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This talk is based on joint work with Brian R. Williams,
building on some ideas I thought about together with
Johannes Walcher and Richard Eager.

I’m also grateful to Martin Cederwall and Kevin Costello
(among others) for conversations.



A rough outline:

• Some unconventional reminders about classical BV
theories, and about supersymmetry

• A machine for producing classical (BRST or BV)
supermultiplets up to homotopy

• An unusual output in six dimensions and its
presymplectic interpretation

• Consistency checks, nonperturbative generalization,
electric/magnetic duality

We applied our formalism to compute all twists of the
abelian tensor multiplet, though I won’t discuss that in
detail today.



Underlying big idea:

A classical field theory consists of a sheaf: the solutions to
the equations of motion, considered up to gauge
equivalence.

A resolution replaces a (complicated) sheaf by a chain
complex E • of simpler ones: locally free sheaves, for
example.

Free field theories can be resolved by chain complexes of
vector bundles. The BRST formalism (Chevalley–Eilenberg
complex) resolves the quotient by gauge symmetries; the
BV formalism resolves the critical locus of the action
functional.



A field theory admits an action of the automorphisms of the
manifold where it is defined. In particular, a field theory on
affine space admits an action of the affine (Poincaré) group.

In a supersymmetric field theory, a larger super Lie algebra
containing the affine algebra acts. In fact, it admits a Z
grading.

In six dimensions, one such (complexified) algebra looks as
follows:

p= so(V)⊕sp(2)⊕ (S+⊗R2) [−1]⊕V[−2]. (1)

Here V ∼=C6 are the (complex) translations, S+ is the chiral
spinor representation of so(6), and R2

∼= (C4,ω) the defining
representation of sp(2). The interesting bracket uses
∧2S+ ∼=V, tensored with ω.



On the BRST or BV theory, this action is witnessed by an
L∞-module structure. (This module structure is rarely
strict.) An L∞ module structure can be defined on the
BRST theory only by using auxiliary fields; these are not
necessary in the BV theory, and are thought not to exist in
general.



The pure spinor superfield formalism uses the space MC(p)
of Maurer–Cartan elements in p to provide “bigger and
better” resolutions of supermultiplets:

• Everything is resolved locally freely, not just over
affine space, but over the superspace A(p+).

• Correspondingly, the L∞ p-module structure is strict
(and trivial to write down).

• In certain examples (gauge multiplets), the resolution
is in fact multiplicative (by a super-commutative
differential graded algebra over functions on A(p+)).

• Every equivariant sheaf over MC(p) produces a
supermultiplet. (It may be a BRST or BV multiplet,
depending on context.)

• There is a spectral sequence whose E1 page consists of
the component fields of the multiplet.



What happens in our example?

We use the structure sheaf OMC(p). The corresponding
super-commutative differential graded algebra is

A• = (
C∞(A(p+))⊗COMC(p), D=λaDa

)
. (2)

Here λa ∈ p∨1 are the linear coordinate functions that
generate OMC(p), and Da are the odd vector fields defining
the right action of p1 on A(p+).

Supersymmetry acts strictly via the left action on A(p+).
But note that p0 acts diagonally.



The resulting multiplet (in components):

−2 −1 0 1

Ω0 Ω1 Ω2 Ω3+

Ω0 ⊗CW Ω6 ⊗W

S−⊗R2 S+⊗R2

d d π+d

d?d

/∂

W is the five-dimensional representation of sp(2). (This
cohomology was first studied by Cederwall, Nilsson, and
Tsimpis; they were stymied by the lack of an obvious BV
structure.)



This is clearly resolving the correct object, with its linear
equations of motion. Furthermore, it has an explicit L∞
p-module structure with only ρ2-type correction terms
(worked out in our paper).

To interpret it as some kind of BV theory, we need to make
sense of the pairing.

Idea: Think of the self-dual two-form as obtained from a
nondegenerate two-form via a self-duality constraint.



A simple motivating example:

The underlying sheaf of the classical, two-dimensional
chiral boson just consists of holomorphic functions. This
has an obvious smooth resolution by the Dolbeault complex:

Ohol(C)∼=
(
Ω0,0 Ω0,1∂̄

)
. (3)

(In fact, this is the same as the self-dual complex.) It
admits a map to the BV theory of the free boson:

Ω0,0 Ω1,1

Ω0,0 Ω0,1

∂∂̄

id

∂̄

∂ (4)



(Shifted) symplectic structures do not pull back, but
(shifted) presymplectic structures do! We can thus define a
pairing on the Dolbeault complex by the formula

ω(α,α′)=
∫
α∧∂α′. (5)

In fact, this is “close” to being nondegenerate; viewing ω as
a skew map from E to E ![−1], its cone is the de Rham
complex of C—so that the kernel just consists of constant
functions.



