of symmetries

& How to incorporate u,,, INtO (4, + wy, + --)*> =0

() Behavior of u,,.; = pem + my, + -+~ UNder the path-integral

& Applications to several models



1. Homotopy algebra u,... in the realization of symmetries

We consider. . .

. First, we explain y,,, intuitively within the canonical formalism.

— —

0O O 0O O R
oYt o, Om, O

momentum z & the Poisson bracket {A,B} = A[

. Next, we switch to the BV formalism and explain it more precisely.

— —

5 & 5 8],
0P o¢; Oy 09°

Antifields ¢* & the BV bracket (A,B) EA[

This tells us how to incorporate It into Lagrangian’s homotopy alg.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. We consider a Lagrangian S[¢] without gauge degree:

the canonical form S[¢] — S[¢, ] = de (n ¢ —H) .

. Suppose that S[¢] is invariant under 6¢ =€¢“-6,¢ (€“:constants) .

. These global symmetries may or may not be linearly realized :
The Poisson bracket gives €% 5, = €“{ S [¢p,n]. ¢ } .

~This S ¢, n] ~ J'dxn- o, + --- Is a realization of symmetry generator.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. Notice that the action § = S[¢, n] generates trivial transtormations

(S, Flp.n] )= (é—f—i—i) -§—2+(%+§—g) -g—gzO

. Suppose that a Lie algebra [T,,T,]1=f,°T. is realized on-shell :

C

{ S|, n], S, ¢, 7] }zfachc[gb, ] ( equality up to e.o.m.)

. By using functionals S _,[¢, 7] , we can get the off-shell equality :

{ S, 7], Splp, ) }=Ffp Sp, 7l + { S . Spplh, 7] }



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. Take {S., }of {S,.S}=rfuS.+{S.S,,} and consider the cyclic sum :
{Sc : { S, }} + (cyclic) = { S 288, + {S ,Sab} } + (cyclic)

- After some calculations, we get

Sk[¢’ ]z'] ]Clgkf@l — { S , f@kSkg[QU] — {Sg[¢9 71'] ’ S@[¢9 ﬂ] }}

JacoZi id.

. Both sides of this equality vanish separately.

. Notice that the r.h.s. takes the { S, }-exact form.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. By using functionals S, .[¢, 7] , this (rh.s.)=0 implies

1 1
{ Sg[¢9 ﬂ] ) S@[¢9 7[] } :f@k Sk_c[¢9 ﬂ] T gfa_bck Sk[¢9 7[] + g{ \) ) Sa_bc[¢’ 7[] }

. We get a higher structure constant f,, ¢ .

a’*~ab

We can repeat the same calculations by introducing a set of {S,S,.S,,.Spc.-.-} :

{S@[gb,n],{Salm[gb,n],smak[gb,n] }} = {5, ... )

> 4

order k Jacal;i id. off—shell ~ ()
Again, (l.h.s.) and (r.h.s.) vanish separately.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. We will get a set of structure constants {fabc,fabcd, bed } , a set of

generators {S,S,.S,,,Su.--- } » and a set of algebraic relations :

abc

(rhs) D {S. uo.7.5, o711 }=D fi ol Spa, ol
[

k

(Lh.s.) Y P =0 - Lerelations

. If there is no higher conservation low ¢,j* ~ 0, higher f,,.4, ... cannot occur.



1. Homotopy algebra u,... in the realization of symmetries

Switch to the BV formalism

. We first consider a Lagrangian S[¢] without gauge degree.

Then, the BV master action is this S[¢] itself.

. Suppose that S[¢] is invariant under 8¢ =e*-8,¢ (global sym) .

A

. For these constants e, we introduce constant ghosts &4 .

Then, the action S[¢] is still invariant under ¢ = &% - 6,¢ .

. We write ¢ for all ¢, ¢* correctively.



1. Homotopy algebra u,... in the realization of symmetries

Switch to the BV formalism

. We can get generators S,[¢] = S,[¢, p*] satisfying

— —

5 & A
0P ogy o0y o9

O = ( Silel , ¢ ) with the BV bracket (A,B) EA[

~ These symmetry generators take S,[¢] ~ de PF - 04" + -+

. These S,[p] generate symmetries of the BV master action.

We can always find these because (S, ) Is acyclic: we have ( Sale] . S ) =0 Now.



