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Figure 1. The Galactic motions of the pulsars in our sample. A pulsar is currently at the position indicated by a circle and the track
indicates its motion for the last 1Myr assuming no radial velocity.

uncertainty less than 15mas yr−1 in at least one coordinate.
For 87 of these pulsars, these provide more precise proper
motions than the earlier measurements.

Direct distance measurements have only been obtained
for a small number of pulsars. The majority of distances
are estimated from the dispersion measure and a Galactic
electron density model. Using the Taylor & Cordes (1993;
hereafter TC93) model, Lyne & Lorimer (1994) found the
mean pulsar birth velocity2 to be 450(90) km s−1. Recently,
Cordes & Lazio (2002; hereafter CL02) provided an updated
model which, on average, predicts somewhat smaller dis-
tances than TC93 which will clearly have an impact on the
calculated velocities. Hereafter, we designate the velocities
derived from the two models as V TC and V CL.

Clearly, with these new proper motion determinations
and a new electron density model it is productive to revisit
the statistics of pulsar velocities. In Section 2, we describe
the sample of proper motions used in this work which com-
bines new results published in Paper I with other proper
motion values in the literature. In Section 3, we highlight
the effect of using the CL02 electron density model to ob-
tain pulsar distances and velocities. In Section 4 we examine
the statistical properties of various sub-samples of the ob-
served sample. Following a brief discussion of the motion
of pulsars in the Galactic plane in Section 5, we estimate
the 3-D birth speed distribution of non-millisecond pulsars

2 Throughout this paper, we will present the uncertainties on
parameters as a value in parenthesis after each quantity. The value
represents the error (at the 68% confidence level) in the least
significant digit.

in Section 6. Finally, in Section 7, we summarise our main
results and conclusions.

2 THE PROPER MOTION SAMPLE

Proper motions were selected from the literature with more
precise measurements taking precedence if multiple mea-
surements exist for a specific pulsar. In practice, these proper
motions were obtained from the ATNF pulsar catalogue3

(Manchester et al. 2005) or from Paper I. These proper mo-
tion measurements all have values greater than 2σ or have
an uncertainty less than 15mas yr−1. As discussed in Pa-
per I, for a pulsar lying in the ecliptic plane it is not pos-
sible, using timing methods, to obtain a precise estimate of
its proper motion in ecliptic latitude. Therefore, only the
longitudinal component of the proper motion has been mea-
sured for many of the pulsars in the sample. The timing so-
lutions for the 87 pulsars obtained from Paper I have been
updated using the most recent data available from the Jo-
drell Bank Observatory data archive. The timing solutions
were obtained in an identical manner to that described in
Paper I. The most recent observations used in these timing
solutions are from February 2004.

The resulting sample of 233 proper motions is provided
in Table 1. As detailed in the caption, Table 1 also includes
the 2-D speed (often referred to as the transverse speed),
V CL
T = µtotD

CL, and the difference in 2-D speed between
CL02 and TC93, V TC

T − V CL
T .

3 http://www.atnf.csiro.au/research/pulsar/psrcat
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Conventional (not interesting) scenario

L175
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ABSTRACT
Many neutron stars are observed to be moving with spatial velocities, in excess of 500 km s!1. A number of

mechanisms have been proposed to give neutron stars these high velocities. One of the leading classes of models
proposed invokes asymmetries in the core of a massive star just prior to collapse. These asymmetries grow during
the collapse, causing the resultant supernova to be also asymmetric. As the ejecta is launched, it pushes off (or
“kicks”) the newly formed neutron star. This Letter presents the first three-dimensional supernova simulations
of this process. The ejecta is not the only matter that kicks the newly formed neutron star. Neutrinos also carry
away momentum and the asymmetric collapse also leads to asymmetries in the neutrinos. However, the neutrino
asymmetries tend to damp out the neutron star motions, and even the most extreme asymmetric collapses presented
here do not produce final neutron star velocities above 200 km s!1.
Subject heading: stars: evolution
On-line material: color figures

1. INTRODUCTION

A neutron star is born when the core of a massive star col-
lapses to nuclear densities during the last stages of the star’s
life. It is during, or just after, the launch of a supernova ex-
plosion associated with neutron star birth that it is believed that
the nascent neutron stars receive the fast spins and large mag-
netic fields that allow them to be observed as pulsars. The
inferred velocities from individual pulsars (e.g., Guitar Nebula
Pulsar; Cordes, Romani, & Lundgren 1993) and pulsar velocity
distributions (Lyne & Lorimer 1994; Lorimer, Bailes, & Har-
rison 1997; Fryer, Burrows, & Benz 1998; Cordes & Chernoff
1998; Brisken et al. 2004) imply that neutron stars also receive
a kick, most likely at birth. In addition, specific neutron star
and black hole binaries are best explained by assuming that
neutron stars receive large kicks at birth (e.g., Fryer &Kalogera
1997; Kramer 1998; Tauris et al. 1999; Wex, Kalogera, &
Kramer 2000; Mirabel et al. 2002). Any supernova mechanism
must not only produce explosions but also explain features of
nascent neutron stars, such as spin, magnetic fields, and high
velocities.
Of all of these, theorists have been most hard-pressed to

explain the neutron star velocities. Most mechanisms by which
these kicks might be produced require extreme magnetic fields
(see Lai, Chernoff, & Cordes 2001 for a review). One of the
leading classes of models for kick production that avoids these
strong magnetic fields invokes global hydrodynamic pertur-
bations in the stellar core prior to collapse. These perturbations
are driven during the last few weeks of a star’s life. At the end
of its life, a star is composed of an iron core covered by a
succession of composition layers (from silicon down to hy-
drogen) produced by a series of nuclear burning stages in which
the ashes of each burning stage are the fuel for the next. The
final stages of a star’s life are marked by explosive burning in
the oxygen and silicon layers above the iron core (Bazan &
Arnett 1998). The large-scale convection driven by the burning
creates density variations in these oxygen and silicon shells.
Such asphericities, especially if dominated by low-order
( , 2) modes, cause asymmetries during the collapse,l p 1
bounce, and explosion of the stellar interior (Burrows & Hayes

1996). It is possible that the violent convection in shell burning
can also excite unstable modes in the star’s iron core, producing
asymmetries in the iron core itself, increasing the level of asym-
metry in the explosion (Lai & Goldreich 2000). These asym-
metries are believed to grow during collapse and bounce and,
ultimately, to produce asymmetric explosions and large neutron
star velocities.
In this Letter, the first three-dimensional collapse simulations

of the asymmetric-collapse kick mechanisms are presented. We
compare and contrast these simulations to the seminal two-
dimensional work by Burrows & Hayes (1996) that predicted
strong neutron star kicks from this mechanism.

