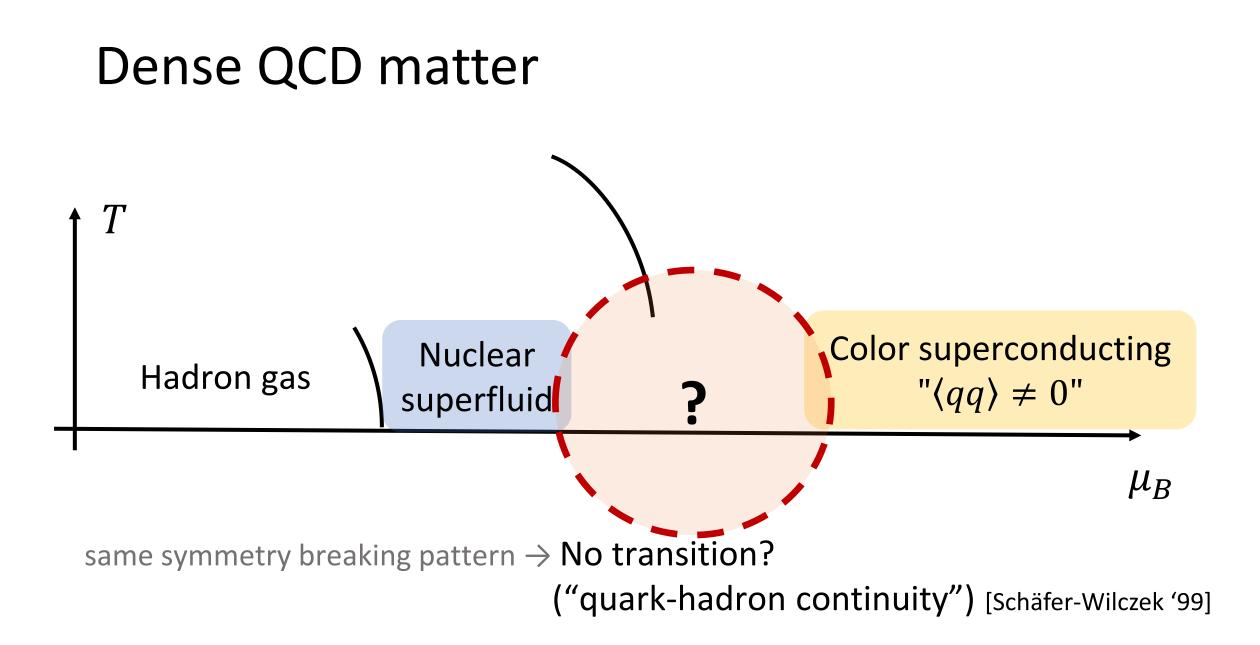
Higgs-confinement continuity in light of particle-vortex statistics

Yui Hayashi (YITP, Kyoto U.) Condensed Matter Physics of QCD 2024 March 13, 2024

arXiv:2303.02129 [hep-th] (+ in preparation?)



(vague) main question

In general context:

Higgs phase (CFL phase) vs. confinement phase (nuclear superfluid phase)

Is gauge-variant (Higgs) condensate meaningful? Generally, No. [Elizur '75]

- In particular, in fundamental gauge-Higgs systems, the Higgs and confining regimes are connected (**Higgs-confinement continuity**).
- However, for some models, the Higgs and confining phases are **distinguishable**.

 \rightarrow recent discussion on quark-hadron continuity.

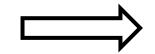
Higgs-confinement continuity

An idea behind quark-hadron continuity:

Higgs-confinement continuity

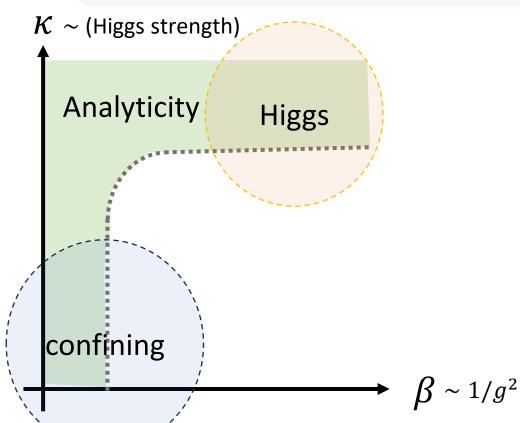
[Osterwalder-Seiler '78][Fradkin-Shenker '79][Banks-Rabinovici '79]

For fundamental gauge-Higgs systems, the confining regime (small β , κ) and Higgs regime (large β , κ) are connected by an analyticity region (without any transition).



