[based on a coming paper, HM arXiv:2104.XXXXX]

Homotopy algebra & symmetry generators in QFT

YITP, Kyoto University

& Math. Inst., Faculty of Math-Phys., Charles University & Inst. of Phys., Czech Academy of Sci.

Hiroaki Matsunaga

YITP Workshop 2021 March 29

Last week, we learned ...

Lagrangian's homotopy algebraic structure : μ_{bv}

• For a given Lagrangian, we can solve the BV master equation $\Delta e^{S_{bv}[\varphi]} = 0$, which tells us Lagrangian's homotopy algebra $\mu_{bv} = \mu_1 + \mu_2 + \cdots$

$$S_{bv}[\varphi] = \frac{1}{2}\omega(\varphi,\mu_1(\varphi)) + \frac{1}{3!}\omega(\varphi,\mu_2(\varphi,\varphi)) + \cdots$$

 Homological perturbation lemma describes the Feynman graph expansion. Hence, the path-integral P preserves the nilpotent property $P \mu_{bv} = \mu_{effective} P$.

P: homotopy alg of the original QFT \rightarrow (loop) homotopy alg. of its effective QFT

<u>Reminder of how to get μ_{hy} </u> Quick review & notation in this talk

- Consider a master action $S_{bv}[\varphi] = S_{cl}[\phi] + \cdots$, which solves $\Delta e^{S_{bv}[\varphi]} = 0$.
- Write φ^a for all of fields and antifields collectively. e.g. For QED, $\varphi^a = A_{\mu}, c, \psi, \bar{\psi}$ (if any, antighosts & auxiliary fields) and their antifields.
- Rewrite our action into the contracted form :

 $S_{bv}[\varphi] = \sum_{n} \frac{1}{(n+1)!} \int_{0}^{\infty} \frac{1}{(n+1)!} \int_{0}^{\infty} \frac{1}{(n+1)!} \int_{0}^{\infty} \frac{1}{(n+1)!} \int_{0}^{\infty} \frac{1}{(n+1)!} \frac{1}{(n+1)!} \frac{1}{(n+1)!} \frac{1}{(n+1)!} \int_{0}^{\infty} \frac{1}{(n+1)!} \frac{1}{$ BV symplectic form : ω_{ab} (n+1)

$$\frac{1}{!}\int dx \ \mu_{a_0a_1\dots a_n} \ \varphi^{a_n}\dots \varphi^{a_1} \varphi^{a_0}$$

$$\frac{1}{!}\int dx \,\varphi^{a_0}\,\omega_{a_0b}\,\left(\,\mu^b_{a_1\ldots a_n}\,\,\varphi^{a_n}\ldots\varphi^{a_1}\,\right).$$

<u>Reminder of how to get μ_{hy} </u> How to get Lagrangian's L_{∞}

- We can always start with the contracted form of the BV action : $S_{bv}[\varphi] = \sum \frac{1}{(n+1)!} \int dx \ \varphi^{a_0} \ \omega_{a_0 b} \left(\mu^{b}_{a_1 \dots a_n} \ \varphi^{a_n} \dots \varphi^{a_1} \right) \quad .$
- . We assume that $\mu_{a_0a_1...a_n}$ is graded symmetric $\mu_{...ab...} = (-)^{ab}\mu_{...ba...}$, which ensures the "cyclic property" $\mu_{a_0,a_1,\dots,a_n} = (-)^{a_0(a_1+\dots+a_n)} \mu_{a_1\dots,a_n,a_0}$.
- Then, the condition $\Delta e^{S_{bv}} = 0$ gives the (quantum) L_{∞} relations :

$$\hbar \omega^{ab} \mu^{c}{}_{ab} \underline{a_{n} \dots a_{1}} + \frac{1}{2} \sum_{m} \frac{1}{m!(n-m)!} \mu^{c} \underline{a_{n} \dots a_{m+1}}$$

 $\mu^b \mu^b_{a_m \dots a_1} = 0$ underline denotes the right sum

<u>Reminder of how to get μ_{hy} </u>

You can weaken L_{∞} 's assumption :

We can always start with the contracted form of the BV action :

$$S_{bv}[\varphi] = \sum_{n} \frac{1}{(n+1)!} \int dx \ \varphi^{a_0} \ \phi^{a_0} \ \phi^{a_0$$

- . We assume that $\mu_{a_0a_1...a_n}$ is graded symmetric $\mu_{...ab...} = (-)^{ab}\mu_{...ba...}$, which ensures the "cyclic property
- Then, the condition $\Delta e^{S_{bv}} = 0$ gives the (quantum) L_{∞} relations.

 \rightarrow When we relax this assumption, we get (quantum) $A \infty$.

 $\omega_{a_0b}\left(\mu^b_{a_1\dots a_n} \varphi^{a_n}\dots \varphi^{a_1}\right)$.

y"
$$\mu_{a_0 a_1 \dots a_n} = (-)^{a_0 (a_1 + \dots + a_n)} \mu_{a_1 \dots a_n a_0}$$

<u>Reminder of how to get μ_{hy} </u> How to get Lagrangian's A_{∞}

- We can start with the contracted form of the BV action : $S_{bv}[\varphi] = \sum \frac{1}{n+1} \int dx \ \varphi^{a_0} \ \omega_{a_0 b} \left(\mu^b_{a_1 \dots a_n} \ \varphi^{a_n} \dots \varphi^{a_1} \right) .$
- . We just **assume** the "cyclic prope
- Then, the condition $\Delta e^{S_{bv}} = 0$ gives the (quantum) A_∞ relations.

erty"
$$\mu_{a_0 a_1 \dots a_n} = (-)^{a_0 (a_1 + \dots + a_n)} \mu_{a_1 \dots a_n a_0}$$
 only.