2. COLLAPSE CODE AND INITIAL CONDITIONS

Our collapse calculations use the three-dimensional SNSPH
code (Fryer & Warren 2002; M. S. Warren, G. Rockefeller, &
C. L. Fryer 2004, in preparation). This code combines a parallel
Lagrangean hydrodynamics scheme (smooth particle hydro-
dynamics [SPH]) with a flux-limited diffusion neutrino trans-
port scheme. Gravity is calculated using a tree-based algorithm
described in Warren & Salmon (1995). The neutrino transport
and equation of state physics uses the same algorithms de-
scribed in Herant et al. (1994) and Fryer (1999). The Lagran-
gean nature of SPH is critical for this problem, as the proto–
neutron star is not fixed to any central point and the resolution
must follow this moving proto–neutron star. The entire 4p of
the star is modeled in three dimensions.
Beyond a neutrino optical depth, , of 0.03, the code assumestn

that the neutrinos escape the star without further affecting the
composition or hydrodynamics of the star. But we must still
account for the momentum lost by neutrinos at this boundary.
We assume that particles emit neutrinos isotropically over a
hemisphere with a net momentum emitted set to ,ˆ0.5(E /c)rn

where is the energy of the neutrinos, c is the speed of light,En

and is the radial direction of the particle. The momentum lostr̂
is taken from the emitting particle. In reality, neutrinos will
have some beaming, and the true answer for the momentum
carried away by neutrinos lies between .ˆ0.5 and 1.0(E /c)rn

For initial conditions, we use as a base model the 15 M,

Supernova is asymmetric → kick

Crab Nebula (Chandra)

Numerical simulation ~ 200 km/s

Fryer (2004)
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Anomalous hydrodynamics

Parity violating scattering / absorption

Neutrino beaming with CFL vortices (Blaschke et al. 2018)

Strengthen this…

Neutrino emission from CFL+B (Sagert and Schaffner-Bielich 2018)

Color-superconducting gap affects the neutrino mean free 
path in a dense medium ← QCD phases could be probed.
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Right-handed: 
spin parallel to 
momentum

Left-handed: 
spin antiparallel to 
momentum
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axial vector field the divergence of a vector current is
anomalous; one has [53]

@µjµ = e
e2

16º2

≥
Fµ∫

L F̃L,µ∫ ° Fµ∫
R F̃R,µ∫

¥
. (36)

One can write down an expansion of the current in terms
of the fields Aµ, A5

µ and their derivatives. The expres-
sion should be Lorentz covariant and U(1) gauge invari-
ant. Furthermore the current should satisfy the anomaly
constraint Eq. (36). To first order in the fields and deriva-
tives one obtains [53],

jµ = ° e2

4º2
≤µ∫ΩæeA5

∫FΩæ. (37)

The current is m-independent. This follows directly from
the anomalous divergence of the vector current, that has
no m-dependent contributions even with inclusion of a
mass term. However, the divergence of the axial vector
current is m-dependent. Therefore the axial vector cur-
rent induced by a magnetic field depends on mass. This
is indeed found in Ref. [44].

We can now use that eA5
0 = µ5 in Eq. (37), so that we

obtain the current density induced by a magnetic field,

j =
e2µ5

2º2
B. (38)

Since the last equation was obtained via a derivative ex-
pansion, the derivation assumes constant magnetic fields.

E. Discussion of derivations

We have argued in Sec. II that A5
µ = @µµ/2Nf up to a

coupling constant. Suppose we have a space-dependent
theta angle µ, for example formed by a domain wall. The
covariant current in Eq. (37) shows that an electric field
will induce a current perpendicular to the electric field on
the domain wall. Moreover, it shows that a magnetic field
will induce charge on the domain wall. The generation
of charge on domain walls or solitons was first discussed
by Goldstone and Wilczek [55]. Callan and Harvey [56]
have studied this mechanism as well in the context of
axionic cosmic strings. They however use pseudoscalar
coupling instead of axial vector coupling, but find a result
for the current which is equivalent to Eq. (37). It was
argued in Refs. [57, 58] that on domain walls formed
in certain semi-conductors currents could be generated
perpendicular to the electric field for the same reason. In
the context of charge separation in heavy-ion collisions,
the generation of charge on µ domain walls was discussed
by Kharzeev and Zhitnitsky [28].

Goldstone and Wilczek [55] have derived their current
using a perturbative one-loop calculation. It is also possi-
ble to compute our current perturbatively. One obtains
a triangle one-loop diagram with two vector couplings
and one axial vector coupling. As is well known, this
diagram contains the anomaly. If one includes the effect

of the chiral chemical potential in the fermion propaga-
tor, the diagram to compute is the photon polarization
tensor.

The axial anomaly generates the topological term
which is a color singlet. So no net color is separated
by the Chiral Magnetic Effect. Hence it is expected that
no additional chromo-electric fields are built up along the
direction of the magnetic field. Therefore a possible glu-
onic back-reaction can be neglected. This can also be
inferred from Eq. (36), since it will not be modified by
the presence of a gluonic background field. As a result,
the expression for the current Eq. (38) is correct even in
the presence of a time-independent gluonic field.

If the Chiral Magnetic Effect operates in a heavy-
ion collision, the current is generated in a finite vol-
ume. Hence charges are separated, so an electric field
will be built up along the direction of the magnetic field.
This could cause a back-reaction. We think that in the
study for the implications in heavy-ion collisions, this
back-reaction can be neglected, since the electric field is
small compared to the magnetic field (it only involves
a few charges, while the magnetic field is created by all
charges). Furthermore the electric force is small com-
pared to the gluonic force.

We have obtained the current for one fermion with
charge e. In the quark-gluon plasma there are 3 relevant
quark flavors, up, down and strange with charges qf =
2/3e,°1/3e and °1/3e which have Nc = 3 colors. The
total current will be the sum of the contributions of the
individual ones, which follow from the previous obtained
expressions by replacing e with qf , summing over flavors
and multiplying by the number of colors. This results in

J = Nc

X

f

qf

jqfΦ
2º

kLzµ5

º
. (39)

IV. CURRENT EXPRESSED IN CHIRAL
CHARGE

As we saw in the previous section, the induced current
is proportional to µ5. The chiral chemical potential µ5

is a parameter which induces an asymmetry between the
number density of right- and left-handed fermions n5 =
nR ° nL. Since the asymmetry is conserved by varying
the magnetic field or the temperature, µ5 will depend on
the magnetic field, temperature, and chemical potential.
In this section we will compute the conserved quantity
n5 as a function of µ5. We then will express µ5 in terms
of n5 in order to obtain the dependence of the induced
current on n5. This allows us to make comparisons of
the magnitude of the Chiral Magnetic Effect in different
situations. Moreover, it allows us to relate the current to
sphaleron dynamics, since the change in N5 is equal to
°2Nf times the winding number of the sphaleron.

In the computation we present here we will neglect the
effect of the gluons. At very large temperatures, this is
correct, since the coupling between gluons and quarks is

j5 =
e2µ

2⇡2
B

<latexit sha1_base64="fTqAY4OHYqhGRAC98kS4eYISHDo="></latexit>

Chiral Magnetic Effect

Chiral Separation Effect

Neutrino transport is even more affected by…
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chiral transport e↵ects, resulting in the simple picture

shown in Fig. 2.

FIG. 2. A neutron star rocket with neutrino propulsion:
Neutrinos are emitted from a proto-neutron star through chi-
ral transport e↵ects parallel to the magnetic field ~B. (a) The
general mechanism: each neutrino carries away the momen-
tum ~pi, producing a recoil ~pns = �

P
i ~pi on the neutron star.

(b) Illustration of the currents: J` ⇡ 0 but sizable J`5 means
that left-handed leptons flow opposite to right-handed ones.
Only the left-handed neutrinos can escape through the crust.

DISCUSSION

In this letter we have estimated anomalous transport

e↵ects in proto-neutron stars in a systematic hydrody-

namic framework. There are two independent e↵ects,

one causing neutrino emission along the axis of rotation,

and the other one causing emission along the magnetic

field of the proto-neutron star. The latter turns out to

be dominant by many orders of magnitude, and the neu-

trino recoil can indeed accelerate a typical proto-neutron

star to velocities of order 10
3
km/s, in agreement with

observations. The specific numbers given in the text are

based on order-of-magnitude estimates for the properties

of a neutron star, but we have provided the framework

and formulae to perform accurate calculations.

