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Last week, we learned … 
Lagrangian’s homotopy algebraic structure :      μbv

• For a given Lagrangian, we can solve the BV master equation  ,  
which tells us Lagrangian’s homotopy algebra     
                             

• Homological perturbation lemma describes the Feynman graph expansion.  
Hence, the path-integral P preserves the nilpotent property   .   
         P :  homotopy alg. of the original QFT  →  (loop) homotopy alg. of its effective QFT  

ΔeSbv[φ] = 0

μbv = μ1 + μ2 + ⋯

Sbv[φ] =
1
2

ω( φ, μ1(φ) )+
1
3!

ω( φ, μ2(φ, φ) )+ ⋯

P μbv = μeffective P



Quick review & notation in this talk 

• Consider a master action   ,  which solves   .  

• Write    for all of fields and antifields collectively.  
e.g.  For QED,  ( if any, antighosts & auxiliary fields ) and their antifields.   

• Rewrite our action into the contracted form :   
                                 

    BV symplectic form :        

Sbv[φ] = Scl[ϕ] + ⋯ Δ eSbv[φ] = 0

φa

φa = Aμ , c , ψ , ψ̄

Sbv[φ] = ∑
n

1
(n + 1)! ∫ dx μa0 a1...an

φan . . . φa1 φa0

ωab = ∑
n

1
(n + 1)! ∫ dx φa0 ωa0b ( μb

a1...an
φan . . . φa1 ) .

Reminder of how to get      μbv



How to get Lagrangian’s  L∞   

• We can always start with the contracted form of the BV action :  
                     .  

• We assume that   is graded symmetric   ,  

    which ensures the “cyclic property”     . 

• Then, the condition   gives the (quantum) L∞ relations :  
                          underline denotes the right sum 

Sbv[φ] = ∑
n

1
(n + 1)! ∫ dx φa0 ωa0b ( μb

a1...an
φan . . . φa1 )

μa0 a1...an
μ... a b ... = ( − )abμ... b a ...

μa0 a1...an
= ( − )a0(a1+⋯+an) μa1...an a0

Δ eSbv = 0

ℏ ωab μc
ab an . . . a1

+
1
2 ∑

m

1
m!(n − m)!

μc
an . . . am+1 b μb

am . . . a1
= 0

Reminder of how to get      μbv



You can weaken  L∞ ’s  assumption : 

• We can always start with the contracted form of the BV action :  
                     .  

• We assume that   is graded symmetric   ,  

    which ensures the “cyclic property”     . 

• Then, the condition   gives the (quantum) L∞ relations.  
 
             →  When we relax this assumption, we get (quantum) A∞ . 

Sbv[φ] = ∑
n

1
(n + 1)! ∫ dx φa0 ωa0b ( μb

a1...an
φan . . . φa1 )

μa0 a1...an
μ... a b ... = ( − )abμ... b a ...

μa0 a1...an
= ( − )a0(a1+⋯+an) μa1...an a0

Δ eSbv = 0

Reminder of how to get      μbv



How to get Lagrangian’s  A∞   

• We can start with the contracted form of the BV action :  
                     .  

• We just assume the “cyclic property”     only. 

• Then, the condition   gives the (quantum) A∞ relations.  
 
           

Sbv[φ] = ∑
n

1
n + 1 ∫ dx φa0 ωa0b ( μb

a1...an
φan . . . φa1 )

μa0 a1...an
= ( − )a0(a1+⋯+an) μa1...an a0

Δ eSbv = 0

Reminder of how to get      μbv



How to get Lagrangian’s  A∞   

• We can start with the contracted form of the BV action :  
                     .  

• We just assume the “cyclic property”     only. 

• Then, the condition   gives the (quantum) A∞ relations.  
 
            →  Lagrangian’s (quantum) A∞ algebra does not need an additional  
                     “matrix-like structure”  or “space-time non-commutativity”.  
 
But, when    comes from physics,  A∞  may be physically redundant.  