<u>Reminder of how to get μ_{hy} </u> How to get Lagrangian's A_{∞}

- We can start with the contracted form of the BV action : $S_{bv}[\varphi] = \sum \frac{1}{n+1} \int dx \ \varphi^{a_0} \ \omega_{a_0 b} \ \left(\mu^{b}_{a_1 \dots a_n} \ \varphi^{a_n} \dots \varphi^{a_1} \right) \quad .$
- . We just assume the "cyclic prope
- Then, the condition $\Delta e^{S_{bv}} = 0$ gives the (quantum) A_∞ relations.

erty"
$$\mu_{a_0 a_1 \dots a_n} = (-)^{a_0 (a_1 + \dots + a_n)} \mu_{a_1 \dots a_n a_0}$$
 only.

 \rightarrow Lagrangian's (quantum) A_{∞} algebra does not need an additional "matrix-like structure" or "space-time non-commutativity".

But, when $\mu_{...ab...} = (-)^{ab} \mu_{...ba...}$ comes from physics, A_{∞} may be physically redundant.

My notation

The relation between $\mu^{b}_{a_{1}...a_{n}}$ and $\mu_{bv} = \mu_{1} + \mu_{2} + \cdots$

. We can get the L ∞ relation $\sum_{m!(n-1)}^{1}$ These give a "component" expression.

- . As we can switch from $\partial_{\mu} j^{\mu} \approx 0$ to $dj^{D-1} \approx 0$ ($j^{D-1} = j^{\mu} \star dx^{\mu}$: (D-1)-form), we can switch from $\mu^b_{a_1...a_n}$ to $\mu_n: H^{\otimes n} \to H$ (coder $\mu_n: T(H) \to T(H)$).
- . Then, we can obtain Lagrangian's homotopy algebra $(\mu_{hv})^2 = 0$

$$\overline{m}! \mu^{c}_{\underline{a_{n} \dots a_{m+1}}b} \mu^{b}_{\underline{a_{m} \dots a_{1}}} = 0 \text{ from } (S_{bv}, S_{bv}) = 0 ,$$

(Now, instead of dx^{μ} , we need to consider $d\varphi^{a}$ as bases of H.)

where $\mu_{bv} \equiv \mu_1 + \mu_2 + \mu_3 + \cdots$ is a coderivation acting on T(H) or S(H).

These are what we learned last week & my notation.

What I would like to tell you today is as follows . . .

Today, I would like to tell you ... Symmetry's homotopy algebraic structure : μ_{svm}

1. Homotopy algebras μ_{sym} also appear in realization of given symmetries.

2. We can incorporate symmetry's μ_{sym} into Lagrangian's μ_{bv} and get

$$\left(\mu_{sym} + \mu_{bv} + \cdots\right)^2 = 0$$

 $\equiv \mu_{total}$

3. The Feynman graph expansion $P \equiv$ $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ in the sense that $P \mu_{total} = \mu'_{total} P$ with $(\mu'_{total})^2 = 0$.

$$\int \mathscr{D}[\phi] e^{S_{free}[\phi]} / Z \text{ preserves this}$$

Today, I would like to tell you ... What we can read from μ_{sym}

- 4. Homotopy algebraic structure μ_{sym} or $(\mu_{total})^2 = (\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$
- tells us how to realize symmetries in every "effective" theory.
- naturally includes 1-form symmetries, etc.

- may explain why symmetry or anomaly remains under the path-integral, even if it may break the manifest invariance.

Plan

(i) Homotopy algebra μ_{sym} in the realization of symmetries & How to incorporate μ_{sym} into $(\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$

(ii) Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ under the path-integral & Applications to several models

1. Homotopy algebra μ_{sym} in the realization of symmetries

We consider . . .

. First, we explain μ_{svm} intuitively within the canonical formalism.

momentum π & the Poisson brac

Antifields ϕ^* & the BV bracket

This tells us how to incorporate it into Lagrangian's homotopy alg.

ket
$$\{A, B\} \equiv A \left[\frac{\overleftarrow{\delta}}{\delta\phi^a} \frac{\delta}{\delta\pi_a} - \frac{\overleftarrow{\delta}}{\delta\pi_a} \frac{\delta}{\delta\phi^a}\right] B$$

Next, we switch to the BV formalism and explain it more precisely.

$$(A,B) \equiv A \left[\frac{\overleftarrow{\delta}}{\delta \phi^a} \frac{\delta}{\delta \phi^a_a} - \frac{\overleftarrow{\delta}}{\delta \phi^a_a} \frac{\delta}{\delta \phi^a} \right] B$$

1. Homotopy algebra μ_{svm} in the realization of symmetries

Intuitive explanation : the canonical formalism

• We consider a Lagrangian $S[\phi]$ without gauge degree:

the canonical form $S[\phi]$ —

- . Suppose that $S[\phi]$ is invariant under $\delta\phi = \epsilon^a \cdot \delta_a \phi$ (ϵ^a : constants).
- These global symmetries may or may not be linearly realized : The Poisson bracket gives $\epsilon^a \cdot \delta_a \phi = \epsilon^a \{ S_a[\phi, \pi], \phi \}$.

This
$$S_a[\phi,\pi] \sim \int dx \,\pi \cdot \delta_a \phi + \cdots$$
 is a

$$\rightarrow S[\phi,\pi] = \int dx \left(\pi \cdot \dot{\phi} - H\right) \,.$$

realization of symmetry generator.