At the early times when the neutron star kicks hap-

pen, the crust is typically transparent for neutrinos only.

Studies of anomalous transport e↵ects for electrons alone

[28, 29] could therefore not explain the early kicks. In the

hydrodynamic framework we had to consider the clas-

sically conserved lepton number currents involving elec-

trons and neutrinos. The electrons are crucial in the bulk

of the neutron star and are only filtered out at the crust.

This leaves the neutrinos to escape and kick the neutron

star. Another di↵erence to previous approaches is that

we work in an e↵ective-field-theory description from the

outset. In previous studies of asymmetric neutrino emis-

sion as kick mechanism [2–4, 30], an asymmetry produced

by processes studied at the microscopic level had to be

evolved to macroscopic scales, and there su↵ered from

thermal wash-out. Our mechanism starts out directly

with a macroscopic parity-violating transport e↵ect on

the level of the e↵ective hydrodynamic description. A

short mean free path here is a necessary ingredient for the

hydrodynamic description to be valid, and not a problem.

The precise form of the transport terms also allows for

phenomenological conclusions. On a qualitative level, we

expect the kick to be aligned with the axis of rotation

only if the magnetic field is aligned with it. More quanti-

tatively, we find a precise relation between the properties

of the neutron star and the strength and direction of the

kick. The chiral e↵ect due to the vorticity in principle of-

fers access to mixed gravitational anomalies, which result

in a quadratic temperature dependence. For typical neu-

tron stars the e↵ect is outshined by the chiral e↵ects due

to the magnetic field, but there may be situations where

this is di↵erent. Finally, we note that the transport coef-

ficients could also be sensitive to torsional contributions

to the anomalies, discussed recently in [31], but leave a

detailed analysis for the future.
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Hydro regime is achieved by scatterings… 
Any contribution from scattering already?
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Neutrino — Nucleon Scattering (Arras-Lai 1998)

A. Differential cross section

The differential cross section, defined in Eq. !3.4", can be
evaluated analytically to linear order in B for general condi-
tions of nucleons. Since #BB!3.15"10#4gB14 MeV
!where B14 is the field strength in units of 1014 G" is much
smaller than the temperature or nucleon Fermi energy in the
proto-neutron star, an expansion in the lowest nonvanishing
power of B is an excellent approximation.
The matrix element, !Mss!(!,!!)!2, for the case in

which both the initial and final nucleon states are polarized
has been derived in Appendix A with the result $Eq. !A11"%

!Mss!!!,!!"!2!
1
2 GF

2 cV
2 &!1$3'2"$!1#'2"!•!!

$2'!'$1 "!s!$s!!!"•B̂#2'!'#1 "

"!s!!$s!!"•B̂$ss!$!1#'2"

"!1$!•!!"$4'2!•B̂!!•B̂%( !4.2"

where GF , cV , and '!cA /cV are the weak interaction con-
stants defined in Appendix A. The nucleon response func-
tion, defined in Eq. !3.5", has been calculated in Appendix B.
It can be written as Sss!!S0$)Sss! , where S0 is the spin-
independent B!0 result and )Sss! is the correction linear in
B. Combining the expressions for !Mss(!,!!)!2 and Sss!
into Eq. !3.4", we find

d*

dk!d+!
!A0!k ,k!,#!"$)A$!k ,k!,#!"!•B̂

$)A#!k ,k!,#!"!!•B̂, !4.3"

where #!!!•!! !not to be confused with the nucleon
magnetic moment, #B , or the nucleon chemical potential,
#N). The first term in Eq. !4.3" is the B!0 result:

A0!k ,k!,#!"!
k!2

!2,"3
-
s ,s!

!Mss!!!,!!"!2S0!q0 ,q "

!
k!2

!2,"3
2GF

2 cV
2 $!1$3'2"

$!1#'2"#!%S0!q0 ,q ", !4.4"

with

S0!q0 ,q "!
m2T
2,q

1

1#e#z ln" 1$exp!#x0"
1$exp!#x0#z "# , !4.5"

and we have defined

x0!
!q0#q2/2m "2

4T!q2/2m "
#

#N

T and z!
q0
T . !4.6"

The second and third terms in Eq. !4.3" correspond to the
corrections arising from nonzero B:

)A$!•B̂$)A#!!•B̂

!
k!2

!2,"3
-
s ,s!

!Mss!!!,!!"!2)Sss!!q0 ,q ", !4.7"

with the coefficients

)A%!k ,k!,#!"!
k!2

!2,"3
2GF

2 cV
2m2'#BB
,q

"
1

$exp!x0"$1%$1$exp!#x0#z "%

"$ 1%'
2mq0
q2 % . !4.8"

The reason for writing the cross section in the form of Eq.
!4.3" is that the angular dependence needed to find the mo-
ment equations !see Sec. IVC" is now manifest. Note that
the cross section in Eq. !4.3" exhibits parity violation. If the
parity operation is taken, the vectors ! and !! reverse sign
and the pseudovector B̂ keeps the same sign so that the cross
section does not retain the same form. Also note that the
cross section for scattering from the state ! to the state !!
does not have the same numerical value as the reverse pro-
cess. However, this does not mean that time reversal invari-
ance is violated. The inequality arises from averaging the
matrix element over the nucleon distribution functions. In-
deed, the matrix element in Eq. !4.2" can be explicitly shown
to satisfy time reversal invariance by simultaneously inter-
changing all initial and final state labels.

B. Differential cross section: Nondegenerate nucleon limit

Even after expanding the cross section in Eqs. !4.4" and
!4.8" for small magnetic fields, the expressions are still quite
difficult to evaluate in general. However, as discussed in Sec.
III, asymmetric drift flux can develop only when the neutrino
distribution deviates from thermal equilibrium !i.e., above
the decoupling sphere". This occurs in the regime where
nucleons are nondegenerate !at density ./1012
#1013 g cm#3). In this subsection we derive simplified ex-
pressions of A0 and )A% which will be useful for obtaining
the angular moments of the scattering term !Secs. IV C and
IVD" and neutrino flux.
For nondegenerate nucleons, the characteristic neutrino

energy transfer in each scattering is of order q0/k(T/m)1/2
&k . The cross section peaks sharply around k!!k , and we
can evaluate A0 , )A% in a series in the small parameter
(T/m)1/2. Define the dimensionless quantities

0!$4!1##!"T/m%1/2, u!
k!#k

0k , !4.9"

so that the range of u, the dimensionless neutrino energy, is
from #1/0 to 1 . Using the expansion of the nucleon re-
sponse function derived in Appendix B, we have, to linear
order in 0 ,

PHIL ARRAS AND DONG LAI PHYSICAL REVIEW D 60 043001
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 : Nucleon spin projection in the B axiss, s′￼

 : Neutrino momentum directionΩ, Ω′￼

Hint!
GF

!2
!̄N! "#$cV"cA"5%!N!̄&!"