Condensation of fundamental matter " $\langle \phi \rangle \neq 0$ " does not distinguish phases

e.g. charge-1 Abelian Higgs model [U(1) gauge + charge-1 U(1)-valued scalar on lattice] $S = \beta \sum_{\square: \text{ plaquette}} U_{\square} + \kappa \sum_{\ell:link} \phi_x^* U_\ell \phi_{x'} + c.c.$



The CFL diquark condensation is in (anti-)fundamental representation

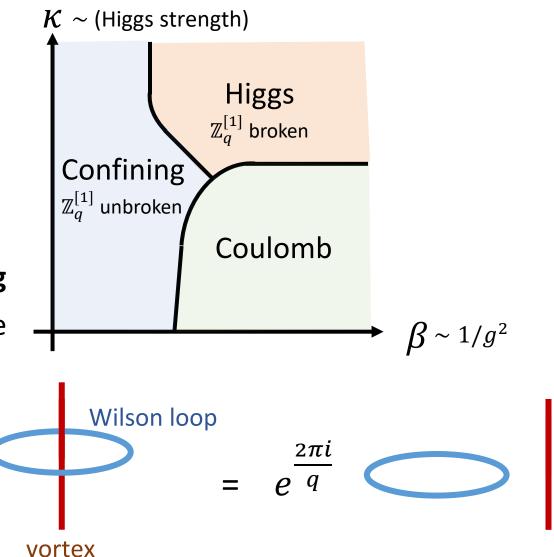
When distinguishable? to introduce the recent discussion.....

e.g.) charge-q Abelian Higgs Model (q > 1) The Higgs/confining phases are distinguished by perimeter-law/area-law of the Wilson loop (equivalently $\mathbb{Z}_{q}^{[1]}$ broken/unbroken)

Another characterization: topological ordering

In the (low-energy effective theory of) Higgs phase, we have two topological operators, showing nontrivial mutual statistics:

- Wilson loop: W(C)
- Vortex worldsheet: V(S) $\langle W(C)V(S) \rangle = e^{\frac{2\pi i}{q} \operatorname{Link}(C,S)} \langle W(C) \rangle \langle V(S) \rangle$



Recent discussion

Wilson loop

• Particle-vortex statistics in the CFL phase [Cherman-Sen-Yaffe '18]

Non-Abelian CFL vortex

Does this nontrivial AB phase signal a quark-hadron transition?

• This AB phase does not mean topological order [Hirono-Tanizaki '18 '19]

("." The CFL vortex is (partially) a global vortex, which does not become topological)

At least, the previous logic does not apply here \rightarrow continuity?

 Still, it was conjectured that the AB phase can be an order parameter for a Higgsconfinement transition, by studying an Abelian toy model (detailed later) [Cherman-Jacobson-Sen-Yaffe '20]. → transition?

how connected, concretely?

More constructively?

An order parameter?: Aharonov-Bohm phase

Conjectured order parameter: **AB phase** O_{Ω} **around a minimal superfluid vortex** In the low-energy effective theory,

$$O_{\Omega} := \frac{\langle W(C)V(S) \rangle}{\langle W(C) \rangle \langle V(S) \rangle}$$

We shall compute phase of a large Wilson loop W(C) in the presence of vortex.

Wilson loop

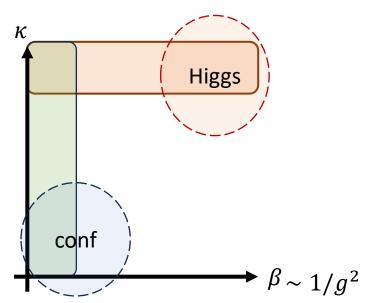
$$= O_{\Omega}$$
 $=$ a minimal superfluid vortex

