Based on Hayata, YH, PRD 103 (2021), 094502, JHEP 09 (2023) 123; JHEP 09 (2023) 126 Hayata, YH, Kikuchi PRD 104 (2021) 7, 074518 Hayata, YH, Nishimura, 2311.11643

Hamiltonian lattice gauge theory and application to nonequilibrium and dense QCD

Yoshimasa Hidaka

Motivation Big problem in QCD

manybody dynamics of QCD

Dense QCD

sQGP Critical

lemperature

high-energy heavy ion collisions

How is the quark gluon plasma created?

What phases are realized in the interior of a neutron star?

Difficulty

Sign problem: Difficulties in first-principles calculations based on importance sampling

$\langle O \rangle = \mathscr{D}A \det(D+m)e^{iS}O$

In real-time, finite-density problems, the weight is complex

Hamiltonian approach

Directly solve Schrodinger equation to avoid sign problem

Smaller systems can be simulated directly

Tensor Networks

Quantum simulation

Difficulty of Hamiltonian gauge theory

Infinite degrees of freedom Link variable is continuous (regularization required)

Large gauge redundancy $U \in SU(N)$ What approximation is continuous symmetry?

 $\dim \mathscr{H}_{\rm phys} \ll \dim \mathscr{H}_{\rm total}$ need to solve Gauss law constraint

• Formalism - Kogut-Susskind Hamiltonian formalism

• Application

- - in mean field approximation (JHEP 09 (2023) 123)
- QCD_2 at finite density (2311.11643)

- Quantum scar (JHEP 09 (2023) 126) - Scrambling (Phys. Rev. D 104 (2021) 7, 074518) Summary

- Confinement-deconfinement phase transition - Thermalization on a small lattice (Phys. Rev. D 103, 094502(2021))

Kogut-Susskind Hamiltonian formalism

SU(N) Gauge theory ($A_0 = 0$ gauge)

Commutation relation

Hamiltonian $H = \int d^3x \left(\frac{g^2}{2}E^2(x) + \frac{1}{2g^2}B^2(x)\right)$

Magnetic field $B_l^i = \frac{1}{2} \epsilon_{lnm} (\partial_m A_n^i - \partial_m A_n^i + f_{jk}^i A_m^j A_n^k)$

 $[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$

Gauge field **Electric field**

Gauss law constraint $(D \cdot E)^i |\Psi_{phys}\rangle = 0$

Time is continuous, space is discretized

 $L_i(e)$ and $R_i(e)$ are not independent $[U_{adj}(e)]_{i}^{j}L_{j}(e) = R_{i}(e) \implies R_{i}^{2}(e) = L_{i}^{2}(e) =: E_{i}^{2}(e)$

Kogut-Susskind Hamiltonian formalism Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

> $e^{i \int A} \rightarrow U(e)$:link variable $\in SU(N)$ on edge e $L_i(e), R_i(e)$: Left and right electric fields $\in su(N)$

Commutation relation

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

 C_1 :set of edges, s,t: source and target functions

 $[R_i(e), U(e')] = U(e)T_i\delta_{e,e'}$ $[L_i(e), U(e')] = T_i U(e) \delta_{e,e'}$ $[L_{i}(e), L_{j}(e')] = -if_{ij}^{k}L_{k}(e)\delta_{e,e'}$ $[R_{i}(e), R_{j}(e')] = if_{ij}^{k}R_{k}(e)\delta_{e,e'}$

Gauss law constraint $(D \cdot E)^i | \Psi_{\text{phys}} \rangle = 0$ $\sum_{e \in C_1 | s(e) = v} R_i(e) - \sum_{e \in C_1 | t(e) = v} L_i(e) \left| \Psi_{\text{phys}} \right\rangle = 0$

$H = \frac{1}{2} \sum_{e \in C_1} (E(e))^2 - \frac{K}{2} \sum_{f \in C_2} (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$ C_2 :set of faces