#$1""5%!&#H.c.,

$A1%

where neutral current vector and axial coupling constants are
'10( given by9 cV!"1/2 and cA!"1.23/2 for &#n˜&
#n and cV!1/2"2 sin2)W!0.035 and cA!1.23/2 for &#p
˜&#p . Here GF!1.166$10"5 GeV"2 is the universal
Fermi constant and sin2)W!0.2325 ()W is the Weinberg
angle%.
The $nonrelativistic% nucleon wave function with four-

momentum P!(m#E ,p)!(m ,0) and spin four-vector S
!sB̂ is given by

!N!V"1/2UNeip•x"iEt, $A2%

$where V is the normalization volume and UN is the
4-spinor%, while the neutrino wave function with four mo-
mentum K!(k ,k!) is

!&!V"1/2U&eik•x"ikt. $A3%

For the antineutrino, replace U&exp(ik•x"ikt) with
V&exp("ik•x#ikt).
Plugging the wave functions into Eq. $A1%, the transition

rate W (S matrix squared divided by time% can be written

W$*p,s ,!+,*p!,s!,!!+%

!
1

V3
$2,%4-4$P#K"P!"K!%"Mss!$!,!!%"2 $A4%

where

"Mss!$!,!!%"2!
1
2 GF

2L#&N#&$s ,s!%, $A5%

L#&!U !̄&"#$1""5%U&Ū&"&$1""5%U&!

!
1

4kk!
Tr'K” !"#$1""5%K” "&$1""5%(

!
2

kk!
K!.K/X.#/& , $A6%

X.#/&!
1
4Tr'"."#"/"&$1""5%(

!g.#g/&"g./g#&#g.&g/#"i0.#/& , $A7%

N#&$s ,s!%!U !̄N"#$cV"cA"5%UNŪN"&$cV"cA"5%UN! ,
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where 0#&12 is the completely antisymmetric tensor with
00123!#1. The remaining traces can be evaluated by stan-
dard methods '77,78( with the result

"Mss!$!,!!%"2!
1
2 GF

2 cV
2 *$1#312%#$1"12%!•!!

#21$1#1 %$s!#s!!!%•B̂"21$1"1 %

$$s!!#s!!%•B̂#ss!'$1"12%

$$1#!•!!%#412!•B̂!!•B̂(+ $A11%

where we have defined 1!cA /cV .
Time-reversal invariance can be explicitly checked for the

matrix element in Eq. $A11%, or equivalently the S matrix in
Eq. $A4%, by simultaneously exchanging all initial and final
state labels.
For antineutrinos, one would just switch ! and !! in Eq.

$A11%.

APPENDIX B: NUCLEON RESPONSE FUNCTION FOR
SCATTERING

Following the procedure outlined in '10(, we first use
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!"#BBs!#(p2#q2#2pq#)/2m . Care must now be taken
to correctly integrate over the energy-conservation delta

9Raffelt and Seckel '75,76( considered the isoscalar contributions
to the scattering amplitude as well as the usual isospin pieces, and
suggested cV!"1/2 and cA!"1.15/2 for &#n˜&#n and cV
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where we have defined 1!cA /cV .
Time-reversal invariance can be explicitly checked for the

matrix element in Eq. $A11%, or equivalently the S matrix in
Eq. $A4%, by simultaneously exchanging all initial and final
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For antineutrinos, one would just switch ! and !! in Eq.
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where #!p•q/pq and E!!"#BBs!#(p#q)2/2m
!"#BBs!#(p2#q2#2pq#)/2m . Care must now be taken
to correctly integrate over the energy-conservation delta
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suggested cV!"1/2 and cA!"1.15/2 for &#n˜&#n and cV
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#n and cV!1/2"2 sin2)W!0.035 and cA!1.23/2 for &#p
˜&#p . Here GF!1.166$10"5 GeV"2 is the universal
Fermi constant and sin2)W!0.2325 ()W is the Weinberg
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momentum P!(m#E ,p)!(m ,0) and spin four-vector S
!sB̂ is given by

!N!V"1/2UNeip•x"iEt, $A2%

$where V is the normalization volume and UN is the
4-spinor%, while the neutrino wave function with four mo-
mentum K!(k ,k!) is

!&!V"1/2U&eik•x"ikt. $A3%

For the antineutrino, replace U&exp(ik•x"ikt) with
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and we use the sign conventions g00!#1, gi j!"- i j , and
00123!#1. The nucleon piece can be evaluated using the
spin projection operator '77( (1#"5"3s)/2 and the energy
projection operator (1#"0)/2 so that
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where 0#&12 is the completely antisymmetric tensor with
00123!#1. The remaining traces can be evaluated by stan-
dard methods '77,78( with the result
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where we have defined 1!cA /cV .
Time-reversal invariance can be explicitly checked for the

matrix element in Eq. $A11%, or equivalently the S matrix in
Eq. $A4%, by simultaneously exchanging all initial and final
state labels.
For antineutrinos, one would just switch ! and !! in Eq.

$A11%.

APPENDIX B: NUCLEON RESPONSE FUNCTION FOR
SCATTERING

Following the procedure outlined in '10(, we first use
d3p! to integrate over -3(p#q"p!) and then integrate over
the azimuthal angle for p, with the result
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where #!p•q/pq and E!!"#BBs!#(p#q)2/2m
!"#BBs!#(p2#q2#2pq#)/2m . Care must now be taken
to correctly integrate over the energy-conservation delta

9Raffelt and Seckel '75,76( considered the isoscalar contributions
to the scattering amplitude as well as the usual isospin pieces, and
suggested cV!"1/2 and cA!"1.15/2 for &#n˜&#n and cV
!1/2"2 sin2)W and cA!1.37/2 for &#p˜&#p .
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Absorption is important in the mechanism (skipped here).
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Asymmetry is quantified by replacement of 
from  to :(Ω, Ω′￼) (−Ω′￼, − Ω)
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where neutral current vector and axial coupling constants are
'10( given by9 cV!"1/2 and cA!"1.23/2 for &#n˜&
#n and cV!1/2"2 sin2)W!0.035 and cA!1.23/2 for &#p
˜&#p . Here GF!1.166$10"5 GeV"2 is the universal
Fermi constant and sin2)W!0.2325 ()W is the Weinberg
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!sB̂ is given by
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$where V is the normalization volume and UN is the
4-spinor%, while the neutrino wave function with four mo-
mentum K!(k ,k!) is

!&!V"1/2U&eik•x"ikt. $A3%

For the antineutrino, replace U&exp(ik•x"ikt) with
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where we have defined 1!cA /cV .
Time-reversal invariance can be explicitly checked for the

matrix element in Eq. $A11%, or equivalently the S matrix in
Eq. $A4%, by simultaneously exchanging all initial and final
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For antineutrinos, one would just switch ! and !! in Eq.
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APPENDIX B: NUCLEON RESPONSE FUNCTION FOR
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00123!#1. The remaining traces can be evaluated by stan-
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where we have defined 1!cA /cV .
Time-reversal invariance can be explicitly checked for the

matrix element in Eq. $A11%, or equivalently the S matrix in
Eq. $A4%, by simultaneously exchanging all initial and final
state labels.
For antineutrinos, one would just switch ! and !! in Eq.

$A11%.