1. Homotopy algebra u,... in the realization of symmetries

Switch to the BV formalism

. In BV, we can always find functionals $,zl¢] giving

the off-shell equality : ( S,[¢], Sgl@] ) = fi5" Sclel + (S, Sagle] ) -

- We can repeat the same calculations as before.
( Every step Is precise In BV, which is not intuitive one unlike before. )

We get a set of algebras Z (Sa,. alol. Sa,, . alpl)= ZfAl...A,B Spa,,...A 0]
k z

1

m!(n—m)!

& the Lw-relations Z

m

B _
Ja, .. .A fBAmH...AnC =0




1. Homotopy algebra u,... in the realization of symmetries

The BV master equation is now modified

. Therelation ) (S, alel. Sy, alel)= D fi. 45Ssa., alel provides that
k [

the action S, [¢] and source terms S [p.&] = Z 54410 s M satisfy

1 1 a‘S'SOI/H’CG[ ? ]
2 (5ol Soued €1 SpLo)+ Sl €1) == Do o =P a8



Comments on QFT with gauge degrees

. If your QFT has any gauge degree, first of all, you must solve
the BV master equation and get a solution S, [¢] = S[¢] + ¢p*o¢p + --- .

. You can apply the same calculations to S, [¢] , Instead of S[¢] .

Then, you can see symmetries of gauge invariant QFTs.

. If you want to consider symmetries of a gauge-fixed theory Sgpd¢]

it is the same as QFTs without gauge degrees.



Comments on the relation to conservation lows

. We introduced constant ghosts &4 for ¢ =e”-6,¢ .
These &4 come from usual conservation lows 9, j4 = 0 .

In many cases, these & have ghost number “1”.

. If there exist higher conservation lows 9, j#1## ~ 0 ,

constant ghosts which have ghost number "n” may appear.

So, when QFT has a 1-form symmetry, constant ghosts & which have
ghost number “17 or "2" naturally appear in the above procedure.



Plan
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& How to incorporate u,,, INtO (4, + wy, + --)*> =0

() Behavior of u,,.; = pem + 1y, + -+ UNder the path-integral

& Applications to several models



2. How to incorporate y.,.,, Into (,bt% + uy., + )2 =0

Our Lagrangian’s homotopy algebra

. For simplicity, we consider a QF T without gauge degree.

( Or assume that we could perform the Legendre transformation / gauge-fixing
and could obtain 1Pl action / path-integrable gauge-fixed action : S5,/ Sgy -

Then, vertices of §,,,/Szrg May or may not have explicit 7 dependence. )
. In this case, we can find (s,,,5,,)=0 and AS,, =0.

. T'he classical BV master equation (S,,,S,,)=0 gives

. . 1
the (cyclic) L- relations D Woo o a b My 0 =0

"(n — |
~ m!(in —m)!




The relation between u°, . and pu,, = u, + u, +

C b . " 11 7 -
~ The relation Z m'(n_m)' W o b My . =0 IS @“component” expression.

U -D—1
. As 0,j'~0 and dj"" =0,

we can switch from x”, . to u,: H®" - H (coder u,:T(H)— T(H))

( Now, Instead of dx* , we need to consider dgp“ as bases of H. )

. So,we canget (u,, )" = (p;+pu,++-)*=0 from (S,,.S,,)=0



2. How to incorporate y.,.,, Into (pt% + uy., + )2 =0

We know that (S,,,S,,)=0 & (u,, )" =

(S Sy ) =0 gives ¥ ————u, L, =0, whichis ()" =

m!(n—m)!

0 0 0 O

Likewise, we consider S, [£] = 2( +11)' gy EM o EY and (), =

sym

OEA OL%  OEF 0EA
Then, we find that

(Sgyml&l, Ss,mlé])e =0 gives Z

faooa” foa,,. a=0, which Is (/’tsym )2 =0 .

m'(n m)!

. These pieces will give (u,, +uy, + - )*=0.



We already obtained “---” of (pg,+ py, + ) =0

. We learned that the action S, [¢] and source terms

1
Ssource[(p9 ¢l = FSAl...Ak[ga] gAk s e 5A1
y K-

1 aSSOMI’CB[qO’ é]
k! 0B

- 1
Satley 5 <Sbv[§0] + Ssourcel @5 615 Sl @] + Sgpurcel @5 61 >= — Z
[

B A A
fAlAké k"'& :

. The nil-potency of the classical BV Is obstructed by global symmetries.