$_{e_2} U(f) := U(e_4)U(e_3)U(e_2)U(e_1)$

Application

- in mean field approximation
- Thermalization on a small lattice
- QCD in (1+1) dimensions

- Confinement-deconfinement phase transition

in (2+1) dimensions

Confinement-deconfinement phase transition in mean field approximation for $SU(3)_k$ k: cutoff parameter (q deformation)

Variational ansatz for wave function

$|\Psi\rangle = \int \psi(a_f) \operatorname{tr} U_{a_f}(f) |0\rangle$ $f \in \mathcal{F} \ a_f$

We minimize the energy expectation value open boundary condition, infinite volume limit $E = \min_{\psi} \left\langle \Psi \right| H \left| \Psi \right\rangle$

Dusuel, Vidal, Phys. Rev. B 92 (2015) 12, 125150, Zache, González-Cuadra, Zoller, 2304.02527, Hayata, YH, JHEP 09 (2023) 126

We can calculate observables for given wave function **Energy density** $h = \frac{1}{V} \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)|^2 \psi(a)$ $C_2(a)$ Casimir invariant, d_a : quantum dimensions, N_{ab}^c : multiplicity Wilson loop $\langle \operatorname{tr} U_d(\partial S) \rangle = d_d \exp(-|S|\sigma_d)$ String tension $\sigma_d := \ln \frac{1}{\sum_{a,b} N^a_{db} \psi}$

Hayata, YH, JHEP 09 (2023) 126

$$|\psi(b)|^2 |\psi(b)|^2 - \frac{K}{2} \sum_{a,b} \psi^*(a) \left(N^a_{(1,0)b} + N^a_{(0,1)b} \right) \psi^{ab}$$

$$rac{y_d}{\psi^*(a)\psi(b)}$$

Numerical results

Numerical results

Phase transition occurs

Topological phase: String-net condensation: $\psi(a) \sim d_a$ where string tension vanishes

Comparison with Monte-Carlo simulation Plaquette (small Wilson loop) String tension

Good agreement for large k!

Thermalization on a small lattice

Small lattice system

Basis $|j_1, \dots, j_{12}\rangle = |j_1, j_2, j_6\rangle |j_2, j_3, j_7\rangle |j_3, j_4, j_8\rangle |j_1, j_4, j_5\rangle$ $|j_6, j_9, j_{10}\rangle |j_7, j_{10}, j_{11}\rangle |j_8, j_{11}, j_{12}\rangle |j_5, j_9, j_{12}\rangle$

Naive cutoff $j_i \leq j_{\max} = k/2$

Dimension of Hilbert space

We employ $j_{max} = 4$: dim $\mathcal{H} = 87,426,119$

Setup In order to mimic heavy ion collision experiments, the interaction quenching

Temperature and Canonical Ensemble

Energy is fixed by an initial condition $E = \langle H \rangle = \langle \Psi(t) | H | \Psi(t) \rangle$

 $E = \langle H \rangle_{eq} := tr \rho_{eq} H$ with $\rho_{eq} = \frac{1}{2}$ tre-\$H

- (Independent of time)
- For a given energy, a canonical distribution that reproduces the expected value can be defined

Numerical results

K-dependence of temperature

The first excitation energy $\Delta E_1: E_1 - E_0$ Typical energy scale $\beta \Delta E_1 > 1$ Low T $\beta \Delta E_1 < 1$ Hight T

25

Expected value of Wilson loop Strong coupling (low T)

Fluctuations are not small.

Expected value of Wilson loop Weak coupling (high T)

Steady state observed

Long-time average vs canonical ensemble

Difference is less than 1% for K > 5

Close to Boltzmann time $2\pi\beta$.

Goldstein, Hara, Tasaki, New J. Phys. 17 (2015) 045002

QCD₂ at finite density

QCD at finite density

 How does the quark distribution function change when transitioning from baryonic matter to quark matter? •What kind of phase is realized? An inhomogenous phase?