APPENDIX B: NUCLEON RESPONSE FUNCTION FOR
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Following the procedure outlined in '10(, we first use
d3p! to integrate over -3(p#q"p!) and then integrate over
the azimuthal angle for p, with the result
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where #!p•q/pq and E!!"#BBs!#(p#q)2/2m
!"#BBs!#(p2#q2#2pq#)/2m . Care must now be taken
to correctly integrate over the energy-conservation delta

9Raffelt and Seckel '75,76( considered the isoscalar contributions
to the scattering amplitude as well as the usual isospin pieces, and
suggested cV!"1/2 and cA!"1.15/2 for &#n˜&#n and cV
!1/2"2 sin2)W and cA!1.37/2 for &#p˜&#p .
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2λ2(s − s′￼)(Ω − Ω′￼)

Asymmetry should occur only when 
the nucleon spin is flipped: s′￼= − s

Remember Wu’s experiment ( ) 
or ( ) under B.

60
27Co →60

28 Ni + e− + ν̄e + 2γ
d → u + e− + ν̄e
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B + Density = Axial Current

j5 =
e

2π2
μB

Chiral Separation Effect
This expression represents 
polarized electrons under B.

B B

It is a tempting idea to consider 
scattering between the background current 
and the neutrinos.
The current has small energy/momentum 
which suppresses absorption. 
→ Only scattering is relevant.
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2

B

FIG. 1. Schematic figures for the pulsar kick mechanisms.
(Left) Scattering between neutrinos and polarized nucleons
under the magnetic field. The parity violation in the weak
interaction induces anisotropy. (Right) Scattering between
neutrinos and the background axial current

we can refer to the model simulations of PNSs [34–36],
among which we specifically adopt the numerical results
from Ref. [34]. Because those simulations do not take ac-
count of the j5 e↵ect, we neglect this back-reaction here.
For other back-reaction such as anisotropy by the self-
energy, see Ref. [37]. We utilize the energy luminosity
of emitted neutrinos to restrict theoretical uncertainties
apart from these approximations.

Formulation: The axial current is the essential ingre-
dient for our pulsar-kick mechanism. To determine the
CSE-induced contribution to the axial current, we should
fix the parameters in the following formula:

j5,e =
e

2⇡2
µCSE(µe, me, T )B . (1)

We consider not the baryon but the electron contribution
only in the above formula. Due to the baryon mass much
larger than the typical PNS temperature, T ⇠ 10 MeV,
the baryon contributions are negligible. We introduced
the e↵ective chemical potential:

µCSE(µ, m, T ) =

Z 1

0
dq

⇥
f(q; µ, m, T )�f(q; �µ, m, T )

⇤
,

(2)

where f(q; µ, m, T ) = 1/[e(
p

q2+m2�µ)/T + 1]. It is easy
to confirm that µCSE(µ, m = 0, T ) = µ.

The electron mass is me = 0.511 MeV, and we need µe,
T , and B as functions of the time t. For this purpose we
adopt the results in Ref. [34]. For related works based on
Ref. [34], see Refs. [38–40] for example. From Ref. [34]
we took the PNS data for M = 1.6M� in the models
“GM3np”, “GM1np”, “GM3npH”, and “GM1npH”, re-
spectively. These are mean-field models in which pro-
tons and neutrons interact via ! and ⇢ exchange. GM1
and GM3 represent di↵erent coupling parameters and np
and npH represent whether hyperons are included. From
Figs. 9, 15, 16, 18 in Ref. [34], we take the baryon number
density, nB, the temperature, T , the net electron con-
centration, Ye = ne/nB, and the total neutrino energy

luminosity, LE , as functions of t where the supernova
explosion sets t = 0.

For given Ye and nB, we can numerically solve µe from
ne = YenB. As for B, our formulation requires some
anisotropy in the combination of µe and B. Therefore,
for convenience, we keep B = B0ez constant for the mo-
ment and implement anisotropy into the axial current
later.

Suppose the dependence on the radial distance r
is fixed, we obtain j5,e(r), and its Fourier transform,
j̃5,e(k). Using the polar coordinates in momentum space,
i.e., k = k(sin ✓ cos ', sin ✓ sin ', cos ✓)T , we can employ
the spherical harmonics, Y m

l (✓,'), as the general basis.
Without loss of generality we can expand the spherical
harmonics up to the first order, i.e.,

j̃5,e(k) = j̃5,e(k)
�
1 + ↵1 cos ✓ + · · ·

�
. (3)

This su�ces for our present purpose.
Hereafter, let us consider the process in the weak in-

teraction involving neutrinos and j̃5,e. The interacting
term in the e↵ective Lagrangian density for the weak
interaction density has two contributions from the neu-
tral and the charged currents. The neutral current rep-
resents ⌫ee ! ⌫ee via the Z exchange, i.e., LNC =
�

⇥
ē�µ(c⌫ee

L PL +c⌫ee
R PR)e

⇤
⌫̄e�µPL⌫e with PL = 1

2 (1��5)

and PR = 1
2 (1 + �5). Here, c⌫ee

L � c⌫ee
R '

p
2GF . This

form has direct coupling to the electron axial current and
the the interaction induced by the background current is
given by Le↵,NC = GF

2
p
2
(j5,e)µ⌫̄e�µ(1��5)⌫e. Also, the ef-

fective Lagrangian involving the charged current via the
W± exchange is identified from the Fierz transformation
as LCC = GFp

2
⌫̄e�µPLe ē�µPL⌫e. We can extract the cou-

pling to the electron axial current by taking the Fierz
transformation back, leading to Le↵,CC = 2Le↵,NC. In
total, we find the mean-field e↵ective interaction as

Le↵ =
3GF

2
p

2
(j5,e)µ⌫̄e�

µ(1 � �5)⌫e . (4)

The Fermi coupling is related to the Higgs condensate
as (

p
2GF )�1/2 = 246 GeV. The axial currents from

protons and neutrons involving u and d quarks are neg-
ligible because the nucleon mass is larger than the PNS
temperature by one order of magnitude.

We note that this e↵ective interaction describes the
scattering of neutrinos with the background axial cur-
rent field, i.e., ⌫e + j5,e ! ⌫e and that of anti-neutrinos,
i.e., ⌫̄e + j5,e ! ⌫̄e. We have neglected the pair produc-
tion and annhilation processes such as j5,e $ ⌫e + ⌫̄e.
We can justify this treatment from the typical energy
and time scales. That is, the PNS cools down within
the time of order of seconds, and the energy scale as-
sociated with time variation is extremely tiny, that is,
E ⇠ 1 s�1 ⇠ 10�21MeV. Therefore, we can regard the
axial current as a static background. The typical mo-
mentum scale should be characterized by the system size,

Axial Current +   
 = Symmetric Scattering 
    (No spin flip)

ν

Axial Current +   
  + Momentum Anisotropy 
  = Anisotropic Scattering 
      (Kick Acceleration)

ν
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FIG. 1. Schematic figures for the pulsar kick mechanisms.
(Left) Scattering between neutrinos and polarized nucleons
under the magnetic field. The parity violation in the weak
interaction induces anisotropy. (Right) Scattering between
neutrinos and the background axial current

we can refer to the model simulations of PNSs [34–36],
among which we specifically adopt the numerical results
from Ref. [34]. Because those simulations do not take ac-
count of the j5 e↵ect, we neglect this back-reaction here.
For other back-reaction such as anisotropy by the self-
energy, see Ref. [37]. We utilize the energy luminosity
of emitted neutrinos to restrict theoretical uncertainties
apart from these approximations.