1. Homotopy algebra μ_{sym} in the realization of symmetries Intuitive explanation : the canonical formalism • Notice that the action $S = S[\phi, \pi]$ generates trivial transformations $\left\{S, F[\phi, \pi]\right\} = \left(\frac{d\phi}{dt} - \frac{\delta H}{\delta\pi}\right)$

- . Suppose that a Lie algebra $[\hat{T}_a, \hat{T}_b]$ $\left\{S_{a}[\phi,\pi],S_{b}[\phi,\pi]\right\} \approx f_{ab}{}^{c}S_{c}[\phi,\pi]$
- By using functionals $S_{ab}[\phi, \pi]$, we can get the off-shell equality :

$$\frac{dF}{dt} + \left(\frac{d\pi}{dt} + \frac{\delta H}{\delta \phi}\right) \cdot \frac{\delta F}{\delta \phi} \approx 0$$

$$= f_{ab}{}^c \hat{T}_c$$
 is realized on-shell :

(equality up to e.o.m.)

 $\left\{ S_{a}[\phi,\pi], S_{b}[\phi,\pi] \right\} = f_{ab}^{\ c} S_{c}[\phi,\pi] + \left\{ S, S_{ab}[\phi,\pi] \right\}$

1. Homotopy algebra
$$\mu_{sym}$$
 in the realization of symmetries
Intuitive explanation : the canonical formalism
. Take $\{S_c, \}$ of $\{S_a, S_b\} = f_{ab}{}^cS_c + \{S, S_{ab}\}$ and consider the cyclic sum :
 $\{S_c, \{S_a, S_b\}\} + (cyclic) = \{S_c, f_{ab}{}^dS_d + \{S, S_{ab}\}\} + (cyclic)$

After some calculations, we get

$$S_{k}[\phi,\pi]f_{\underline{la}}{}^{k}f_{\underline{bc}}{}^{l} = \left\{ S, f_{\underline{ab}}{}^{k}S_{\underline{kc}}[\phi] - \left\{ S_{\underline{a}}[\phi,\pi], S_{\underline{bc}}[\phi,\pi] \right\} \right\}$$

Jacobi id.

- Both sides of this equality vanish separately.
- . Notice that the r.h.s. takes the $\{S, \}$ -exact form.

1. Homotopy algebra μ_{svm} in the realization of symmetries Intuitive explanation : the canonical formalism • By using functionals $S_{abc}[\phi, \pi]$, this (r.h.s.)=0 implies

$$\left\{S_{\underline{a}}[\phi,\pi],S_{\underline{bc}}[\phi,\pi]\right\} = f_{\underline{ab}}^{\ k}S_{\underline{kc}}[\phi,\pi]$$

. We get a higher structure constant

$$\left\{ S_{\underline{a_0}}[\phi,\pi], \left\{ S_{\underline{a_1...}}[\phi,\pi], S_{\underline{\ldots a_k}}[\phi,\pi] \right\} \right\} = \left\{ S, \ldots \right\}$$

oraer k Jacobi ia. off-snell

Again, (l.h.s.) and (r.h.s.) vanish separately.

 $\pi] + \frac{1}{3} f_{\underline{abc}}^{\ \ k} S_k[\phi, \pi] + \frac{1}{3} \left\{ S, S_{\underline{abc}}[\phi, \pi] \right\}$

$$f_{abc}^{\ \ d}$$

We can repeat the same calculations by introducing a set of $\{S, S_a, S_{ab}, S_{abc}, ...\}$:

1. Homotopy algebra μ_{sym} in the realization of symmetries Intuitive explanation : the canonical formalism . We will get a set of structure constants $\{f_{ab}^{\ c}, f_{abc}^{\ d}, f_{abcd}^{\ e}, \dots\}$, a set of generators $\{S, S_a, S_{ab}, S_{abc}, ...\}$, and a set of algebraic relations : (r.h.s.) $\sum_{k} \left\{ S_{\underline{a_1 \dots a_k}}[\phi, \pi], S_{\underline{a_{k+1} \dots k}} \right\}$ (l.h.s.) $\sum \frac{1}{m!(n-m)!} f_{\underline{a_1}...,\underline{a_n}}$ $\underline{a_m}^{\nu} f_b \underline{a_{m+1} \dots a_n}^{\nu}$

. If there is no higher conservation low $\partial_{\mu}j^{\mu\nu} \approx 0$, higher f_{abc}^{d}, \ldots cannot occur.

$$\underbrace{a_n}_{l}[\phi,\pi] = \sum_l f_{\underline{a_1}\dots\underline{a_l}}^b S_{b\underline{a_{l+1}}\dots\underline{a_n}}[\phi,\pi]$$
$$\underbrace{b}_{l} f_{b\underline{a_{m+1}}\dots\underline{a_n}}^c = 0 \qquad \cdots \qquad L_{\infty}\text{-relations}$$

1. Homotopy algebra μ_{sym} in the realization of symmetries

Switch to the BV formalism

- We first consider a Lagrangian $S[\phi]$ without gauge degree. Then, the BV master action is this $S[\phi]$ itself.
- . Suppose that $S[\phi]$ is invariant under $\delta \phi = \epsilon^A \cdot \delta_A \phi$ (global sym).

- For these constants ϵ^A , we introduce constant ghosts ξ^A . Then, the action $S[\phi]$ is still invariant under $\delta \phi = \xi^A \cdot \delta_A \phi$.
- . We write φ for all ϕ, ϕ^* correctively.

