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Motivation: Five Questions
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A first question 4/25

What is the algebraic structure underlying Courant algebroids?

Answers in the literature:
Roytenberg (2002):
An (exact) Courant algebroid is the symplectic dg-manifold

V2 = T ∗[2]T [1]M , ω = dxµ ∧ dpµ + dξµ ∧ dζµ ,

Q = {S,−} , S = ξµpµ
for M some manifold. Dorfman and Courant brackets:

[X,Y ]D = {QX,Y } , [X,Y ]C = 1
2

(
{QX,Y } − {QY,X}

)
cf. Rogers (2011):

[−,−]C part of L∞-algebra
[−,−]D part of dg-Leibniz algebra.

Is there more to it?
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Relevance of first question 5/25

This may be seem as a niche question, but:
Courant algebroids underlie Hitchin’s Generalized Geometry
Application in supergravity: Generalized tangent bundle
All generalized tangent bundles are symplectic L∞-algebroids
Dorfman bracket structure relevant in tensor hierarchies
Currently relevant: Double and Exceptional Field Theory.

In order to further understand supergravity:
understand symplectic L∞-algebroids!

Christian Saemann EL∞-algebras: Definition and Applications



A second, related question 6/25

What is the alg. structure underlying multisymplectic manifolds?

Answers in the literature:
Multisymplectic/p-plectic manifold (M,ω):

ω ∈ Ωp+1(M) , dω = 0 , ιXω = 0⇔ X = 0
comes with Hamiltonian p− 1-forms α with Xα:

ιXαω = dα
This leads to brackets:

[α, β]h = LXαβ , [α, β]s = ιXαιXβω

cf. Baez, Hoffnung, Rogers (2008), Rogers (2011):
[α, β]s is part of L∞-algebra
[α, β]h for p = 2 is part of hemistrict Lie 2-algebra.

Relation to symplectic L∞-algebroids:
The L∞-algebra of (M,ω) sits inside the L∞-algebra of
ω-twisted T ∗[2]T [1]M .
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Relevance of second question 7/25

Again, it sounds like a niche question, but:
Higher version of function algebras over symplectic manifolds.
Objects to be quantized in higher geometric quantization.
Crucial for emergent geometry from noncommutative spaces:

Traditional NC geometry: mostly Kähler manifolds
More general: Nambu-Poisson manifold
Physical arguments for these.
More general: multisymplectic manifolds
Abstract Nonsense suggests these

Also: gauge algebras for M2-brane models (fuzzy funnels)

In order to further understand emergent spacetimes
as well as M2-brane models:

understand multisymplectic geometry!
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A third question 8/25

How to construct “good” curvatures for non-abelian gauge
potentials in presence of B-field?

Answers in the literature:
Bergshoeff et al. (1982), Chapline et al. (1983): Use
Chern-Simons terms:

F = dA+ 1
2 [A,A] , H = dB + (A,dA) + 1

3(A, [A,A])

This is at odds with the “conventional” non-abelian gerbes:

F = dA+ 1
2 [A,A] , H = dB − 1

3(A, [A,A])

Sati, Schreiber (2009): Solution: twist definition of curvatures

F = dA+ 1
2 [A,A] , H = dB+(A,F )− 1

3(A, [A,A])

Where does (−,−) come from?
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Relevance of third question 9/25

Observation:
Traditional non-abelian gerbes: fake curvature F = 0

All naive definitions problematic unless F = 0:
Parallel transport
Topological invariants
Higher non-flat theories

Then: can gauge away non-abelian parts.

Need this geometry:
Tensor hierarchies of gauge supergravity
Heterotic supergravity
6d superconformal field theories
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Fourth question (mathematics) 10/25

What is a small cofibrant replacement for the operad Lie when
working over finite characteristic?

Just briefly:
Operads underlie and determined all kinds of algebras
Cofibrant replacement: replace by weakly equivalent object
with nice homotopy properties
Over characteristic 0, can replace Lie by Lie∞, the cobar
construction applied to the Koszul dual cooperad Lie¡.
Algebras over Lie∞ are just the usual L∞-algebras

Answers in the literature:
Higher cobar-bar adjunction, but result too big.
Dehling (2017): Step-by-step construction
Explicit for up to degree 3 (“Weak Lie 3-algebras”)
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Fifth question (mathematics)

Asked by Loday (1993):

What do Leibniz algebras integrate to (“coquecigrue problem”)?

Recall:
Leibniz algebra a:

{−,−} : a⊗ a→ a ,

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}}

Answer in the Literature:
Kinyon (2004): Lie racks

NB:
Coquecigrue: an imaginary creature
regarded as an embodiment of
absolute absurdity.
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Relevance of fourth and fifth questions

If we understood algebras properly, we should be able to answer
such questions, at least in principle, by Abstract Nonsense.
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Summary

All these questions:
1) Algebraic structure underlying symplectic L∞-algebroids?
2) Algebraic structure underlying multisymplectic manifolds?
3) Algebraic structure underlying higher curvature forms?
4) Cofibrant replacement of Lie?
5) How do you integrate Leibniz algebras?

have a simple, unifying answer:

EL∞-algebras
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Starting point of construction

Hint: Start with 2-plectic manifolds and hemistrict Lie algebras.