Formulation: The axial current is the essential ingre-
dient for our pulsar-kick mechanism. To determine the
CSE-induced contribution to the axial current, we should
fix the parameters in the following formula:

j5,e =
e

2⇡2
µCSE(µe, me, T )B . (1)

We consider not the baryon but the electron contribution
only in the above formula. Due to the baryon mass much
larger than the typical PNS temperature, T ⇠ 10 MeV,
the baryon contributions are negligible. We introduced
the e↵ective chemical potential:

µCSE(µ, m, T ) =

Z 1

0
dq

⇥
f(q; µ, m, T )�f(q; �µ, m, T )

⇤
,

(2)

where f(q; µ, m, T ) = 1/[e(
p

q2+m2�µ)/T + 1]. It is easy
to confirm that µCSE(µ, m = 0, T ) = µ.

The electron mass is me = 0.511 MeV, and we need µe,
T , and B as functions of the time t. For this purpose we
adopt the results in Ref. [34]. For related works based on
Ref. [34], see Refs. [38–40] for example. From Ref. [34]
we took the PNS data for M = 1.6M� in the models
“GM3np”, “GM1np”, “GM3npH”, and “GM1npH”, re-
spectively. These are mean-field models in which pro-
tons and neutrons interact via ! and ⇢ exchange. GM1
and GM3 represent di↵erent coupling parameters and np
and npH represent whether hyperons are included. From
Figs. 9, 15, 16, 18 in Ref. [34], we take the baryon number
density, nB, the temperature, T , the net electron con-
centration, Ye = ne/nB, and the total neutrino energy

luminosity, LE , as functions of t where the supernova
explosion sets t = 0.

For given Ye and nB, we can numerically solve µe from
ne = YenB. As for B, our formulation requires some
anisotropy in the combination of µe and B. Therefore,
for convenience, we keep B = B0ez constant for the mo-
ment and implement anisotropy into the axial current
later.

Suppose the dependence on the radial distance r
is fixed, we obtain j5,e(r), and its Fourier transform,
j̃5,e(k). Using the polar coordinates in momentum space,
i.e., k = k(sin ✓ cos ', sin ✓ sin ', cos ✓)T , we can employ
the spherical harmonics, Y m

l (✓,'), as the general basis.
Without loss of generality we can expand the spherical
harmonics up to the first order, i.e.,

j̃5,e(k) = j̃5,e(k)
�
1 + ↵1 cos ✓ + · · ·

�
. (3)

This su�ces for our present purpose.
Hereafter, let us consider the process in the weak in-

teraction involving neutrinos and j̃5,e. The interacting
term in the e↵ective Lagrangian density for the weak
interaction density has two contributions from the neu-
tral and the charged currents. The neutral current rep-
resents ⌫ee ! ⌫ee via the Z exchange, i.e., LNC =
�

⇥
ē�µ(c⌫ee

L PL +c⌫ee
R PR)e

⇤
⌫̄e�µPL⌫e with PL = 1

2 (1��5)

and PR = 1
2 (1 + �5). Here, c⌫ee

L � c⌫ee
R '

p
2GF . This

form has direct coupling to the electron axial current and
the the interaction induced by the background current is
given by Le↵,NC = GF

2
p
2
(j5,e)µ⌫̄e�µ(1��5)⌫e. Also, the ef-

fective Lagrangian involving the charged current via the
W± exchange is identified from the Fierz transformation
as LCC = GFp

2
⌫̄e�µPLe ē�µPL⌫e. We can extract the cou-

pling to the electron axial current by taking the Fierz
transformation back, leading to Le↵,CC = 2Le↵,NC. In
total, we find the mean-field e↵ective interaction as

Le↵ =
3GF

2
p

2
(j5,e)µ⌫̄e�

µ(1 � �5)⌫e . (4)

The Fermi coupling is related to the Higgs condensate
as (

p
2GF )�1/2 = 246 GeV. The axial currents from

protons and neutrons involving u and d quarks are neg-
ligible because the nucleon mass is larger than the PNS
temperature by one order of magnitude.

We note that this e↵ective interaction describes the
scattering of neutrinos with the background axial cur-
rent field, i.e., ⌫e + j5,e ! ⌫e and that of anti-neutrinos,
i.e., ⌫̄e + j5,e ! ⌫̄e. We have neglected the pair produc-
tion and annhilation processes such as j5,e $ ⌫e + ⌫̄e.
We can justify this treatment from the typical energy
and time scales. That is, the PNS cools down within
the time of order of seconds, and the energy scale as-
sociated with time variation is extremely tiny, that is,
E ⇠ 1 s�1 ⇠ 10�21MeV. Therefore, we can regard the
axial current as a static background. The typical mo-
mentum scale should be characterized by the system size,
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FIG. 1. Schematic figures for the pulsar kick mechanisms.
(Left) Scattering between neutrinos and polarized nucleons
under the magnetic field. The parity violation in the weak
interaction induces anisotropy. (Right) Scattering between
neutrinos and the background axial current

we can refer to the model simulations of PNSs [34–36],
among which we specifically adopt the numerical results
from Ref. [34]. Because those simulations do not take ac-
count of the j5 e↵ect, we neglect this back-reaction here.
For other back-reaction such as anisotropy by the self-
energy, see Ref. [37]. We utilize the energy luminosity
of emitted neutrinos to restrict theoretical uncertainties
apart from these approximations.

Formulation: The axial current is the essential ingre-
dient for our pulsar-kick mechanism. To determine the
CSE-induced contribution to the axial current, we should
fix the parameters in the following formula:

j5,e =
e

2⇡2
µCSE(µe, me, T )B . (1)

We consider not the baryon but the electron contribution
only in the above formula. Due to the baryon mass much
larger than the typical PNS temperature, T ⇠ 10 MeV,
the baryon contributions are negligible. We introduced
the e↵ective chemical potential:

µCSE(µ, m, T ) =

Z 1

0
dq

⇥
f(q; µ, m, T )�f(q; �µ, m, T )

⇤
,

(2)

where f(q; µ, m, T ) = 1/[e(
p

q2+m2�µ)/T + 1]. It is easy
to confirm that µCSE(µ, m = 0, T ) = µ.

The electron mass is me = 0.511 MeV, and we need µe,
T , and B as functions of the time t. For this purpose we
adopt the results in Ref. [34]. For related works based on
Ref. [34], see Refs. [38–40] for example. From Ref. [34]
we took the PNS data for M = 1.6M� in the models
“GM3np”, “GM1np”, “GM3npH”, and “GM1npH”, re-
spectively. These are mean-field models in which pro-
tons and neutrons interact via ! and ⇢ exchange. GM1
and GM3 represent di↵erent coupling parameters and np
and npH represent whether hyperons are included. From
Figs. 9, 15, 16, 18 in Ref. [34], we take the baryon number
density, nB, the temperature, T , the net electron con-
centration, Ye = ne/nB, and the total neutrino energy

luminosity, LE , as functions of t where the supernova
explosion sets t = 0.

For given Ye and nB, we can numerically solve µe from
ne = YenB. As for B, our formulation requires some
anisotropy in the combination of µe and B. Therefore,
for convenience, we keep B = B0ez constant for the mo-
ment and implement anisotropy into the axial current
later.