1. Homotopy algebra μ_{sym} in the realization of symmetries Switch to the BV formalism . We can get generators $S_A[\phi] = S_A[\phi, \phi^*]$ satisfying

 $\delta_A \phi = (S_A[\varphi], \phi)$ with the BV

These symmetry generators take S_A

. These $S_A[\varphi]$ generate symmetries of the BV master action. We can always find these because (S,) is acyclic: we have $(S_A[\varphi], S) = 0$ now.

$$\text{/ bracket} (A, B) \equiv A \left[\frac{\overleftarrow{\delta}}{\delta \phi^a} \frac{\delta}{\delta \phi^*_a} - \frac{\overleftarrow{\delta}}{\delta \phi^*_a} \frac{\delta}{\delta \phi^a} \right] B$$

$${}_{A}[\varphi] \sim \int dx \, \phi_{a}^{*} \cdot \delta_{A} \phi^{a} + \cdots$$

I. Homotopy algebra μ_{sym} in the realization of symmetries Switch to the BV formalism

- . In BV, we can always find functionals $S_{AB}[\varphi]$ giving the off-shell equality: $(S_A[\varphi], S_B[\varphi]) = f_{AB}^{C} S_C[\varphi] + (S, S_{AB}[\varphi])$.
- We can repeat the same calculations as before. (Every step is precise in BV, which is not intuitive one unlike before.)

We get a set of algebras
$$\sum_{k} \left(S_{\underline{A_1 \dots A_k}}[\varphi], S_{\underline{A_{k+1} \dots A_n}}[\varphi] \right) = \sum_{l} f_{\underline{A_1 \dots A_l}}{}^B S_{\underline{B}\underline{A_{l+1} \dots A_n}}[\varphi]$$

& the L_∞-relations $\sum_{m} \frac{1}{m!(n-m)!} f_{\underline{A_1 \dots A_m}}{}^B f_{\underline{B}\underline{A_{m+1} \dots A_n}}{}^c = 0$.

1. Homotopy algebra μ_{sym} in the realization of symmetries The BV master equation is now modified The relation $\sum_{k} \left(S_{\underline{A_1 \dots A_k}}[\varphi], S_{\underline{A_{k+1} \dots A_n}}[\varphi] \right) = \sum_{l} f_{\underline{A_1 \dots A_l}}{}^B S_{\underline{B_{\underline{A_{l+1} \dots A_n}}}[\varphi]}$ provides that

the action $S_{bv}[\varphi]$ and source terms S

$$\frac{1}{2}\left(S_{bv}[\varphi] + S_{source}[\varphi,\xi], S_{bv}[\varphi] + S_{source}[\varphi,\xi]\right) = -\sum_{l} \frac{1}{k!} \frac{\partial S_{source}[\varphi,\xi]}{\partial \xi^{B}} f^{B}_{A_{1}\dots A_{k}} \xi^{A_{k}} \dots \xi^{A_{1}}$$

$$S_{source}[\varphi,\xi] \equiv \sum_{k} \frac{1}{k!} S_{A_1...A_k}[\varphi] \xi^{A_k} \dots \xi^{A_1} \text{ satisfy}$$

Comments on QFT with gauge degrees

- If your QFT has any gauge degree, first of all, you must solve the BV master equation and get a solution $S_{bv}[\varphi] = S[\phi] + \phi^* \delta \phi + \cdots$.
- . You can apply the same calculations to $S_{bv}[\varphi]$, instead of $S[\phi]$. Then, you can see symmetries of gauge invariant QFTs.

. If you want to consider symmetries of a gauge-fixed theory $S_{BRS}[\phi]$, it is the same as QFTs without gauge degrees.

Comments on the relation to conservation lows

- We introduced constant ghosts ξ^A for $\delta \phi = \epsilon^A \cdot \delta_A \phi$. These ξ^A come from usual conservation lows $\partial_A j^A \approx 0$. In many cases, these ξ^A have ghost number "1".
- . If there exist higher conservation low constant ghosts which have ghost number "n" may appear.

So, when QFT has a 1-form symmetry, constant ghosts ξ^A which have ghost number "1" or "2" naturally appear in the above procedure.

WS
$$\partial_{\mu_1} j^{\mu_1 \mu_2 \ldots \mu_n} pprox 0$$
 ,

Plan

(i) Homotopy algebra μ_{sym} in the realization of symmetries & How to incorporate μ_{sym} into $(\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$

(ii) Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ under the path-integral & Applications to several models

2. How to incorporate μ_{svm} into $(\mu_{svm} + \mu_{bv} + \cdots)^2 = 0$ Our Lagrangian's homotopy algebra

For simplicity, we consider a QFT without gauge degree.

- . In this case, we can find (S_{hv}, S_{hv})
- . The classical BV master equation

the (cyclic) L_∞ relations

- (Or assume that we could perform the Legendre transformation / gauge-fixing) and could obtain 1PI action / path-integrable gauge-fixed action : S_{1PI} / S_{RRS} .
 - Then, vertices of S_{1PI}/S_{RRS} may or may not have explicit \hbar dependence.)

,) = 0 and
$$\Delta S_{bv} = 0$$
.

on
$$(S_{bv}, S_{bv}) = 0$$
 gives

$$\sum_{m} \frac{1}{m!(n-m)!} \ \mu^{c}_{\underline{a_{n} \dots a_{m+1}}b} \ \mu^{b}_{\underline{a_{m} \dots a_{1}}} = 0$$

The relation between $\mu^{b}_{a_{1}...a_{n}}$ and $\mu_{bv} = \mu_{1} + \mu_{2} + \cdots$

• The relation
$$\sum_{m} \frac{1}{m!(n-m)!} \mu^{c} \frac{a_{n} \dots a_{m+1}}{m!(n-m)!} \mu^{c} \frac{a_{n} \dots a_{m+1}}{m!(n-m)!} \mu^{c} \frac{a_{m}}{m!(n-m)!}$$

. As $\partial_{\mu} j^{\mu} \approx 0$ and $d j^{D-1} \approx 0$, we can switch from $\mu^b_{a_1...a_n}$ to $\mu_n: H^{\otimes n} \to H$ (coder $\mu_n: T(H) \to T(H)$).