Math. Objects: Stuff + Structure + Structure Relations
E.g.: Lie algebra: Vector space V with Lie bracket [·, ·]:
[v, w] = −[w, v] and [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

Internal categorification:
“stuff” → (small) category, objects and morphisms of “stuff”
“structure” → functors
structure relations hold “up to isomorphisms”
functors satisfy coherence axioms

Weak Lie 2-algebra is a category L: Roytenberg, 2007
objects and morphisms form vector spaces
endowed with functor [·, ·] : L × L → L
natural trafos: Alt : [v, w]⇒ −[w, v]

Jac : [u, [v, w]]+[v, [w, u]]⇒ −[w, [u, v]]
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hLie-algebras 17/25

Lie 2-algebras are equivalent to differential graded algebras L with

ε2 : L⊗ L→ L , |ε2| = 0 , alt : L⊗ L→ L , |alt| = −1

Generalize, preserving differential compatibility: hLie-algebras

hLie-algebras
Graded vector space L with

ε1 : L→ L , |ε1| = 1 , εi2 : L⊗ L→ L , |εi2| = −i
such that

ε1(ε1(x1)) = 0 ,

ε1(ε
i
2(x1, x2)) = ±εi2(ε1(x1), x2)± εi2(x1, ε1(x2)) + εi−12 (x1, x2)∓ εi−12 (x2, x1)

εi2(ε
i
2(x1, x2), x3) = ±εi2(x1, εi2(x2, x3))∓ εi2(x2, εi2(x1, x3))∓ εi+1

2 (x2, ε
i−1
2 (x3, x1))

εj2(ε
i
2(x1, x2), x3) = ±εi+1

2 (x2, ε
j−1
2 (x3, x1))

εi2(ε
j
2(x1, x2), x3) = ±εj2(x1, ε

i
2(x2, x3))∓ εi2(x2, ε

j
2(x1, x3))± ε

i+1
2 (x3, ε

j−1
2 (x1, x2))

Generalizes hemistrict Lie 2-algs and specializes dg-Leibniz algs.
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Eilh-algebras 18/25

Recall:
Koszul dual of Lie is Com
Therefore:

L∞-algebras ↔ dg-com algebras
µi ↔ Q

Here:
Koszul dual of hLie is Eilh
Eilh has products �i of degree i
Relations dual to the one shown before (generalised Zinbiel)
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EL∞-algebras 19/25

EL∞-algebras
EL∞-algebra are homotopy hLie-algebras.
That is, graded vector space L with higher products

ε1 : L→ L , |ε1| = 1 ,

εi2 : L⊗ L→ L , |εi2| = −i

εij3 : L⊗ L⊗ L→ L , |εij3 | = −i− j ,
...

...
such that

ε1(ε1(x1)) = 0 ,

ε1(ε
i
2(x1, x2)) = ±εi2(ε1(x1), x2)± εi2(x1, ε1(x2)) + εi−12 (x1, x2)∓ εi−12 (x2, x1)

...
...

amounting to Q2 = 0 in the corresponding dual Eilh-algebra.

Note: if εIk = 0 for I 6= (0, 0, . . . , 0), then this is L∞-algebra.
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Properties of EL∞-algebras 20/25

They generalize:
(dg) Lie algebras
L∞-algebras
Roytenberg’s hemistrict and semistrict Lie 2-algebras
Dehlings weak Lie 3-algebras
⇒ They are weak Lie ∞-algebras

They specialize:
Leibniz algebras
homotopy Leibniz algebras

Properties:
Modified homotopy transfer (modified tensor trick)
Minimal model and strictification theorems
EL∞-algebras antisymmetrize to L∞-algebras
An L∞-algebras in each quasi-isomorphism class
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Answers to the questions I 21/25

1) Algebraic structure underlying symplectic L∞-algebroids?
Note: symplectic L∞-algebroids come with dg-Lie algebra
Theorem: Any dg-Lie algebra induces an hLie-algebra.
This hLie-structure produces Dorfman bracket.
Antisymmetrization produces Courant bracket.

2) Algebraic structure underlying multisymplectic manifolds?
Note: multisymplectic manifold come with dg-Lie algebra
extends the Lie algebra of Hamiltonian vector fields

L(M,$) =

 Ω0(M)︸ ︷︷ ︸
L(M,$)−n

d−−→ Ω1(M)︸ ︷︷ ︸
L(M,$)1−n

d−−→ . . .
d−−→ Ωn−1Ham(M)︸ ︷︷ ︸

L(M,$)−1

δ−−→ X(M)︸ ︷︷ ︸
L(M,$)0


Induced hLie-bracket yields hemistrict brackets
includes dg-Leibniz structure observed before.
Antisymmetrization recovers L∞-algebra structure
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Answers to the questions II 22/25

3) Algebraic structure underlying higher curvature forms?
∃ homotopy Maurer–Cartan theory, but not much richer.
Need to extend to Weil algebras to define curvatures
In all examples: adjusted Weil algebras exist.
EL∞-algebras allow for “nice, good” curvatures
Conjecture: in every quasi-isomorphism class, there is one
representant with an adjusted Weil algebra.
⇒ Good curvatures for any higher gauge algebra.

NB:
Literature: all kinds of variations of Leibniz algebras.
Some get close to special cases of hLie.
Gauge algebras: infinitesimal symmetries, need to integrate!
EL∞-algebras do this by Abstract Nonsense.
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Answers to the questions III 23/25

4) Cofibrant replacement of Lie?
Yes: hLie∞.

5) How do you integrate Leibniz algebras?
Theorem: Any Leibniz algebra is an hLie-algebra.
Any hLie-algebra is a Lie 2-algebra and thus integrable by
Abstract Nonsense.
Conjecture: Any homotopy Leibniz algebra is an EL∞-algebra,
and thus integrable by Abstract Nonsense.
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Summary 24/25

Constructed EL∞-algebras, special kind of homotopy algebra
Generalize L∞-algebras
They are higher Lie algebras, describe infinitesimal symmetries
Appear in many contexts in maths/physics. In particular:

Higher gauge theory
Tensor hierarchies of supergravity
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Thank You!
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