Sbv[φ] = ∑
n

1
n + 1 ∫ dx φa0 ωa0b ( μb

a1...an
φan . . . φa1 )

μa0 a1...an
= ( − )a0(a1+⋯+an) μa1...an a0

Δ eSbv = 0

μ... a b ... = ( − )abμ... b a ...

Reminder of how to get      μbv



The relation between      and     μb
a1...an

μbv = μ1 + μ2 + ⋯

• We can get the L∞ relation    from   ,  

                         These give a “component” expression.   

• As we can switch from    to     (  :  (D-1)-form ) ,  
we can switch from     to      ( coder   ) .  
                     ( Now, instead of  , we need to consider  as bases of H. )  

• Then, we can obtain Lagrangian’s homotopy algebra     
 where    is a coderivation acting on  . 

∑
m

1
m!(n − m)!

μc
an . . . am+1 b μb

am . . . a1
= 0 (Sbv, Sbv) = 0

∂μ jμ ≈ 0 d j D−1 ≈ 0 j D−1 = jμ ⋆ dxμ

μb
a1...an

μn : H⊗n → H μn : T(H) → T(H)

dxμ dφa

( μbv )2 = 0

μbv ≡ μ1 + μ2 + μ3 + ⋯ T(H) or S(H)

My notation   



   These are what we learned last week & my notation.   
 
   What I would like to tell you today is as follows . . .     

   



Today, I would like to tell you … 
Symmetry’s homotopy algebraic structure :   μsym

1. Homotopy algebras    also appear in realization of given symmetries.  

2. We can incorporate symmetry’s    into Lagrangian’s    and get    

                                      .    

3. The Feynman graph expansion    preserves this  

       in the sense that    with   .   

μsym

μsym μbv

( μsym + μbv + ⋯

≡ μtotal

)2 = 0

P ≡ ∫ 𝒟[ϕ]eSfree[ϕ]/Z

μtotal ≡ μsym + μbv + ⋯ P μtotal = μ′￼total P ( μ′￼total )2 = 0



Today, I would like to tell you … 
What we can read from       μsym

4. Homotopy algebraic structure   or       

 - tells us how to realize symmetries in every “effective” theory.  

 - naturally includes 1-form symmetries, etc.   

 - may explain why symmetry or anomaly remains under the path-integral,  
                     even if it may break the manifest invariance. 

μsym (μtotal)2 = (μsym + μbv + ⋯)2 = 0



Plan

(i)    Homotopy algebra    in the realization of symmetries  

           &  How to incorporate  into     

(ii)   Behavior of  under the path-integral  

                    &  Applications to several models 

μsym

μsym (μsym + μbv + ⋯)2 = 0

μtotal ≡ μsym + μbv + ⋯



1.  Homotopy algebra    in the realization of symmetries μsym

We consider . . . 

• First, we explain  intuitively within the canonical formalism.  

    momentum   & the Poisson bracket   

• Next, we switch to the BV formalism and explain it more precisely.  

    Antifields     & the BV bracket    

 
         This tells us how to incorporate it into Lagrangian’s homotopy alg.  

μsym

π { A , B } ≡ A[
←
δ

δϕa

δ
δπa

−
←
δ

δπa

δ
δϕa ]B

ϕ* ( A , B ) ≡ A[
←
δ

δϕa

δ
δϕ*a

−
←
δ

δϕ*a

δ
δϕa ]B



1.  Homotopy algebra    in the realization of symmetries μsym

Intuitive explanation :  the canonical formalism

• We consider a Lagrangian    without gauge degree:  

            the canonical form    .  

• Suppose that    is invariant under     (  : constants ) .  

• These global symmetries may or may not be linearly realized :   
The Poisson bracket gives   .  

• This    is a realization of symmetry generator. 