• So, we can get $(\mu_{bv})^2 = (\mu_1 + \mu_2 + \cdots)^2 = 0$ from $(S_{bv}, S_{bv}) = 0$.

 $a_{m} = 0$ is a "component" expression.

(Now, instead of dx^{μ} , we need to consider $d\varphi^{a}$ as bases of H.)

2. How to incorporate μ_{svm} into $(\mu_{svm} + \mu_{bv} + \cdots)^2 = 0$ We know that $(S_{bv}, S_{bv}) = 0 \iff (\mu_{bv})^2 = 0$

$$(S_{bv}, S_{bv}) = 0 \text{ gives } \sum_{m} \frac{1}{m!(n-m)!} \mu^{c}_{\underline{a_{n}\dots a_{m+1}b}} \mu^{b}_{\underline{a_{m}\dots a_{1}}} = 0 \text{, which is } (\mu_{bv})^{2} = 0 \text{.}$$

$$\text{Likewise, we consider } S_{sym}[\xi] = \sum_{n} \frac{1}{(n+1)!} \xi_{B}^{*} f^{B}_{A_{1}\dots A_{n}} \xi^{A_{n}} \dots \xi^{A_{1}} \text{ and } (\beta_{n})_{\xi} = \frac{\partial}{\partial \xi^{A}} \frac{\partial}{\partial \xi_{A}^{*}} - \frac{\partial}{\partial \xi^{*}A} \frac{\partial}{\partial \xi^{*}A} \cdot \frac{\partial}{\partial$$

Then, we find that

 $(S_{sym}[\xi], S_{sym}[\xi])_{\xi} = 0 \text{ gives } \sum \frac{1}{m!(n-m)!} f_{A_{1}}$

. These pieces will give $(\mu_{sym} + \mu_{bv})$

$$B_{M-1}B_{B}A_{m+1}\dots A_n^c = 0$$
, which is $(\mu_{sym})^2 = 0$.

$$(+\cdots)^2 = 0$$
.

We already obtained "..." of $(\mu_{sym} +$ • We learned that the action $S_{bv}[\varphi]$ and source terms $S_{source}[\varphi,\xi] \equiv \sum_{k} \frac{1}{k!} S_{A}$ satisfy $\frac{1}{2} \left(S_{bv}[\varphi] + S_{source}[\varphi, \xi], S_{bv}[\varphi] + S_{source}[\varphi, \xi] \right)$

The nil-potency of the classical BV is obstructed by global symmetries.

We can resolve it by adding $S_{sym}[\xi] = \sum_{k=1}^{\infty} S_{sym}[\xi] = \sum_{$

$$-\mu_{bv} + \cdots)^2 = 0$$

$${}_{A_1\ldots A_k}[\varphi]\,\xi^{A_k}\ldots\xi^{A_1}$$

$$\operatorname{tree}[\varphi,\xi] = -\sum_{l} \frac{1}{k!} \frac{\partial S_{source}[\varphi,\xi]}{\partial \xi^{B}} f^{B}{}_{A_{1}\dots A_{k}} \xi^{A_{k}} \dots \xi^{A_{1}}$$

$$\int \frac{1}{(n+1)!} \xi_B^* f_{A_1...A_n} \xi_A^{A_n} \dots \xi_A^{A_1} \text{ and } (,)_{\xi} = \frac{\partial}{\partial \xi_A} \frac{\partial}{\partial \xi_A^*} - \frac{\partial}{\partial \xi_A^*} \frac{\partial}{\partial \xi_A^*} \frac{\partial}{\partial \xi_A^*}$$

2. How to incorporate μ_{svm} into $(\mu_{svm} + \mu_{bv} + \cdots)^2 = 0$ We already obtained "..." of $(\mu_{sym} + \mu_{by} + \cdots)^2 = 0$

• We consider the sum

$$S_{total}[\varphi,\xi] \equiv S_{bv}[\varphi] + \underbrace{\sum_{k} \frac{1}{k!} S_{A_{1}...A_{k}}[\varphi] \xi^{A_{k}}...\xi^{A_{1}}}_{S_{source}[\varphi,\xi]} + \underbrace{\sum_{n} \frac{1}{(n+1)!} \xi^{*}_{B} f^{B}_{A_{1}...A_{n}} \xi^{A_{n}}...\xi^{A_{1}}}_{S_{sym}[\xi]}$$

- We also consider the sum of the anti-brackets $(\ ,\)_{\varphi,\xi} \equiv \left[\frac{\delta}{\delta d^a} \frac{\delta}{\delta d^*} - \frac{\delta}{\delta d^*} \frac{\delta}{\delta d^a}\right] + \left[\frac{\delta}{\partial \xi A} \frac{\partial}{\partial \xi^*} - \frac{\delta}{\partial \xi^*} \frac{\partial}{\partial \xi A}\right] \ .$

Then, we obtain $\left(S_{total}[\varphi,\xi], S_{total}[\varphi,\xi]\right)_{\varphi,\xi} = 0$, which is $(\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$.

What are inputs of these
$$\mu_{sym} \& \mu_{total}$$
?
We got the L_∞-relations : $\sum_{m} \frac{1}{m!(n-m)!} f_{\underline{A_1...A_m}}{}^B f_{\underline{B}\underline{A_{m+1}...A_n}}{}^c = 0$, which gives μ_{sym} .