Suppose the dependence on the radial distance r
is fixed, we obtain j5,e(r), and its Fourier transform,
j̃5,e(k). Using the polar coordinates in momentum space,
i.e., k = k(sin ✓ cos ', sin ✓ sin ', cos ✓)T , we can employ
the spherical harmonics, Y m

l (✓,'), as the general basis.
Without loss of generality we can expand the spherical
harmonics up to the first order, i.e.,

j̃5,e(k) = j̃5,e(k)
�
1 + ↵1 cos ✓ + · · ·

�
. (3)

This su�ces for our present purpose.
Hereafter, let us consider the process in the weak in-

teraction involving neutrinos and j̃5,e. The interacting
term in the e↵ective Lagrangian density for the weak
interaction density has two contributions from the neu-
tral and the charged currents. The neutral current rep-
resents ⌫ee ! ⌫ee via the Z exchange, i.e., LNC =
�

⇥
ē�µ(c⌫ee

L PL +c⌫ee
R PR)e

⇤
⌫̄e�µPL⌫e with PL = 1

2 (1��5)

and PR = 1
2 (1 + �5). Here, c⌫ee

L � c⌫ee
R '

p
2GF . This

form has direct coupling to the electron axial current and
the the interaction induced by the background current is
given by Le↵,NC = GF

2
p
2
(j5,e)µ⌫̄e�µ(1��5)⌫e. Also, the ef-

fective Lagrangian involving the charged current via the
W± exchange is identified from the Fierz transformation
as LCC = GFp

2
⌫̄e�µPLe ē�µPL⌫e. We can extract the cou-

pling to the electron axial current by taking the Fierz
transformation back, leading to Le↵,CC = 2Le↵,NC. In
total, we find the mean-field e↵ective interaction as

Le↵ =
3GF

2
p

2
(j5,e)µ⌫̄e�

µ(1 � �5)⌫e . (4)

The Fermi coupling is related to the Higgs condensate
as (

p
2GF )�1/2 = 246 GeV. The axial currents from

protons and neutrons involving u and d quarks are neg-
ligible because the nucleon mass is larger than the PNS
temperature by one order of magnitude.

We note that this e↵ective interaction describes the
scattering of neutrinos with the background axial cur-
rent field, i.e., ⌫e + j5,e ! ⌫e and that of anti-neutrinos,
i.e., ⌫̄e + j5,e ! ⌫̄e. We have neglected the pair produc-
tion and annhilation processes such as j5,e $ ⌫e + ⌫̄e.
We can justify this treatment from the typical energy
and time scales. That is, the PNS cools down within
the time of order of seconds, and the energy scale as-
sociated with time variation is extremely tiny, that is,
E ⇠ 1 s�1 ⇠ 10�21MeV. Therefore, we can regard the
axial current as a static background. The typical mo-
mentum scale should be characterized by the system size,

In momentum space:

From the literature of numerical 
simulations, this asymmetry 
parameter is 0 ~ 0.3

Fukushima-Yu (2024)
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FIG. 1. Schematic figures for the pulsar kick mechanisms.
(Left) Scattering between neutrinos and polarized nucleons
under the magnetic field. The parity violation in the weak
interaction induces anisotropy. (Right) Scattering between
neutrinos and the background axial current

we can refer to the model simulations of PNSs [34–36],
among which we specifically adopt the numerical results
from Ref. [34]. Because those simulations do not take ac-
count of the j5 e↵ect, we neglect this back-reaction here.
For other back-reaction such as anisotropy by the self-
energy, see Ref. [37]. We utilize the energy luminosity
of emitted neutrinos to restrict theoretical uncertainties
apart from these approximations.

Formulation: The axial current is the essential ingre-
dient for our pulsar-kick mechanism. To determine the
CSE-induced contribution to the axial current, we should
fix the parameters in the following formula:

j5,e =
e

2⇡2
µCSE(µe, me, T )B . (1)

We consider not the baryon but the electron contribution
only in the above formula. Due to the baryon mass much
larger than the typical PNS temperature, T ⇠ 10 MeV,
the baryon contributions are negligible. We introduced
the e↵ective chemical potential:

µCSE(µ, m, T ) =

Z 1

0
dq

⇥
f(q; µ, m, T )�f(q; �µ, m, T )

⇤
,

(2)

where f(q; µ, m, T ) = 1/[e(
p

q2+m2�µ)/T + 1]. It is easy
to confirm that µCSE(µ, m = 0, T ) = µ.

The electron mass is me = 0.511 MeV, and we need µe,
T , and B as functions of the time t. For this purpose we
adopt the results in Ref. [34]. For related works based on
Ref. [34], see Refs. [38–40] for example. From Ref. [34]
we took the PNS data for M = 1.6M� in the models
“GM3np”, “GM1np”, “GM3npH”, and “GM1npH”, re-
spectively. These are mean-field models in which pro-
tons and neutrons interact via ! and ⇢ exchange. GM1
and GM3 represent di↵erent coupling parameters and np
and npH represent whether hyperons are included. From
Figs. 9, 15, 16, 18 in Ref. [34], we take the baryon number
density, nB, the temperature, T , the net electron con-
centration, Ye = ne/nB, and the total neutrino energy

luminosity, LE , as functions of t where the supernova
explosion sets t = 0.

For given Ye and nB, we can numerically solve µe from
ne = YenB. As for B, our formulation requires some
anisotropy in the combination of µe and B. Therefore,
for convenience, we keep B = B0ez constant for the mo-
ment and implement anisotropy into the axial current
later.

Suppose the dependence on the radial distance r
is fixed, we obtain j5,e(r), and its Fourier transform,
j̃5,e(k). Using the polar coordinates in momentum space,
i.e., k = k(sin ✓ cos ', sin ✓ sin ', cos ✓)T , we can employ
the spherical harmonics, Y m

l (✓,'), as the general basis.
Without loss of generality we can expand the spherical
harmonics up to the first order, i.e.,

j̃5,e(k) = j̃5,e(k)
�
1 + ↵1 cos ✓ + · · ·

�
. (3)

This su�ces for our present purpose.
Hereafter, let us consider the process in the weak in-

teraction involving neutrinos and j̃5,e. The interacting
term in the e↵ective Lagrangian density for the weak
interaction density has two contributions from the neu-
tral and the charged currents. The neutral current rep-
resents ⌫ee ! ⌫ee via the Z exchange, i.e., LNC =
�

⇥
ē�µ(c⌫ee

L PL +c⌫ee
R PR)e

⇤
⌫̄e�µPL⌫e with PL = 1

2 (1��5)

and PR = 1
2 (1 + �5). Here, c⌫ee

L � c⌫ee
R '

p
2GF . This

form has direct coupling to the electron axial current and
the the interaction induced by the background current is
given by Le↵,NC = GF

2
p
2
(j5,e)µ⌫̄e�µ(1��5)⌫e. Also, the ef-

fective Lagrangian involving the charged current via the
W± exchange is identified from the Fierz transformation
as LCC = GFp

2
⌫̄e�µPLe ē�µPL⌫e. We can extract the cou-

pling to the electron axial current by taking the Fierz
transformation back, leading to Le↵,CC = 2Le↵,NC. In
total, we find the mean-field e↵ective interaction as

Le↵ =
3GF

2
p

2
(j5,e)µ⌫̄e�

µ(1 � �5)⌫e . (4)

The Fermi coupling is related to the Higgs condensate
as (

p
2GF )�1/2 = 246 GeV. The axial currents from

protons and neutrons involving u and d quarks are neg-
ligible because the nucleon mass is larger than the PNS
temperature by one order of magnitude.