0 O 0 0

. We can resolve it by adding s,,ls1=)

n

g fBy o etem and (),

n+ 1! T 0EA og oEF 0gA



2. How to incorporate y.,.,, Into (pt% + uy., + )2 =0

We already obtained “---” of (pg,+ py, + ) =0

- We consider the sum

1 1
Sl €12 Splg) + D 73S0 alo) &b E84 Do G fy g SNt
k ' n

+ 1)!

Syonreel#:8] Soml€]

. We also consider the sum of the anti-brackets

( )_55 5 61 [0 o o0 o
Ces T s sgx s spa| | 0EA ogr  aEx oEA

. Then, we obtain ( S, [¢.¢1. Syule.€1) . =0, which is (,usym + Uy, + )2 =0

®,6



What are inputs of these u,,,, & iy ?

. We got the Lo-relations : )’

m

fAl...AmB Jea ....a°=0, which gives Hsym -

m!(n —m)!

Q. What is the vector space H; on which u,, acts?

A. The vector space of constants ghosts & =E&.¢e, (e, are “bases”)

or its (symmetrized) tensor algebra S(H;) .

. InDUtS of Hrotal = Hsym + Up, + -+ Al S(H) ® S(Hg) -

i, .. gives an open-closed homotopy algebra

when we use A description for Lagrangian’'s yu,, .
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2. Behavior of p .0 = Uy + g, + -

(u,..;)> =0 in “effective” theories

« Wefirst split §,,[¢] into the kinetic part S, .[¢] and interacting part S;,[¢] :

/“t};nt

Sp @] = Speol@] + S, l@] , which provides p,, = pu; +u, + ... .
* We split fields ¢ = ¢’ + ¢” and define a generic “effective” action by integrating out ¢”,
PiSI + ) — Alp) = In| DI

* Homological perturbation lemma guarantees that
an effective one nA’+(A[¢], ) is nilpotent, which gives (u, i)’ =0 .

We can obtain (py,,)*=0 and (g,,,)" =0 recursively, as(u;, )" =0.



2. Behavior of p .0 = Uy + g, + -

(u,,..)* =0 is preserved under the path-integral

* We know
( Specl@l, ) isnilpotent, whichis (u;)*=0.

(Spolel, ) = (Specle]l + Siulel, ) Is nilpotent, whichis (uy + u;, > =0.
* Now, we got
(Storall @15 )pe = CSplels ) + CSgpureel@s €1+ Sgynlél, ), 1S Nilpotent,

which is (lutotal)2 = (//tsym T Hpy T o )2 =0.



2. Behavior of p .0 = Uy + g, + -

(u,,..)* =0 is preserved under the path-integral

* We also know
nA+( Spelel, ) isnilpotent, whichis (AA+p)*=0.
hA + ( Sylel, ) =hA+( Spelel + S,lel, ) isnilpotent, whichis (A +p,,)*=0.

« As long as symmetries 6¢ are not anomalous, [D[¢] SI9) — [D[¢+5¢] S+l we may get

AA + ( Spral®, €1, e =RA+ (Splel, ) + (Spureel®s &1+ Snl&l, ), 1S Nilpotent,

which is (AA + py0)° = (g + AA + piy, + - )> =0,

We consider the Homological Perturbation connecting these.



2. Behavior of p .0 = Uy + g, + -
Free theories give the Gaussians, which fixes the ambiquity

e Since we can solve free QFTs, we start from a deformation retract of free theories :

h" O (State Space, (Sfree’ ) ) (ﬂ_; ( on shell of ¢”’ (Afree’ ) )

pituy cohomology of /i} /;i

where a BV propagator h” gives a Hodge decomposition : u/h"+h"u/=1-1i"p".

 Even if the path-integral of ¢” breaks the manifest invariance,
we can read (non-linear) realization of symmetries in effective theories.

HPL tells us recursive relations



Iree part : realization of .., = pgy, + My, + -+ in effective theories

h" O (state space, (Sgees ) )

TN cohomology of i i

i Ti =

( onshell of qb” (Afree, ) )

-~

' perturbation : (Siee, ) V> (Shyvs ) = (Spee» )+ (S5, ) gives the tree graph expansion

})ree
h,,, O (state space, (Sy,, ) ) 2 ( on shell of @”, (Al@], ) )
~ ~ itree ~ ~~ - ~- —
pituy cohomology of /i] Uy,

perturbation @ (S, ) V= (S )pe = Spvs )+ Syource T Ssyms e

5 Prree
Nyee O (state space, (Srs g ) = ( onshell of ¢" (Ammz[Cb 51, )¢§ )

~
.

ltree

—~ v

cohomology of ji{

Hiotal P Iutotal

As the BG-current relation in a generic QFT,
we can get u;.., = Uy, + My, + o+ from recursive relations.