S[ϕ]

S[ϕ] ⟶ S[ϕ, π] = ∫ dx (π ⋅ ·ϕ − H )

S[ϕ] δϕ = ϵa ⋅ δaϕ ϵa

ϵa ⋅ δaϕ = ϵa { Sa[ϕ, π] , ϕ }

Sa[ϕ, π] ∼ ∫ dx π ⋅ δaϕ + ⋯



1.  Homotopy algebra    in the realization of symmetries μsym

Intuitive explanation :  the canonical formalism

• Notice that the action  generates trivial transformations   

                  

• Suppose that a Lie algebra    is realized on-shell :   

                 ( equality up to e.o.m. )  

• By using functionals  , we can get the off-shell equality :  

                 

S = S[ϕ, π]

{ S , F[ϕ, π] }= (dϕ
dt

−
δH
δπ ) ⋅

δF
δϕ

+ (dπ
dt

+
δH
δϕ ) ⋅

δF
δϕ

≈ 0

[ ̂Ta, ̂Tb ] = fab
c ̂Tc

{ Sa[ϕ, π] , Sb[ϕ, π] }≈ fab
cSc[ϕ, π]

Sab[ϕ, π]

{ Sa[ϕ, π] , Sb[ϕ, π] }= fab
c Sc[ϕ, π] + { S , Sab[ϕ, π] }



1.  Homotopy algebra    in the realization of symmetries μsym

Intuitive explanation :  the canonical formalism

• Take  of  and consider the cyclic sum :  

            

• After some calculations,  we get  

               

• Both sides of this equality vanish separately.   

• Notice that the r.h.s. takes the -exact form. 

{ Sc , } { Sa , Sb } = fab
cSc + { S , Sab }

{Sc , { Sa , Sb }} + (cyclic) = { Sc , fab
d Sd + { S , Sab } } + (cyclic)

Sk[ϕ, π] flak fbc
l

Jacobi id.

= { S , fab
k Skc[φ] − { Sa[ϕ, π] , Sbc[ϕ, π] }}

{ S , }



1.  Homotopy algebra    in the realization of symmetries μsym

Intuitive explanation :  the canonical formalism

• By using functionals  ,  this  (r.h.s.)=0  implies  

       

• We get a higher structure constant   .  
We can repeat the same calculations by introducing a set of  :   

                  

Again, (l.h.s.) and (r.h.s.) vanish separately.                  

Sabc[ϕ, π]

{ Sa[ϕ, π] , Sbc[ϕ, π] }= fab
k Skc[ϕ, π] +

1
3

fabc
k Sk[ϕ, π] +

1
3 { S , Sabc[ϕ, π] }

fabc
d

{S, Sa, Sab , Sabc , …}

{ Sa0
[ϕ, π], { Sa1 . . . [ϕ, π] , S . . . ak

[ϕ, π] }}
order k Jacobi id. off−shell

= { S , … }
≈ 0



1.  Homotopy algebra    in the realization of symmetries μsym

Intuitive explanation :  the canonical formalism

• We will get a set of structure constants  , a set of 

generators  , and a set of algebraic relations :   
 

       (r.h.s.)       

       (l.h.s.)                  …   L∞-relations  

• If there is no higher conservation low  , higher  cannot occur.  

{ fab
c, fabc

d, fabcd
e, …}

{S, Sa, Sab , Sabc , …}

∑
k

{ Sa1 . . . ak
[ϕ, π] , Sak+1 . . . an

[ϕ, π] }= ∑
l

fa1 . . . al
b Sbal+1 . . . an

[ϕ, π]

∑
m

1
m!(n − m)!

fa1 . . . am
b fb am+1 . . . an

c = 0

∂μ jμν ≈ 0 fabc
d, . . .



1.  Homotopy algebra    in the realization of symmetries μsym

Switch to the BV formalism

• We first consider a Lagrangian    without gauge degree.  
               Then, the BV master action is this  itself.  

• Suppose that    is invariant under    (global sym) .  

• For these constants   ,  we introduce constant ghosts   .  
Then, the action    is still invariant under  .  

• We write    for all  correctively.