Results by a Fradkin-Shenker-like analysis

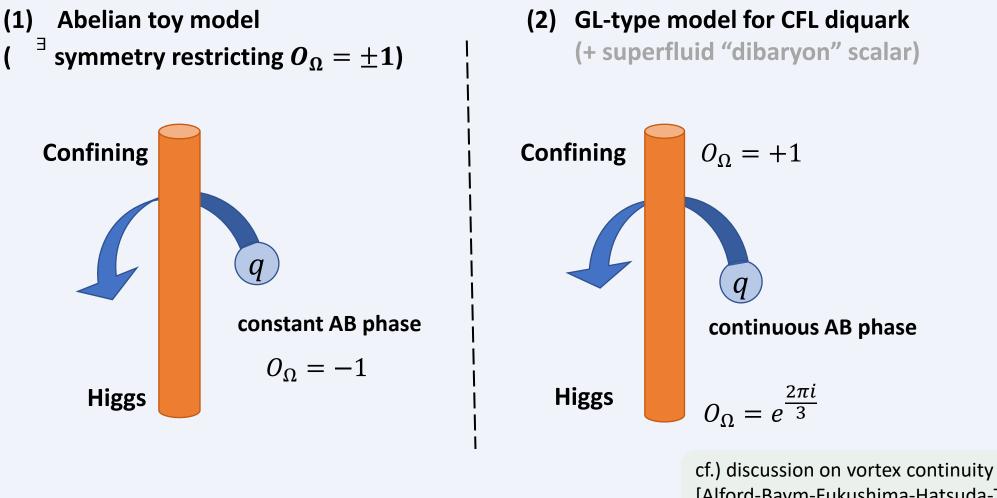
For superfluid fundamental gauge-Higgs systems, the Aharonov-Bohm phase around the vortex is continuous (or constant, if protected by symmetry) in the strong-coupling and deep-Higgs regions, connecting confining and Higgs regimes

Below, we illustrate this claim in the following two lattice models analogous to:

The Abelian toy model
 Ginzburg-Landau model for CFL diquark



Results



[Alford-Baym-Fukushima-Hatsuda-Tachibana '19] [Chatterjee-Nitta-Yasui '19]

Example 1: the Abelian toy model

used to argue a Higgs-confinement transition [Cherman-Jacobson-Sen-Yaffe '20].

Field contents:

3d compact U(1) gauge a + charge-(± 1) matters (ϕ_+, ϕ_-) + neutral scalar ϕ_0

Action:

$$S = \int \frac{1}{2e^2} |da|^2 + |D\phi_+|^2 + |D\phi_-|^2 + |d\phi_0|^2 + V_c(\phi_+) + V_c(\phi_-) + V_0(\phi_0) + \epsilon \phi_+ \phi_- \phi_0 + c.c.$$

 $V_0(\phi_0)$: wine bottle potential $\rightarrow \phi_0$ condensation (superfluidity)

 $V_c(\phi_{\pm}) = m_c^2 |\phi_{\pm}|^2 + \lambda_c |\phi_{\pm}|^4$: identical potential for charged matters (ϕ_+, ϕ_-)

AB phase as an order parameter?:

Higgs $O_{\Omega} = -1$ from classical vortex configurations m_c^2/e^4 Confinement $O_{\Omega} = +1?$ (ϕ_+, ϕ_-) decouple

The AB phase must be ± 1 due to \mathbb{Z}_2 symmetry $[\phi_{\pm} \rightarrow \phi_{\mp}, a \rightarrow -a] \rightarrow$ transition somewhere?

Example 1: the Abelian toy model

Result: the AB phase is -1 (constant!) in both regions (skip lattice details)

• Deep Higgs region

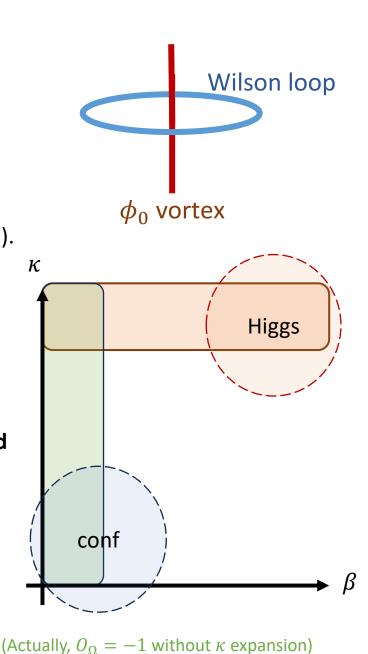
In the deep Higgs limit, the gauge field a is frozen to be $\frac{d\varphi_+ - d\varphi_-}{2}$ (with $\phi_{\pm} = v e^{i \varphi_{\pm}}$). The minimal ϕ_0 vortex rotates $(\phi_+ \phi_-)$ by 2π asymptotically. $\langle W(C)V(S) \rangle \sim \langle e^{i \int_C} \frac{d\varphi_+ - d\varphi_-}{2} \rangle_{\text{vortex}} \sim -1$

in accordance with [Cherman-Jacobson-Sen-Yaffe '20].

Strong coupling region

Even if charged matters are heavy, an asymptotically large Wilson loop is dominated by screened perimeter-law part, which can be affected by ϕ_0 vortex.

