YITP-RIKEN iTHEMS International Molecule-type Workshop "Condensed Matter Physics of QCD 2024", 2024/03/15, YITP, Kyoto

Lee-Yang Zeros around critical point of heavy-quark QCD

Masakiyo Kitazawa (YITP)

with **Tatsuya Wada**, Shinji Ejiri, Kazuyuki Kanaya

Lee-Yang Zero

Yang, Lee; Lee, Yang ('52)

Partition Function $Z(T, \mu)$ Finite V > Polynomial of μ (or T) $Z(T,\mu) = \prod (\mu - \mu_i)$ $\mathbf{Im} \boldsymbol{\mu} \wedge \boldsymbol{\mu}$ $\mathrm{Re}\mu$ $\overset{\mathbf{X}}{\mu_{i}}$

zeros on the complex plane
=Lee-Yang Zeros

Lee-Yang Zero

Partition Function $Z(T, \mu)$

zeros on the complex plane
=Lee-Yang Zeros

Yang, Lee; Lee, Yang ('52)

Phase Transition & LYZ

- For $V \rightarrow \infty$, LYZs are accumulated on the line crossing the real axis at $\mu = \mu_c$.
- For a 1st transition, LYZs appear at equal distance of length 1/V.

LY Zeros around a Critical Point

t

1st-transition

singularity on the real h axis

Crossover no singularity on the real axis

LY Zeros around a Critical Point

t

1st-transition

singularity on the real h axis

Crossover no singularity on the real axis

LY Zeros around a Critical Point

1st-transition

singularity on the real h axis

Crossover no singularity on the real axis

LY edge singularity starting from the CP

Edge singularity is determined by the analytic property of the scaling function.

Recent Topics in LYZ

and LY edge singularity

Analytic Structure

. . .

--- Scaling functions, FRG, ...

An, Mesterhazy, Stephanov ('16) Johnson, Rennecke, Skokov ('23) Karsch, Schmidt, Singh ('23)

Locating QCD-CP at $\mu \neq 0$ on the lattice?

— Taylor exp. + Imaginary μ + Pade approx.
 HotQCD ('22)
 D.A. Clarke, Lattice 2023

Present Study: Heavy-Quark QCD

CP in heavy-quark QCD $- \mu_q = 0 \& \text{large } m_q$ Easy to handle in lattice simulations!

Hopping-Parameter Expansion (HPE)

~ $1/m_q$ expansion

Wilson Fermion

S

nth order terms in the HPE: closed trajectories of length n.

Higher-Order Terms in HPE

Monte Carlo Simulation @ LO

heat bath & over relaxation with modified staple

Numerical cost is almost the same as the pure YM!

NLO by Reweighting

$$\langle \mathcal{O} \rangle_{\rm NLO} = \frac{\langle \hat{O} e^{-S_{\rm NLO}} \rangle_{\rm LO}}{\langle e^{-S_{\rm NLO}} \rangle_{\rm LO}}$$

Overlapping problem is well suppressed due to the LO confs.

Realize high statistical analysis

$$S_{\rm LO} = -6N_{\rm site}\beta^*\hat{P} - \lambda N_s^3\hat{\Omega}_{\rm R}$$

 \hat{P} : plaquette $\widehat{\Omega}$: Polyakov loop $\lambda = 2^{N_t+2} N_c \kappa^{N_t}$

One order smaller statistical errors on more than twice larger *LT*! Precise determination of the location of the CP

LY Zeros on Complex λ

 $\lambda = 2^{N_t + 2} N_c \kappa^{N_t}$

LY Zeros on Complex λ

 $\lambda = 2^{N_t + 2} N_c \kappa^{N_t}$

Partition func. Z on complex λ $N_s^3 \times N_t = 40^3 \times 4$, $\beta = 5.6861$ LO

Scaling at the First-Order Side

1st Transition

coexistence of $\rho = \rho_1, \rho_2$ at $\mu = \mu_c$

$$\mu_{\rm LYZ} = \mu_c + i \frac{(2n+1)\pi T}{\Delta \rho V}$$

LYZ appears at equal distance of length proportional to 1/V.

Derivation:

$$Z = \mathrm{Tr}e^{-\beta(H-\mu N)}$$

$$\sim e^{\beta \rho_1 V \mu_c} + e^{\beta \rho_2 V \mu_c}$$

$$\geq e^{\beta \rho_1 V \mu} (1 + e^{\beta (\rho_2 - \rho_1) V \mu}) = 0$$

Finite-Size Scaling

$$Z(t,h,L^{-1}) = \tilde{Z}(tL^{y_t},hL^{y_h})$$
 LYZs

•
$$(t,h) = (t_1^*, h_1^*)$$
 at $L = L_1$

•
$$(t,h) = (t_2^*, h_2^*)$$
 at $L = L_2$

$$t_2^* = t_1^* \left(\frac{L_1}{L_2}\right)^{y_t} \quad h_2^* = h_1^* \left(\frac{L_1}{L_2}\right)^{y_h}$$

 $\delta\lambda_{\mathrm{R2}}^* = \delta\lambda_{\mathrm{R1}}^* (L_1/L_2)^{y_t}$ $\lambda_{\mathrm{I2}}^* = \lambda_{\mathrm{I1}}^* (L_1/L_2)^{y_h}$ Stephanov, '06

Summary & Outlook

Successful numerical analysis of the LY zeros near HQ-QCD-CP. — owing to the use of the hopping-parameter expansion — direct analysis of $Z(\beta, \lambda)$ on the complex plane by reweighting

Large finite volume effectsVerification of the finite-size scaling

Future

- Check of Z_2 scaling / non-universal params.
- Roberge-Weiss singularity
- How to exploit LY zeros for exploring real QCD at $\mu \neq 0$?

Ratio of 2nd/3rd LYZs to 1st

$$\mu_{\rm LYZ} = \mu_c + i \frac{(2n+1)\pi T}{\Delta \rho V}$$

Numerical Setup

Convergence of HPE

Wakabayashi+ ('22)

□ HPE of free lattice field (U=1)

 $N_t = 4 \ \kappa_c = 0.0602(4)$ Kiyohara+,'21 $N_t = 6 \ \kappa_c = 0.0877(9)$ Cuteri+, '21 NNLO and higher Wakabayashi+ ('22)

Numerical Simulations

□ Coarse lattice: $N_t = 4$, 6, 8 □ But large spatial volume: $LT = N_s / N_t \le 15$ □ High statistics (~10⁶ measurements) $N_t = 4$ Kiyohara+, PRD104 ('21) $N_t = 6, 8$ Ashikawa+, in prep.

■ Hopping-param. (~ $1/m_q$) expansion ■ Monte-Calro with LO action ■ 4~6 simulation points for reweighting ■ Lattice size:

> $N_t = 4$ $LT = N_x/N_t = 6,8,9,10,12$ $N_t = 6$ $LT = N_x/N_t = 6,7,8,9,10,12,15$ $N_t = 8$ $LT = N_x/N_t = 6,8,10,12$ (in prog.)