S[ϕ]

S[ϕ]

S[ϕ] δϕ = ϵA ⋅ δAϕ

ϵA ξA

S[ϕ] δϕ = ξA ⋅ δAϕ

φ ϕ , ϕ*



1.  Homotopy algebra    in the realization of symmetries μsym

Switch to the BV formalism

• We can get generators    satisfying   

             with the BV bracket   .   

• These symmetry generators take      

• These    generate symmetries of the BV master action.   

We can always find these because  is acyclic: we have  now. 

SA[φ] = SA[ϕ, ϕ*]

δAϕ = ( SA[φ] , ϕ ) ( A , B ) ≡ A[
←
δ

δϕa

δ
δϕ*a

−
←
δ

δϕ*a

δ
δϕa ]B

SA[φ] ∼ ∫ dx ϕ*a ⋅ δAϕa + ⋯

SA[φ]

( S , ) ( SA[φ] , S ) = 0



1.  Homotopy algebra    in the realization of symmetries μsym

Switch to the BV formalism

• In BV,  we can always find functionals   giving    

        the off-shell equality :   .  

• We can repeat the same calculations as before.  
( Every step is precise in BV,  which is not intuitive one unlike before. )  
 

We get a set of algebras   

   &  the L∞-relations      .  

SAB[φ]

( SA[φ] , SB[φ] )= fAB
C SC[φ] + ( S , SAB[φ] )

∑
k

( SA1 . . . Ak
[φ] , SAk+1 . . . An

[φ] )= ∑
l

fA1 . . . Al
B SB Al+1 . . . An

[φ]

∑
m

1
m!(n − m)!

fA1 . . . Am
B fB Am+1 . . . An

c = 0



1.  Homotopy algebra    in the realization of symmetries μsym

The BV master equation is now modified 

• The relation   provides that  

 

the action  and source terms   satisfy  

 
 

        

∑
k

( SA1 . . . Ak
[φ] , SAk+1 . . . An

[φ] )= ∑
l

fA1 . . . Al
B SB Al+1 . . . An

[φ]

Sbv[φ] Ssource[φ, ξ] ≡ ∑
k

1
k!

SA1...Ak
[φ] ξAk . . . ξA1

1
2 ( Sbv[φ] + Ssource[φ, ξ] , Sbv[φ] + Ssource[φ, ξ] )= − ∑

l

1
k!

∂Ssource[φ, ξ]
∂ξB

fB
A1...Ak

ξAk . . . ξA1



Comments on QFT with gauge degrees 
• If your QFT has any gauge degree, first of all, you must solve  

the BV master equation and get a solution  .  

• You can apply the same calculations to  , instead of  .   
Then, you can see symmetries of gauge invariant QFTs.  

• If you want to consider symmetries of a gauge-fixed theory  ,  
it is the same as QFTs without gauge degrees. 

Sbv[φ] = S[ϕ] + ϕ*δϕ + ⋯

Sbv[φ] S[ϕ]

SBRS[ϕ]



Comments on the relation to conservation lows 

• We introduced constant ghosts    for  .  

These  come from usual conservation lows  .  

In many cases, these    have ghost number “1”.  

• If there exist higher conservation lows  ,   

constant ghosts which have ghost number “n” may appear.  
 
So,  when QFT has a 1-form symmetry,  constant ghosts  which have  
ghost number “1” or “2” naturally appear in the above procedure.  

ξA δϕ = ϵA ⋅ δAϕ

ξA ∂A jA ≈ 0

ξA

∂μ1
jμ1 μ2...μn ≈ 0

ξA



Plan

(i)    Homotopy algebra    in the realization of symmetries  

           &  How to incorporate  into     

(ii)   Behavior of  under the path-integral  

                    &  Applications to several models 

μsym

μsym (μsym + μbv + ⋯)2 = 0

μtotal ≡ μsym + μbv + ⋯



Our Lagrangian’s homotopy algebra  

• For simplicity,  we consider a QFT without gauge degree.   
 
( Or assume that we could perform the Legendre transformation / gauge-fixing  
  and could obtain1PI action / path-integrable gauge-fixed action :  .  
  Then, vertices of   may or may not have explicit   dependence. )  

• In this case,  we can find    and  .  