Q. What is the vector space H_{ξ} on which μ_{svm} acts ? A. The vector space of constants ghosts $\xi = \xi^A \cdot e_A$ (e_A are "bases")

. Inputs of $\mu_{total} = \mu_{svm} + \mu_{bv} + \cdots$ are $S(H) \otimes S(H_{\xi})$.

- or its (symmetrized) tensor algebra $S(H_{\mathcal{E}})$.
- μ_{total} gives an open-closed homotopy algebra when we use A_{∞} description for Lagrangian's μ_{bv} .

Plan

(|)

Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ under the path-integral & Applications to several models

Homotopy algebra μ_{svm} in the realization of symmetries & How to incorporate μ_{sym} into $(\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$

2. Behavior of $\mu_{total} \equiv \mu_{svm} + \mu_{bv} + \cdots$ $(\mu_{total})^2 = 0$ in "effective" theories

- We first split $S_{bv}[\varphi]$ into the kinetic part $S_{free}[\varphi]$ and interacting part $S_{int}[\varphi]$: $S_{bv}[\varphi] = S_{free}[\varphi] + S_{int}[\varphi]$, which provides $\mu_{bv} = \mu_1 + \widetilde{\mu_2 + \dots}$.
- We split fields $\phi = \phi' + \phi''$ and define a generic "effective" action by integrating out ϕ'' , $[\phi'] \equiv \ln \left[D[\phi''] e^{S[\phi' + \phi'']} \right].$

$$P: S[\phi' + \phi''] \longmapsto A[$$

 Homological perturbation lemma guarantees that an effective one $\hbar \Delta' + (A[\phi'],)'$ is nilpotent, which gives $(\mu_{effective})^2 = 0$.

We can obtain $(\mu'_{sym})^2 = 0$ and $(\mu'_{total})^2 = 0$ recursively, as $(\mu'_{bv})^2 = 0$.

2. Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ $(\mu_{total})^2 = 0$ is preserved under the path-integral

We know ullet

 $(S_{free}[\varphi],)$ is nilpotent, which is $(\mu_1)^2 = 0$.

$$(S_{bv}[\varphi],) = (S_{free}[\varphi] + S_{int}[\varphi],)$$

• Now, we got

 $(S_{total}[\varphi,\xi],)_{\varphi,\xi} = (S_{bv}[\varphi],) +$

) is nilpotent, which is $(\mu_1 + \mu_{int})^2 = 0$.

$$_{\varphi,\xi} = (S_{bv}[\varphi],) + (S_{source}[\varphi, \xi] + S_{sym}[\xi],)_{\varphi,\xi}$$
 is nilpotent,
which is $(\mu_{total})^2 = (\mu_{sym} + \mu_{bv} + \dots)^2 = 0$.

2. Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ $(\mu_{total})^2 = 0$ is preserved under the path-integral

We also know

 $\hbar \Delta + (S_{free}[\varphi],)$ is nilpotent, which

 $\hbar \Delta + (S_{bv}[\varphi],) = \hbar \Delta + (S_{free}[\varphi] + S_{int}[\varphi],)$ is nilpotent, which is $(\hbar \Delta + \mu_{bv})^2 = 0$. • As long as symmetries $\delta \phi$ are not anomalous, $\int D[\phi] e^{S[\phi]} = \int D[\phi + \delta \phi] e^{S[\phi + \delta \phi]}$, we may get $\hbar \Delta + (S_{total}[\varphi, \xi],)_{\varphi,\xi} = \hbar \Delta + (S_{bv}[\varphi],) + (S_{source}[\varphi, \xi] + S_{sym}[\xi],)_{\varphi,\xi} \text{ is nilpotent,}$ which is $(\hbar\Delta + \mu_{total})^2 = (\mu_{svm} + \hbar\Delta + \mu_{bv} + \cdots)^2 = 0$.

We consider the Homological Perturbation connecting these.

is
$$(\hbar \Delta + \mu_1)^2 = 0$$
.

2. Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ Free theories give the Gaussians, which fixes the ambiguity

 $h'' \circlearrowright \left(\text{ state space }, (S_{\text{free }},) \right) \stackrel{p''}{\underset{i''}{\leftarrow}} \left(\begin{array}{c} \text{ on shell of } \phi'', (A_{\text{free }},) \end{array} \right)$

• Even if the path-integral of ϕ'' breaks the manifest invariance, we can read (non-linear) realization of symmetries in effective theories.

Since we can solve free QFTs, we start from a deformation retract of free theories :

where a BV propagator h'' gives a Hodge decomposition : $\mu_1'' h'' + h'' \mu_1'' = 1 - i'' p''$.

HPL tells us recursive relations

Tree part : realization of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ *in effective theories*

$$h'' \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{free}}, \)}_{\mu_{1}'+\mu_{1}''} \right) \stackrel{p''}{\leftarrow} \left(\underbrace{\text{ on shell of } \phi'', }_{\text{cohomology of } \mu_{1}''} \underbrace{(A_{free}, \)}_{\mu_{1}'} \right)$$

$$perturbation: (S_{\text{free}}, \) \longmapsto (S_{\text{bv}}, \) \equiv (S_{\text{free}}, \) + (S_{\text{int}}, \) \text{ gives the tree graph expansion}$$

$$h_{tree} \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{bv}}, \)}_{\mu_{1}'+\mu_{1}''} \right) \stackrel{p_{\text{ree}}}{\rightleftharpoons} \left(\underbrace{\text{ on shell of } \phi'', }_{\text{cohomology of } \mu_{1}''} \underbrace{(A[\phi'], \)}_{\mu_{bv}} \right)$$

$$perturbation: (S_{\text{bv}}, \) \longmapsto (S_{\text{total}}, \)_{\phi,\xi} \equiv (S_{\text{bv}}, \) + (S_{\text{source}} + S_{\text{sym}}, \)_{\phi,\xi}$$