Iree + loop : realization of w,,..; = pyy,, + Wy, + +++ in effective theories

h" O (state space, (Sgees ) )

T cohomology of ji{ i

i Tl« =

( f)n shell of gb”J, (Afees ) )

-~

perturbation : (S, ) V> AA+ (Sq., ) gives the Wick theorem

PWick
hyioe O (state space, NA + (Sfees ) ) 2 ( onshell of ¢”, hA'+ (A[¢'], ) )
- ~ IWick ~- - ~- -
AN+ +h A +uy cohomology of /i hA+py

perturbation to obtain AA + (S5 ).

~ | PWick
hywior O (state space, A+ (S, ). ) 2 ( onshell of ¢”, hA'+ (A, [¢', &, ). )
- _ 5 YWick ~ - g _
AA+u, , cohomology of /i AN+,

We can get ,uc’]_mml = ,us’ym + p;,, + -+, which includes 71, from recursive relations. |



Plan
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n u
| \“J N U LIUI \ | \ @ J U

Two examples & comments



Applications

Examples of u, .., : Maxwell’s theory

- _1 . -
. We consider the Maxwell theory : S, [¢] = de TFWF”” +A #9,C| .

« Let us consider translations 6A, = ¢“0,A, and shifts 6A, = ¢, x" withe ,+¢,, =0.

( The commutator is the gauge transformation with e’e, x" .)

Usual currents constant ghosts ¢,, £, which have ghost # 1 appear.

« The Maxwell theory has higher order currents ¢ d F* ~ 0, which gives constant shifts.
$ a constant ghost » which has ghost # 2 appears.

Ssym[g] — J'dx[_n*gﬂévé‘:ﬂy ] and Ssource[qﬂ’ 5] — de [A*ﬂ(ayAﬂ 51/ + xv ,ul/) —+ C*<GMC§M xH 5/41/5/4 + 77) ]

y g .
f abc f Cab

( Likewise, 2-form abelian gauge theory deFWFW gives more interesting result. )



Applications

Examples of u, . ~transfer : Lorentz sym of light-cone SFT

| |
. We consider Witten’s open SFT: S, [¢] = Ea)(qp, Oprsr®) + ga)(go, w(p, 9)) .

. This is manifestly Lorentz covariant : ¢ =¢,, | do X*(o) 5)(5( T which gives S, [0, £&] .
d “(o

BRST operator has a similarity transformation Qupe; = e® < co L8 — p* Z c_.af ) el
n=+0

* This gives Kato-Ogawa’s no-ghost theorem:
ions

hlons O (covariant states, QBRST) 2 ( lightcone states, ¢, Léigh’“me )

- -~ ilong ~
pituy cohomology of ji{

-~

H



Applications

Examples of u, . ~transfer : Lorentz sym of light-cone SFT

~Jong

* As a result of the perturbation,
pP

1.long : — : lightcone lightcone lightcone
s O ( covariant states, Ogper + Uy + Hgpurcetsym ) 2 ( lightcone states, ¢ L, + 4. t Ksourcetsym ) ,

~ ilong ~-
Uy, cohomology of /i

-~

iulightcone

we obtain a Witten-type light-cone SFT with nonlinear Lorentz invariance.

» (Classical light-cone action :
S 1

| | |
lich lich
Slightcone [¢phys] = Ew(quhyS’ o LOlg tcone¢thS> + Z n4+1 a)(ggphysa /’tnlg tCOHe(CDphysa SR gaphys) )
n=>2
e Nonlinear Lorentz transformation :
1

long CcoV

0 Pohys = /’tLorentz[(pphys’ ¢l = p il()ng 5¢

1 — (/’ttotal o COL(Z)C ) hlons

» Lorentz symmetry follows from [ ., pi1yren; 1 =0 @nd cyclic property oty -



Applications

Comments

* When we consider not Euclidean but topologically non-trivial space-time,

K., takes different forms, unlike p, , .

* If you know nice toy models, please let me know.

Any models are welcome : we can study them.



Thank you for your attention !

Please enjoy the YITP workshop
“Homotopy Alg. of QFT & Its Appl.” .