•What is the equation of state for QCD at finite density?

Properties of (1+1) dimensions • Gauge fields are nondynamical • Hilbert space is finite dimensional in Open Boundary Condition(OBC)

$$J = \frac{ag_0}{2}, w = \frac{1}{2g_0a}, m = \frac$$

(dimensionless)QCD₂ Hamiltonian

 m_0/g_0 We use $g_0 = 1$ unit

c field term

$\chi(n) + \chi^{\dagger}(n)U^{\dagger}(n)\chi(n+1) \bigg)$ g term

Mass term

Elimination of Link variables U

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$ n=1 m=1*n*=1 N n=1

$\Theta H \Theta^{\dagger} = J \sum_{i=1}^{N-1} \left(\sum_{i=1}^{n} \chi^{\dagger}(m) T_{i} \chi(m) \right)^{2}$ Electric fields term

$+w\sum^{N-1}\left(\chi^{\dagger}(n+1)\chi(n)+\chi^{\dagger}(n)\chi(n+1)\right)$

Hopping term

 $+m\sum_{n=1}^{\infty}(-1)^n\chi^{\dagger}(n)\chi(n)$ mass term

As a variational ansatz of wave function •We employ a matrix product state $|\psi\rangle = \langle n_1 \rangle \cdots \langle n_N \rangle \operatorname{tr} M_1^{n_1} \cdots M_N^{n_N}$ $\{n_i\}$ $[M_{i}^{n_{i}}]_{ii}$: $D \times D$ matrix Optimize the wave function by density matrix renormalization group technique $E = \min(\psi | H | \psi)$ Ψ We employ iTensor

Numerical results

Color SU(2), 1 flavor, vacuum single baryon state dim $\mathcal{H} = 2^{300}$ J = 1/20 w = 5 volume V = 15

Baryon number density Quark distribution function

Pressure

Color SU(2), 1 flavor, vacuum $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$ Energy density

Color SU(2), 1 flavor, vacuum $J = 1/8 \ w = 2$ $V = 40 \ \dim \mathcal{H} = 2^{320}$ Chemical potentialSound velocity

Inhomogeneous phase $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

 $\Delta \Sigma = \langle \bar{\psi}\psi(x) \rangle - \langle \bar{\psi}\psi(x) \rangle_{\mu=0}$

Wave number dependence $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

Wave number dependence

Hadronic picture

If hadron interactions are repulsive

 $1/n_B$

distance $1/n_B \Rightarrow k = 2\pi n_B$

Quark picture

If interactions between quarks Fermi surface is unstable

 \Rightarrow density wave $k = 2p_{\rm F} = 2\pi n_{\rm B}$

Quark distribution function $J = 1/8 \ w = 2$ V = 60 $\dim \mathcal{H} = 2^{480}$

Low density No Fermi sea

• High density Fermi-sea +density wave pairing

baryon quark transition around $n_R \sim 0.2$

SU(3) QCD with $N_f = 1$

Pressure

Color SU(3), 1 flavor, vacuum $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathcal{H} = 2^{144}$ Energy density

Inhomogenous phase $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathscr{H} = 2^{144}$

 $\Delta \Sigma = \langle \bar{\psi} \psi(x) \rangle - \langle \bar{\psi} \psi(x) \rangle_{\mu=0}$

Wave number dependence

Quark distribution

Baryon quark transition around $n_R = 0.3?$

• Formalism Kogut-Susskind Hamiltonian formalism Application $SU(3)_k$ gauge theory in (2 + 1) dimensions **Confinement-topological phase transition Thermalization of Yang-Mills theory** in (3+1)-dimensional small systems Relaxation time of thermalization $\tau_{\rm eq} \sim 2\pi/T$ Boltzmann time QCD_2 at finite density baryon quark transition, inhomogeneous phase

Summary