• The classical BV master equation    gives  

            the (cyclic) L∞ relations          . 

S1PI / SBRS

S1PI / SBRS ℏ

( Sbv , Sbv ) = 0 Δ Sbv = 0

( Sbv , Sbv ) = 0

∑
m

1
m!(n − m)!

μc
an . . . am+1 b μb

am . . . a1
= 0

2. How to incorporate  into    μsym (μsym + μbv + ⋯)2 = 0



The relation between      and   μb
a1...an

μbv = μ1 + μ2 + ⋯

• The relation    is a “component” expression.   

• As    and   ,  
we can switch from     to      ( coder   ) .  
                 ( Now, instead of  , we need to consider  as bases of H. )  

• So, we can get    from   . 

∑
m

1
m!(n − m)!

μc
an . . . am+1 b μb

am . . . a1
= 0

∂μ jμ ≈ 0 d j D−1 ≈ 0

μb
a1...an

μn : H⊗n → H μn : T(H) → T(H)

dxμ dφa

( μbv )2 = ( μ1 + μ2 + ⋯ )2 = 0 ( Sbv , Sbv ) = 0



We know that     ⇔       ( Sbv , Sbv ) = 0 ( μbv )2 = 0

•   gives  , which is   .    

• Likewise, we consider   and   . 

Then, we find that   
  gives  , which is   .  

• These pieces will give   . 

( Sbv , Sbv ) = 0 ∑
m

1
m!(n − m)!

μc
an . . . am+1 b μb

am . . . a1
= 0 ( μbv )2 = 0

Ssym[ξ] = ∑
n

1
(n + 1)!

ξ*B fB
A1...An

ξAn . . . ξA1 ( , )ξ =
∂

∂ξA

∂
∂ξ*A

−
∂

∂ξ*A

∂
∂ξA

( Ssym[ξ] , Ssym[ξ] )ξ = 0 ∑
m

1
m!(n − m)!

fA1 . . . Am
B fB Am+1 . . . An

c = 0 ( μsym )2 = 0

( μsym + μbv + ⋯ )2 = 0

2. How to incorporate  into    μsym (μsym + μbv + ⋯)2 = 0



We already obtained  “ ”  of    ⋯ ( μsym + μbv + ⋯ )2 = 0

• We learned that the action    and source terms    

                             

satisfy        .  

• The nil-potency of the classical BV is obstructed by global symmetries.    
                  

• We can resolve it by adding    and    . 

Sbv[φ]

Ssource[φ, ξ] ≡ ∑
k

1
k!

SA1...Ak
[φ] ξAk . . . ξA1

1
2 ( Sbv[φ] + Ssource[φ, ξ] , Sbv[φ] + Ssource[φ, ξ] )= − ∑

l

1
k!

∂Ssource[φ, ξ]
∂ξB

fB
A1...Ak

ξAk . . . ξA1

Ssym[ξ] = ∑
n

1
(n + 1)!

ξ*B fB
A1...An

ξAn . . . ξA1 ( , )ξ =
∂

∂ξA

∂
∂ξ*A

−
∂

∂ξ*A

∂
∂ξA



We already obtained  “ ”  of    ⋯ ( μsym + μbv + ⋯ )2 = 0

• We consider the sum   
            .  

• We also consider the sum of the anti-brackets     

                          .  

• Then, we obtain   ,  which is   . 

Stotal[φ, ξ] ≡ Sbv[φ] + ∑
k

1
k!

SA1...Ak
[φ] ξAk . . . ξA1

Ssource[φ,ξ]

+ ∑
n

1
(n + 1)!