We note that this e↵ective interaction describes the
scattering of neutrinos with the background axial cur-
rent field, i.e., ⌫e + j5,e ! ⌫e and that of anti-neutrinos,
i.e., ⌫̄e + j5,e ! ⌫̄e. We have neglected the pair produc-
tion and annhilation processes such as j5,e $ ⌫e + ⌫̄e.
We can justify this treatment from the typical energy
and time scales. That is, the PNS cools down within
the time of order of seconds, and the energy scale as-
sociated with time variation is extremely tiny, that is,
E ⇠ 1 s�1 ⇠ 10�21MeV. Therefore, we can regard the
axial current as a static background. The typical mo-
mentum scale should be characterized by the system size,

Effective interaction between background axial current 
and neutrinos (from NC and CC both).

3

and we can expect p ⇠ 1/(10 km) ⇠ 10�17 MeV. These
scales, E ⌧ p, are too small as compared to the QCD
scale, and the energy-momentum conservation in e↵ect
prohibits the pair production and annihilation processes.

In this way we can just focus on the scattering pro-
cesses. We can estimate the amplitude for ⌫e(k1)+j5,e !
⌫e(k2), where k1 and k2 are the four-momenta carried by
the incoming and the outgoing neutrinos as

iM(k1, k2) = i
3GFp

2
�†
L(k2)�̄

µ�L(k1) (j̃5,e(k2 � k1))µ ,

(5)
where �L is a solution of the Weyl equation for the
neutrino satisfying kµ�̄µ�L = 0. The solution takes
a form of �L(k) = (

p
Ek � kz, ei'(k)

p
Ek + kz)T with

Ek = |k| and ei'(k) = (kx + iky)/
p

(kx)2 + (ky)2. Using
the polar coordinates in momentum space, we can sim-
plify the expression as �L(k) =

p
2Ek(sin ✓k

2 , ei'k cos ✓k
2 ).

We choose the z-axis along B k j5,e. Then,

the coupled neutrino current is �†
L(k2)�z�L(k1) =

2
p

E1E2[sin
✓2
2 sin ✓1

2 � ei('1�'2) cos ✓2
2 cos ✓1

2 ]. Here, for
notation brevity, we introduced the notation, E1, ✓1,
and '1 for the energy and the angular variables in-
stead of Ek1 , ✓k1 , and 'k1 , and E2, ✓2, and '2 sim-
ilarly. The squared quantity is |�†

L(k2)�z�L(k1)|2 =
2E1E2[1+cos ✓1 cos ✓2 � sin ✓1 sin ✓2 cos('1 �'2)]. In the
same way we get the amplitude for ⌫̄e(k1)+j5,e ! ⌫̄e(k2)

by �†
L(k2) ! �†

L(k1) and �L(k1) ! �L(k2) in Eq. (5).
After all, the cross section associated with the scatter-

ing between (anti-)neutrinos and the electron axial cur-
rent turns out to be

d� = d�̄ =
1

2E1
|M(k1, k2)|22⇡�(E2 � E1)

d3k2

2E2(2⇡)3

=
9G2

F

16⇡2
[1 + cos ✓1 cos ✓2 � sin ✓1 sin ✓2 cos('1 � '2)]

⇥ |j̃z5,e(k2 � k1, t)|2 �(E2 � E1) d3k2 . (6)

From the scattering cross-section, we can express the
pulsar kick acceleration originating from the recoil of the
scattering as follows:

a(t) = � 1

M

Z
(k2 � k1)

d⌦1

4⇡

1

⇡R2

dL

dE1
dE1d� (7)

Here, M and R represent the mass and the radius of the
PNS and d⌦1 is the angular integration with respect to
k1. We note that L is the observed number luminosity
of neutrinos emitted from the PNS. Thus, our estimate
includes the contribution of the emitted neutrinos only
quantified by L. When neutrinos are rescattered and
reabsorbed in the PNS, they have no net e↵ect to the
acceleration, but our formula involving L has no such
contribution by construction. In the above formula, we
can safely neglect the time dependence in M , while we
treat R(t) as a time-dependent quantity. Plugging the

explicit form of d� into this expression, we then reach

a(t) = � 9G2
F

64⇡4MR(t)2

Z
d⌦1d⌦2dEE2

⇥ [1 + cos ✓1 cos ✓2 � sin ✓1 sin ✓2 cos('1 � '2)]

⇥ (k2 � k1) |j̃z5,e(k2 � k1, t)|2
dL(t)

dE
, (8)

where we denoted the energy as E = E1 = E2. For the
concrete estimate for the luminosity, for simplicity, we
assume a simple relation between the number luminos-
ity L and the energy luminosity LE (the latter can be
deduced from Ref. [34]) as

dL(t)

dE
=

LE(t)

hE⌫(t)i
�(E � hE⌫(t)i) , (9)

where hE⌫(t)i is the mean neutrino energy deduced from
the temperature at the neutrino sphere.

We substitute Eqs. (3) and (9) into Eq. (8) and find
that the acceleration can be separated into the 0-th order
part and the 1-st order part with respect to ↵1 as a(t) =
a(0)(t) + a(1)(t), where the 0-th order part is vanishing
due to symmetry.

To further simplify a(1)(t), we introduce an approxi-
mation that works for |�k| = |k2 � k1| ⇠ 10�17 MeV ⌧
|k1| = |k2| = hE⌫(t)i. Then, we can drop higher order
terms in |�k|/|k1,2|. After some algebraic procedures, we
find:

az
(1)(t) = �↵1

3G2
F hE⌫(t)iLE(t)

10⇡2MR(t)2
1

k2

Z
d�k �k2|j̃z5,e(�k, t)|2 .

(10)

It is straightforward to confirm (a)x,y(t) = 0, which is
understood from axial symmetry around the z-axis.

In summary, introducing a dimensionless variable ⇢ by
�k = hE⌫(t)i⇢, we can write down the total acceleration
as

a(t) = êz az
(1)(t)

= �êz ↵1
3G2

F hE⌫(t)i2 LE(t)

10⇡2MR(t)2

Z 1

0
d⇢ ⇢2|j̃z5,e(hE⌫(t)i⇢, t)|2 .

(11)

This expression for the kick acceleration is the central
result in this work.

Numerical results: Now, we should perform the ⇢ in-
tegration in Eq. (11) numerically and estimate the pulsar
kick velocity quantitatively.

We parametrized the magnetic field strength by B0

and in this work we choose B0 = 1012 T. Although this
value is relatively high as compared to the standard NS
strength, the magnetic field of the PNS is typically large
and this value is rather a conservative choice in pulsar
kick models driven by the magnetic field; see Refs. [17,
18, 27, 31, 41–43] for related works with comparable B0.

Neutrino number 
luminosity
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We took the time evolution of proto-neutron star from 
Pons-Reddy-Prakash-Lattimer-Miralles (1998)

– 51 –

Fig. 9.—

As a function of time and 
 that represents  for 

convenience, all the 
physical quantites are given.

MB r

Simulation should be updated 
with coupling to background 
current (and anomalous 
transport) — future work!
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Time evolution and spatial distribution of density profile. 
Now, , is assumed to be constant in space/time. 
This profile is translated to the distribution of the current.

B = 1012T

Fukushima-Yu (2024)
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Final velocity for several models (discussed in Pons et al.)

|vkick | ≈
|α1 |
0.1 ( B0

1012T )2 × 1000km/s

This is certainly one 
major mechanism 
among others!



Conclusions

Pulsar kick is not yet fully understood — maybe, 
multiple mechanisms compete/cooperate. 

So far, anisotropy / chiral effect are separately 
discussed as independent scenarios. 

Their interplay leads to an additional effect which 
turns out to be comparable to others — efficient 
conversion mechanism from anisotropy to kicks!

17