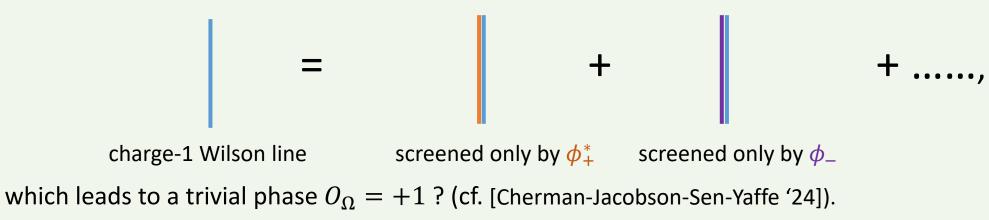
For example, in the "deep confining regime" $(\beta \to +0, \text{ small } \kappa)$, $\langle W(C)V(S) \rangle = \left\langle \prod_{\ell \in C} U_{\ell} \right\rangle_{\text{vortex}} \sim \left\langle \prod_{\ell \in C} [(\phi_{+} \text{ hopping})^{*} + (\phi_{-} \text{ hopping})] \right\rangle_{\text{vortex}}$ $e^{i\,\theta_{1}} + e^{i\,\theta_{2}} = (e^{i\,\theta_{1}}\sqrt{e^{i\,(-\theta_{1}+\theta_{2})}})|e^{i\,\theta_{1}} + e^{i\,\theta_{2}}| \rightarrow \sim \langle e^{i\,\int_{C} \frac{d\varphi_{+} - d\varphi_{-}}{2}} \rangle_{\text{vortex}} \sim -1 \text{ (matched!)}$ (A



Aside: Aharonov-Bohm phase as Berry phase

Paradox (in deep confining limit) ?

When $\epsilon \phi_+ \phi_- \phi_0$ is weak, the screening contribution (in worldline representation) looks like:



Short answer: NO.

For $\epsilon \neq 0$ (even if it is small), mixing configurations (alternating ϕ_+^* and ϕ_-) are significant due to the combinatorial factor since #links of the Wilson loop is arbitrary large.

Aside: Aharonov-Bohm phase as Berry phase

<u>3-point interaction</u>: $\epsilon \phi_+ \phi_- \phi_0$ + c.c. (in terms of (ϕ_+, ϕ_-) worldline) **mixing mass** term (when ϕ_0 is fixed)

$$\begin{array}{c} \phi_{-} \\ \phi_{+}^{*} \end{array} & \widetilde{\epsilon} \phi_{0} , \\ \phi_{+}^{*} \end{array} & \begin{array}{c} \phi_{+}^{*} \\ \phi_{-} \end{array} & \widetilde{\epsilon} \phi_{0}^{*} \\ \phi_{-} \end{array}$$

(\rightarrow Berry connection $A = -\frac{1}{2} d\varphi_0$)

 $(\tilde{\epsilon} = e^{-1/2\epsilon})$ in the Villain lattice formulation given in [Cherman-Jacobson-Sen-Yaffe '24]).)

The phase factor of the Wilson loop (for **slowly-varying** $\phi_0 = v e^{i \varphi_0}$) can be written as,

$$W(C) \sim \operatorname{Tr}\left(\prod_{x \in C} \begin{bmatrix} 1 & \tilde{\epsilon} \,\phi_0(x) \\ \tilde{\epsilon} \,\phi_0^*(x) & 1 \end{bmatrix}\right) \sim \operatorname{Tr}\left(\prod_{x \in C} [(1 + \tilde{\epsilon} \,v)|0_x\rangle\langle 0_x| + (1 - \tilde{\epsilon} \,v)|1_x\rangle\langle 1_x|]\right)$$
$$|0_x\rangle \text{ is the ground state of "Hamiltonian"}$$
$$H = -\tilde{\epsilon} \,v \,(\cos\varphi_0 \,\sigma_X - \sin\varphi_0 \,\sigma_Y)$$
$$\sim \prod_{\ell \in C} \langle 0_x | 0_{x'}\rangle \sim e^{\frac{i}{2}\int d\varphi_0} = -1$$

Berry phase of worldline quantum mechanics on loop C!