ξ*B fB
A1...An

ξAn . . . ξA1

Ssym[ξ]

( , )φ,ξ
≡ [

←
δ

δϕa

δ
δϕ*a

−
←
δ

δϕ*a

δ
δϕa ] + [

←
∂

∂ξA

∂
∂ξ*A

−
←
∂

∂ξ*A

∂
∂ξA ]

( Stotal[φ, ξ] , Stotal[φ, ξ] )φ,ξ
= 0 (μsym + μbv + ⋯)2 = 0

2. How to incorporate  into    μsym (μsym + μbv + ⋯)2 = 0



What are inputs of these   ? μsym & μtotal

• We got the L∞-relations :    ,  which gives   .   

 
Q. What is the vector space    on which    acts ?   

A. The vector space of constants ghosts     (  are “bases” ) 

                        or its (symmetrized) tensor algebra  .  

• Inputs of    are   .  
 
                 gives an open-closed homotopy algebra  
           when we use  A∞ description for Lagrangian’s   .  

∑
m

1
m!(n − m)!

fA1 . . . Am
B fB Am+1 . . . An

c = 0 μsym

Hξ μsym

ξ = ξA ⋅ eA eA

S(Hξ)

μtotal = μsym + μbv + ⋯ S(H) ⊗ S(Hξ)

μtotal

μbv



Plan

(i)    Homotopy algebra    in the realization of symmetries  

           &  How to incorporate  into     

(ii)   Behavior of  under the path-integral  

                    &  Applications to several models

μsym

μsym (μsym + μbv + ⋯)2 = 0

μtotal ≡ μsym + μbv + ⋯



2. Behavior of    μtotal ≡ μsym + μbv + ⋯
  in “effective” theories ( μtotal )2 = 0

• We first split   into the kinetic part  and interacting part  :   

                          ,  which provides     . 


• We split fields    and define a generic “effective” action by integrating out  ,   
                            
                                    . 


• Homological perturbation lemma guarantees that  
   an effective one     is nilpotent,  which gives    .  
 
                  We can obtain     and   recursively,   as  . 

Sbv[φ] Sfree[φ] Sint[φ]

Sbv[φ] = Sfree[φ] + Sint[φ] μbv = μ1 +
μint

μ2 + …

ϕ = ϕ′￼+ ϕ′￼′￼ ϕ′￼′￼

P : S[ϕ′￼+ ϕ′￼′￼] ⟼ A[ϕ′￼] ≡ ln∫ D[ϕ′￼′￼] eS[ϕ′￼+ϕ′￼′￼]

ℏ Δ′￼+ ( A[ϕ′￼], )′￼ ( μeffective )2 = 0

( μ′￼sym )2 = 0 ( μ′￼total )2 = 0 ( μ′￼bv )2 = 0



2. Behavior of    μtotal ≡ μsym + μbv + ⋯
  is preserved under the path-integral ( μtotal )2 = 0

• We know   
                 is nilpotent ,  which is    .  
                     
                 is nilpotent ,  which is   .  


• Now, we got  
 
                 is nilpotent,  
 
                                   which is   .  

( Sfree[φ] , ) ( μ1 )2 = 0

( Sbv[φ] , ) = ( Sfree[φ] + Sint[φ] , ) ( μ1 + μint )2 = 0

( Stotal[φ, ξ] , )φ,ξ = ( Sbv[φ] , ) + ( Ssource[φ, ξ] + Ssym[ξ] , )φ,ξ

( μtotal )2 = ( μsym + μbv + ⋯ )2 = 0



2. Behavior of    μtotal ≡ μsym + μbv + ⋯
  is preserved under the path-integral ( μtotal )2 = 0

• We also know   
 
      is nilpotent ,  which is    .  
                     
      is nilpotent ,  which is   .  


• As long as symmetries    are not anomalous,  , we may get   
 
      is nilpotent,  
 
                        which is   .   
 

 
                    We consider the Homological Perturbation connecting these. 