$$\tilde{h}_{tree} \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{total}}, \)_{\phi,\xi}}_{\mu_{\text{total}}} \right) \stackrel{p_{\text{inve}}}{\rightleftharpoons} \left(\begin{array}{c} \text{ on shell of } \phi'', \\ (\text{ on shell of } \phi'', \ (A_{\text{total}}[\phi',\xi], \)_{\phi',\xi} \end{array} \right)$$

$$\tilde{h}_{tree} \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{total}}, \)_{\phi,\xi}}_{\mu_{\text{total}}} \right) \stackrel{p_{\text{inve}}}{\rightleftharpoons} \left(\begin{array}{c} \text{ on shell of } \phi'', \\ (\text{ on shell of } \phi'', \ (A_{\text{total}}[\phi',\xi], \)_{\phi',\xi} \end{array} \right)$$

$$\tilde{h}_{tree} \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{total}}, \)_{\phi,\xi}}_{\mu_{\text{total}}} \right) \stackrel{p_{\text{inve}}}{\longleftarrow} \left(\begin{array}{c} \text{ on shell of } \phi'', \\ (\text{ on shell of } \phi'', \ (A_{\text{total}}[\phi',\xi], \)_{\phi',\xi} \end{array} \right)$$

$$\tilde{h}_{tree} \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{total}}, \)_{\phi,\xi}}_{\mu_{\text{total}}} \right) \stackrel{p_{\text{inve}}}{\longleftarrow} \left(\begin{array}{c} \text{ on shell of } \phi'', \ (A_{\text{total}}[\phi',\xi], \)_{\phi',\xi} \end{array} \right)$$

$$As the BG-current relation in a generic QFT, we can get \\ \mu'_{\text{total}} \equiv \mu'_{\text{sym}} + \mu'_{bv} + \cdots \\ \text{ from recursive relations.}$$

Tree +

$$\begin{array}{l} \text{-loop: realization of } \mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots \text{ in effective theories} \\ h'' \circlearrowright \left(\text{ state space, } \underbrace{(S_{\text{free}}, \)}_{\mu_{1}^{'}+\mu_{1}^{''}} \right) \stackrel{p''}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ (A_{free}, \)}_{\mu_{1}^{'}} \right) \\ \downarrow \quad \text{perturbation: } (S_{\text{free}}, \) \longmapsto \hbar \Delta + (S_{\text{free}}, \) \text{ gives the Wick theorem} \\ h_{wick} \circlearrowright \left(\text{ state space, } \underbrace{\hbar\Delta + (S_{\text{free}}, \)}_{\hbar\Delta'+\mu_{1}'+\hbar\Delta''+\mu_{1}''} \right) \stackrel{P_{wick}}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ \underbrace{\hbar\Delta' + (A[\phi'], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \downarrow \quad \text{perturbation to obtain } \hbar \Delta + (S_{total}, \)_{\phi,\xi} \\ \end{array} \right) \stackrel{p_{wick}}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ \underbrace{\hbar\Delta' + (A[\phi'], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \downarrow \quad \text{perturbation to obtain } \hbar \Delta + (S_{total}, \)_{\phi,\xi} \\ \end{array} \right) \stackrel{p_{wick}}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ \underbrace{\hbar\Delta' + (A_{total}[\phi',\xi], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \downarrow \quad \text{perturbation to obtain } \hbar \Delta + (S_{total}, \)_{\phi,\xi} \\ \end{array} \right) \stackrel{p_{wick}}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ \underbrace{\hbar\Delta' + (A_{total}[\phi',\xi], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \downarrow \quad \text{perturbation to obtain } \hbar \Delta + (S_{total}, \)_{\phi,\xi} \\ \end{array} \right) \stackrel{p_{wick}}{\leftarrow} \left(\begin{array}{c} \text{on shell of } \phi'', \ \underbrace{\hbar\Delta' + (A_{total}[\phi',\xi], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \downarrow \quad \text{onomology of } \mu_{1}'', \ \underbrace{\hbar\Delta' + (A_{total}[\phi',\xi], \)}_{\hbar\Delta'+\mu_{1}'} \right) \\ \end{array}$$

$$h'' \circlearrowright (\text{state space}, (S_{\text{free}},)) \stackrel{p''}{\rightleftharpoons} (\underbrace{\text{on shell of } \phi'', (A_{\text{free}},)}_{\mu_1'}) \\ \downarrow \text{ perturbation} : (S_{\text{free}},) \mapsto \hbar \Delta + (S_{\text{free}},) \text{ gives the Wick theorem} \\ h_{\text{Wick}} \circlearrowright (\text{state space}, \underbrace{\hbar\Delta + (S_{\text{free}},)}_{\hbar\Delta' + \mu_1' + \hbar\Delta'' + \mu_1''}) \stackrel{P_{\text{Wick}}}{\rightrightarrows} (\underbrace{\text{on shell of } \phi'', \hbar\Delta' + (A[\phi'],)}_{(cohomology of \beta_1''}, \underbrace{\hbar\Delta' + (A[\phi'],)}_{\hbar\Delta' + \mu_1'}) \\ \downarrow \text{ perturbation to obtain } \hbar\Delta + (S_{\text{total}},)_{\phi,\xi} \\ \tilde{h}_{\text{Wick}} \circlearrowright (\text{ state space}, \underbrace{\hbar\Delta + (S_{\text{total}},)_{\phi,\xi}}_{\hbar\Delta + \mu_{\text{total}}}) \stackrel{\tilde{P}_{\text{Wick}}}{\rightleftharpoons} (\underbrace{\text{on shell of } \phi'', \hbar\Delta' + (A[\phi'],)}_{(cohomology of \beta_1''}, \underbrace{\hbar\Delta' + (A_{\text{total}}[\phi', \xi],)_{\phi',\xi}}_{\hbar\Delta' + \mu_{\text{total}}}) \\ \end{pmatrix}$$

We can get $\mu'_{q-total} \equiv \mu'_{sym} + \mu'_{bv} + \cdots$, which includes \hbar , from recursive relations.