In the usual symplectic world, there’s an equivalence

{functions/constants}↔ {Hamiltonian vector fields}, (6)

coming from the correspondence defined by the
Hamiltonian pairs

Ham(M,ω)= {(X, f ) : iXω= df }⊆Vect(M)⊕C∞(M). (7)

Giving the quadratic action functional S and the linearized
BV differential {S, ·} are thus equivalent.

In the presymplectic setting, this correspondence still
makes sense, but no longer includes all functions; there is a
notion of Hamiltonian observable. We get the BV
differential from the pure spinor setup for free.



We can similarly define a presymplectic BV pairing on the
self-dual complex by mapping it into the complex
representing the nondegenerate theory of abelian
two-forms:

Ω0 Ω1 Ω2 Ω4 Ω5 Ω6

Ω0 Ω1 Ω2 Ω3+

d?d

id id

π+d

id d

As above, the pairing is almost nondegenerate, up to a
single copy of constant functions in the kernel.



Armed with this formalism, we can start computing things.
For the experts: both twists of the abelian multiplet are
now known. The holomorphic twist is

Ω≤1,∗(X)[2]⊕
(
Ω0,∗(X)⊗K1/2 ⊗ΠR1[1]

)
, ω= ∂+ id; (8)

it is defined on any complex threefold X. Similarly, there is
a non-minimal twist, defined on the product of a Riemann
surface and a smooth four-manifold. It consists of the chiral
boson with values in the shift by two of the de Rham
cohomology of the four-manifold:

Ω0,∗(Σ)⊗CΩ∗
dR(M4)[2], ω= ∂Σ⊗ idM4 . (9)



Does this theory pass the usual consistency checks?

Yes—and in a way that teaches us new things.

The main test is dimensional reduction to 5d N = 2
Yang–Mills theory. The scalars and fermions are obvious,
so it reduces to considering dimensional reduction of the
self-dual complex, and getting the pairing right.



Upon reduction to five dimensions, our complex Ω≤3+ (R6)
becomes isomorphic to

−2 −1 0 1

Ω0 Ω1 Ω2 Ω3

Ω0 Ω1

d d d

d ?d

If β ∈Ω≤3[2] and α ∈Ω≤1[1], the pairing is

ω(α,β)=
∫
R5
α∧dβ.



This maps to the standard perturbative BV complex for
five-dimensional abelian Yang–Mills theory:

−2 −1 0 1 2

Ω0 Ω1 Ω2 Ω3

Ω0 Ω1

Ω0 Ω1 Ω4 Ω5

d d d

d
d

id

?d

id

d?d

It is clear that the map is compatible with the
(pre)symplectic structures. Again, the cone of this map is a
single copy of the constant sheaf.



What’s behind the annoying constant sheaves everywhere?

You might be tempted to think that these are mismatches,
or should be corrected somehow. In fact, they are there for
a good reason; in a sense, the failure of our arguments to
work perturbatively, on the nose, is a sign that Dirac
quantization is important.

It helps to spell out, in words, what sort of object our
dimensionally reduced complex is describing: a pair of a
one-form α and a two-form β, up to the usual gauge
invariances, and subject to the single condition, that

Fα =?Fβ.



This suggests a clear nonperturbative generalization,
inspired by Deligne cohomology: we should consider the
complex

Z Ω0 Ω1 Ω2 Ω3+.
π+d

Its dimensional reduction then consists of a pair of smooth
Deligne cohomology groups, representing the electric and
magnetic connections, and subject to the single constraint
that the curvatures are related by Hodge duality. In a
precise sense, the electric and magnetic degrees of freedom
are one another’s antifields.

Note that interpreting this sheaf as a BV theory is only
possible in the presymplectic world!



This sheds light both on the absence of a continuous
coupling constant in the 6d theory, and on the inverse
dependence of the 5d coupling constant on the
compactification radius.

There are many more things to be done. The obvious
$10,000 question is about using this formalism to study
interactions. A•, of course, wants to be tensored with some
kind of Lie 2-algebra. . .



Thanks for your attention!
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