Example 2: Ginzburg-Landau model for diquark

Field contents:

(anti-)fundamental CFL diquark $\Phi^{ai} \sim \epsilon^{abc} \epsilon^{ijk} q_{bj}^t C \gamma^5 q_{ck}$ We add superfluid "dibaryon" for nuclear superfluid phase

SU(3) gauge $a + (3 \times 3)$ -matrix-valued fundamental matter Φ + neutral scalar ϕ_0

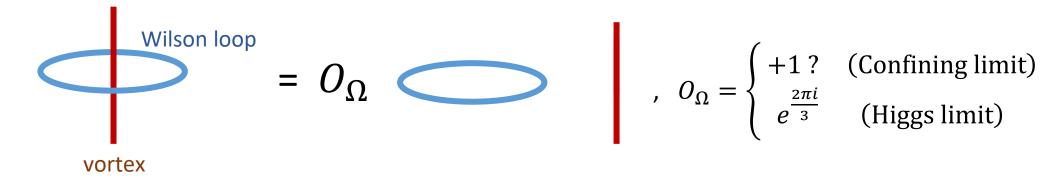
Action:

$$S = \int |f|^2 + |D\Phi|^2 + |D\phi_0|^2 + V(\operatorname{tr} \Phi^{\dagger} \Phi) + V_0(\phi_0) + \epsilon \phi_0^*(\det \Phi) + c.c.$$

 $V_0(\phi_0)$: wine bottle potential $\rightarrow \phi_0$ condensation (superfluidity)

By tuning $V(\operatorname{tr} \Phi^{\dagger} \Phi)$, this model has superfluid confining regime [nuclear superfluidity] and Higgs regime [CFL].

(apparent) mismatch of AB phase:



Example 2: Ginzburg-Landau model for diquark

We can perform the similar analysis on an analogous lattice model

Deep Higgs region

 $\langle W(C)V(S)\rangle \sim e^{\frac{2\pi i}{3}}$

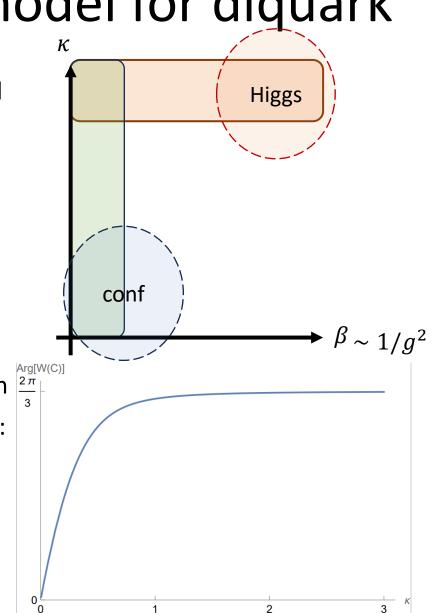
reproducing [Cherman-Sen-Yaffe '18]

Strong coupling region

The AB phase is trivial in the deep confining limit ($\beta \rightarrow 0$, small κ) $\langle W(C)V(S) \rangle \sim 1$

Still, the AB phase is **continuous** and smoothly interpolates between $\left| \begin{array}{c} \frac{2\pi}{2\pi} \\ \frac{2\pi}{3} \end{array} \right|^{\frac{2\pi}{3}}$ 1 ($\kappa \rightarrow +0$) and $e^{\frac{2\pi i}{3}}(\kappa \rightarrow +\infty)$ in the strong coupling limit ($\beta \rightarrow 0$):

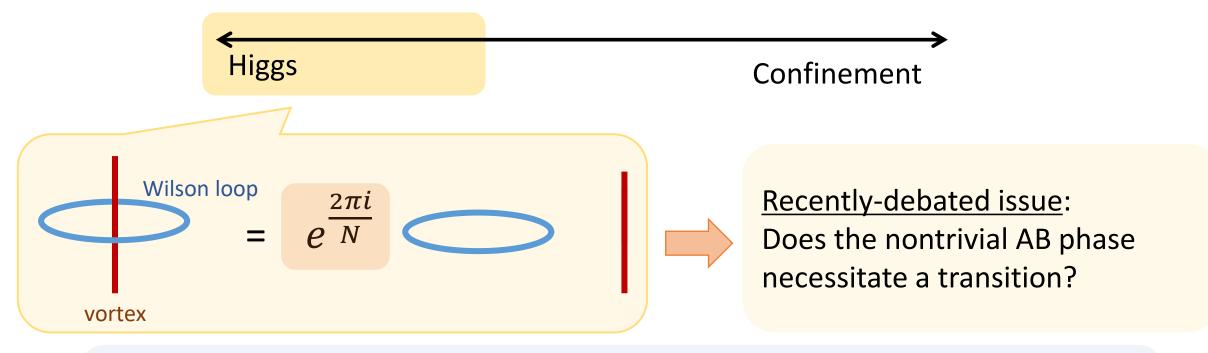
AB phase can smoothly vary!



Summary

e.g.) diquark condensation in dense QCD

In some superfluid gauge-Higgs systems,



<u>Claim:</u> For fundamental superfluid gauge-Higgs systems, the AB phase respects the Higgs-confinement continuity.

the quark-hadron continuity is still a possible scenario.