Plan

(i) Homotopy algebra μ_{sym} in the realization of symmetries & How to incorporate μ_{sym} into $(\mu_{sym} + \mu_{bv} + \cdots)^2 = 0$

(ii) Behavior of $\mu_{total} \equiv \mu_{sym} + \mu_{bv} + \cdots$ under the path-integral & Applications to several models Two examples & comments

Applications

Examples of μ_{total} : Maxwell's theory

- We consider the Maxwell theory : $S_{bv}[\varphi]$
- Let us consider translations $\delta A_{\mu} = \epsilon^{\nu} \partial_{\nu} A_{\mu}$ and shifts $\delta A_{\mu} = \epsilon_{\mu\nu} x^{\nu}$ with $\epsilon_{\mu\nu} + \epsilon_{\nu\mu} = 0$. (The commutator is the gauge transformation with $\epsilon^{\mu}\epsilon_{\mu\nu}x^{\nu}$.)

$$S_{sym}[\xi] = \int dx \left[\underbrace{-\eta^* \xi^\mu \xi^\nu \xi_{\mu\nu}}_{\int d_{abc}} \right] \text{ and } S_{source}[\varphi, \xi] = \int dx \left[A^{*\mu} \left(\partial_\nu A_\mu \xi^\nu + x^\nu \xi_{\mu\nu} \right) + C^* \left(\partial_\mu C \xi^\mu + x^\mu \xi_{\mu\nu} \xi^\mu + \eta \right) \right]$$

$$= \int dx \left[\frac{-1}{4} F_{\mu\nu} F^{\mu\nu} + A^{*\mu} \partial_{\mu} C \right]$$

Usual currents — constant ghosts ξ_{μ} , $\xi_{\mu\nu}$ which have ghost # 1 appear.

• The Maxwell theory has higher order currents $\epsilon \partial_{\mu} F^{\mu\nu} \approx 0$, which gives constant shifts. a constant ghost η which has ghost # 2 appears.

(Likewise, 2-form abelian gauge theory $\int dx F_{\mu\nu\rho}F^{\mu\nu\rho}$ gives more interesting result.)

<u>Applications</u>

Examples of μ_{total} -transfer : Lorentz sym of light-cone SFT

- We consider Witten's open SFT : $S_{bv}[\varphi]$
- This is manifestly Lorentz covariant : $\delta \varphi$

- BRST operator has a similarity transform
- This gives Kato-Ogawa's no-ghost theorem $h^{long} \circlearrowright (\text{covariant states}, Q_{BR})$

 $\mu'_1 +$

$$= \frac{1}{2} \omega \left(\varphi, Q_{BRST} \varphi \right) + \frac{1}{3} \omega \left(\varphi, \mu_2(\varphi, \varphi) \right) .$$
$$= \epsilon_{\mu\nu} \int d\sigma X^{\mu}(\sigma) \frac{\delta}{\delta X^{\nu}(\sigma)} \varphi , \text{ which gives } S_{total}[\varphi, \xi] .$$

nation
$$Q_{BRST} = e^{-R} \left(\frac{\mu_1'}{c_0 L_0^{lightcone}} - p^+ \left(\sum_{\substack{n \neq 0}}^{\mu_1''} \frac{c_{-c} a_n^+}{c_{-c} a_n^+} \right) e^R \right)$$

Tem:
RST)
$$\stackrel{p^{long}}{\underset{i_{long}}{\leftarrow}}$$
 (lightcone states , $c_0 L_0^{lightcone}$
 $\overbrace{i_{long}}{\overset{\mu_1''}{\leftarrow}}$ cohomology of $\widehat{\mu}_1''$ $\overbrace{\mu_1'}{\overset{\mu_1'}{\leftarrow}}$

<u>Applications</u>

Examples of μ_{total} -transfer : Lorentz sym of light-cone SFT

• As a result of the perturbation, μ_{bv}

we obtain a Witten-type light-cone SFT with nonlinear Lorentz invariance.

Classical light-cone action :

$$S_{lightcone}[\varphi_{phys}] = \frac{1}{2}\omega(\varphi_{phys}, c_0 L_0^{lightcone}\varphi_{phys}) + \sum_{n=2}^{\infty} \frac{1}{n+1}\omega(\varphi_{phys}, \mu_n^{lightcone}(\varphi_{phys}, \dots, \varphi_{phys}))$$

Nonlinear Lorentz transformation :

$$\delta \varphi_{phys} = \mu_{Lorentz}[\varphi_{phys}, \xi] \equiv p^{long} \frac{1}{1 - (\mu_{total} - c_0 L_0^{lc}) h^{long}} i_{long} \delta \varphi^{cov}$$

• Lorentz symmetry follows from $[\mu_{lc}, \mu_{Lorentz}] = 0$ and cyclic property of $\mu_{Lorentz}$.

<u>Applications</u>

Comments

When we consider not Euclidean but topologically non-trivial space-time,

 μ_{total} takes different forms, unlike μ_{bv} .

• If you know nice toy models, please let me know. Any models are welcome : we can study them.

Thank you for your attention !

Please enjoy the YITP workshop

"Homotopy Alg. of QFT & Its Appl.".