ℏ Δ + ( Sfree[φ] , ) ( ℏΔ + μ1 )2 = 0

ℏΔ + ( Sbv[φ] , ) = ℏΔ + ( Sfree[φ] + Sint[φ] , ) ( ℏΔ + μbv )2 = 0

δϕ ∫ D[ϕ] eS[ϕ] = ∫ D[ϕ + δϕ] eS[ϕ+δϕ]

ℏΔ + ( Stotal[φ, ξ] , )φ,ξ = ℏΔ + ( Sbv[φ] , ) + ( Ssource[φ, ξ] + Ssym[ξ] , )φ,ξ

( ℏΔ + μtotal )2 = ( μsym + ℏΔ + μbv + ⋯ )2 = 0



2. Behavior of    μtotal ≡ μsym + μbv + ⋯
Free theories give the Gaussians, which fixes the ambiguity  
• Since we can solve free QFTs, we start from a deformation retract of free theories :  

 

                

 
where a BV propagator    gives a Hodge decomposition :   .  
 
                                  


• Even if the path-integral of  breaks the manifest invariance,  
we can read (non-linear) realization of symmetries in effective theories.  
 
                                   HPL tells us  recursive relations 

h′￼′￼ ↻ ( state space , ( Sfree , )

μ′￼1+μ′￼′￼1

)
p′￼′￼

⇄
i′￼′￼

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, (Afree, )

μ′￼1

)

h′￼′￼ μ′￼′￼1 h′￼′￼+ h′￼′￼μ′￼′￼1 = 1 − i′￼′￼p′￼′￼

ϕ′￼′￼



Tree part :  realization of    in effective theories  μtotal ≡ μsym + μbv + ⋯

                 

 
                         perturbation :     gives  the tree graph expansion  
  
 

               

 
                               perturbation :      
 
               

 
 
                             As the BG-current relation in a generic QFT,  
                     we can get     from recursive relations. 

h′￼′￼ ↻ ( state space , ( Sfree , )

μ′￼1+μ′￼′￼1

)
p′￼′￼

⇄
i′￼′￼

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, (Afree, )

μ′￼1

)

(Sfree , ) ⟼ (Sbv , ) ≡ (Sfree , ) + (Sint , )

htree ↻ ( state space , ( Sbv , )

μ′￼1+μ′￼′￼1

)
Ptree
⇄
itree

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, (A[ϕ′￼], )

μ′￼bv

)

(Sbv , ) ⟼ (Stotal , )ϕ,ξ ≡ (Sbv , ) + (Ssource + Ssym , )ϕ,ξ

h̃tree ↻ ( state space , ( Stotal , )ϕ,ξ

μtotal

)
P̃tree
⇄
ĩtree

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, (Atotal[ϕ′￼, ξ], )ϕ′￼,ξ

μ′￼total

)

μ′￼total ≡ μ′￼sym + μ′￼bv + ⋯



Tree + loop :  realization of    in effective theories  μtotal ≡ μsym + μbv + ⋯

                 

 
                                  perturbation :     gives  the Wick theorem    
  
 

               

 
                                       perturbation to obtain     
 
               

 
 
 
            We can get    ,  which includes ,  from recursive relations. 

h′￼′￼ ↻ ( state space , ( Sfree , )

μ′￼1+μ′￼′￼1

)
p′￼′￼

⇄
i′￼′￼

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, (Afree, )

μ′￼1

)

(Sfree , ) ⟼ ℏ Δ + (Sfree , )

hWick ↻ ( state space , ℏΔ + ( Sfree , )

ℏΔ′￼+μ′￼1+ℏΔ′￼′￼+μ′￼′￼1

)
PWick
⇄
IWick

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, ℏΔ′￼+ (A[ϕ′￼], )

ℏΔ′￼+μ′￼1

)

ℏΔ + (Stotal , )ϕ,ξ

h̃Wick ↻ ( state space , ℏΔ + ( Stotal , )ϕ,ξ

ℏΔ+μtotal

)
P̃Wick
⇄
ĩWick

( on shell of ϕ′￼′￼

cohomology of ̂μ′￼′￼1

, ℏΔ′￼+ (Atotal[ϕ′￼, ξ], )ϕ′￼,ξ

ℏΔ′￼+μ′￼q−total

)

μ′￼q−total ≡ μ′￼sym + μ′￼bv + ⋯ ℏ



Plan

(i)    Homotopy algebra    in the realization of symmetries  

           &  How to incorporate  into     

(ii)   Behavior of  under the path-integral  

                    &  Applications to several models 
                           Two examples & comments 

μsym

μsym (μsym + μbv + ⋯)2 = 0

μtotal ≡ μsym + μbv + ⋯



Applications  

Examples of  :  Maxwell’s theory  μtotal

• We consider the Maxwell theory :     . 


• Let us consider translations  and shifts  with  .  
             ( The commutator is the gauge transformation with   . )  
 
        Usual currents                   constant ghosts    which have ghost # 1 appear.  


• The Maxwell theory has higher order currents  , which gives constant shifts.   
                                        a constant ghost    which has ghost # 2 appears. 


•
  and     

 
     ( Likewise, 2-form abelian gauge theory   gives more interesting result. ) 

Sbv[φ] = ∫ dx[ −1
4

FμνFμν + A* μ∂μC ]
δAμ = ϵν∂νAμ δAμ = ϵμνxν ϵμν + ϵνμ = 0

ϵμϵμνxν

ξμ , ξμν

ϵ ∂μFμν ≈ 0
η

Ssym[ξ] = ∫ dx[−η*ξμξνξμν

f d
abc

] Ssource[φ, ξ] = ∫ dx[A*μ(∂νAμ ξν + xν ξμν) + C*(∂μC ξμ + xμ ξμνξμ

f c
ab

+ η) ]

∫ dx FμνρFμνρ



Applications  

Examples of -transfer :  Lorentz sym of light-cone SFTμtotal

• We consider Witten’s open SFT :     . 


• This is manifestly Lorentz covariant :   ,  which gives   . 


• BRST operator has a similarity transformation   .  


• This gives Kato-Ogawa’s no-ghost theorem:   
                                    

 

Sbv[φ] =
1
2

ω(φ, QBRSTφ) +
1
3

ω(φ, μ2(φ, φ) )

δφ = ϵμν ∫ dσ Xμ(σ)
δ

δXν(σ)
φ Stotal[φ, ξ]

QBRST = e−R (
μ′￼1

c0 Llightcone
0 − p+

μ′￼′￼1

∑
n≠0

c−c a+
n ) eR

hlong ↻ ( covariant states , QBRST

μ′￼1+μ′￼′￼1

)
plong

⇄
ilong

( lightcone states

cohomology of ̂μ′￼′￼1

, c0 Llightcone
0

μ′￼1

)



Applications  

Examples of -transfer :  Lorentz sym of light-cone SFTμtotal

• As a result of the perturbation,  
 ,  

 
we obtain a Witten-type light-cone SFT with nonlinear Lorentz invariance. 


• Classical light-cone action :   
 

               


• Nonlinear Lorentz transformation :  
 
                          


• Lorentz symmetry follows from    and  cyclic property of   . 

h̃long ↻ ( covariant states , QBRST + μ2

μbv

+ μsource+sym )
p̃long

⇄
ĩlong

( lightcone states

cohomology of ̂μ′￼′￼1

, c0 Llightcone
0 + μlightcone

int

μlightcone

+ μlightcone
source+sym )

Slightcone[φphys] =
1
2

ω(φphys, c0 Llightcone
0 φphys) +

∞

∑
n=2

1
n + 1

ω(φphys, μlightcone
n (φphys, . . . , φphys) )

δ φphys = μLorentz[φphys, ξ] ≡ plong 1
1 − (μtotal − c0Llc

0 ) hlong
ilong δφcov

[ μlc , μLorentz ] = 0 μLorentz



Applications  
Comments 

• When we consider  not Euclidean  but  topologically non-trivial space-time,   
 
                            takes different forms,  unlike   . 


• If you know nice toy models, please let me know.   
 
Any models are welcome :  we can study them. 

μtotal μbv



Thank you for your attention ! 


Please enjoy the YITP workshop  
 

                                    “Homotopy Alg. of QFT & Its Appl.” . 


