YITP Workshop on "Fundamentals in density functional theory (DFT2022)" December 8, 2022 @ Y306, Yukawa Hall, YITP, Kyoto University

Nuclear TDDFT: Past, Present, and Future

Kazuyuki Sekizawa

Department of Physics, School of Science Tokyo Institute of Technology

"End Credits" from "E.T. the Extra-Terrestrial": https://youtu.be/YuhZ80YHFns

1. An informal introduction to nuclear DFT

2. Some remarks on fundamentals of TDDFT

3. Selected topics: from nuclear reactions to neutron stars

4. Summary and perspective

<u>1. An informal introduction to nuclear DFT</u>

2. Some remarks on fundamentals of TDDFT

3. Selected topics: from nuclear reactions to neutron stars

4. Summary and perspective

✓ Nucleons inside a nucleus are not really relativistic.

*Note that there are relativistic approaches, such as relativistic mean-field (RMF) theory or covariant DFT, which are rooted with the meson-exchange picture, explains the origin of spin-orbit and time-odd interactions, ...

$\hbar c \approx 197.3269631 \left[\text{MeV fm} \right]$	$m_n > m_p$	$mc^2 \gg \varepsilon_{\rm F}$
$m_n c^2 = 939.56542052 [\text{MeV}]$	$\tau_n \approx 877.74 [s]$	(about 15 min)
$m_p c^2 = 938.27208816 [\text{MeV}]$	$\tau_p > 10^{34} \mathrm{[y]}$	(cf. Super-Kamiokande experiment)

If you agree with the use of non-relativistic treatments

Our ultimate goal would be to solve the many-body Schrödinger equation:

$$\hat{H} \Psi(\boldsymbol{r}_1 \sigma_1 q_1, \dots, \boldsymbol{r}_A \sigma_A q_A) = E \Psi(\boldsymbol{r}_1 \sigma_1 q_1, \dots, \boldsymbol{r}_A \sigma_A q_A)$$

That's it!

However, it's practically impossible.. Why?

E. Schrödinger (1887-1961)

Portrait: https://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger

We want to solve this, but can't in practice. Why? $\hat{H} \Psi(\boldsymbol{r}_1 \sigma_1 q_1, \dots, \boldsymbol{r}_A \sigma_A q_A) = E \Psi(\boldsymbol{r}_1 \sigma_1 q_1, \dots, \boldsymbol{r}_A \sigma_A q_A)$

The problem is two-fold:

1. It's computationally too demanding.

 $\Box \text{ The number of degrees of freedom of } \Psi \text{ is: } (3 \times 2 \times 2)^A \Rightarrow \begin{cases} 6 \times 10^{10} \text{ for } A = 10 \\ 8 \times 10^{107} \text{ for } A = 100 \end{cases}$

 $\Box \text{ To store } \Psi \text{ on a HDD, one needs: } 16 \times (N_{xyz} \times 2 \times 2)^A \\ \stackrel{\text{double precision}}{\underset{\text{complex (byte)}}{\overset{\text{M}}{\text{obs}}} N_x \times N_y \times N_z \uparrow, \downarrow \quad \text{n,p}} \rightarrow 2 \times 10^{25} \text{ TB for } 10^3, A=10 \\ 3 \times 10^{636} \text{ TB for } 100^3, A=100$

In other words, "<u>**Y** contains enormous amount of information!</u>" (may be <u>too much</u>!)

2. We don't really know actual form of nuclear interactions.

Lattice QCD calculations are under way, but still have not provided the actual force.

• One may parametrize the "bare" NN interaction, and fit to reproduce NN scattering data. (It is called "realistic nuclear force." It shows a repulsive core which requires a caution.)

A theory which gives us access to the *exact* solution

Great Success of the Density Functional Theory

Si crystal

0.0e+000 2.5e-002 5.0e-002 7.5e-002 1.0e-001

Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. Otobe, and G. F. Bertsch, Phys. Rev. B 82, 155110 (2010)

The seminal papers on DFT

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 38,725 citations!
 W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965) 46,208 citations!

Fullerene: C₆₀

C-Z. Gao et al., J. Phys. B: At. Mol. Opt. Phys. **48**, 105102 (2015)

The existence was proven, but its shape is unknown..

The existence was proven, but its shape is unknown..

"Inverse Kohn-Sham"

The existence was proven, but its shape is unknown..

"Inverse Kohn-Sham"

Quantum Many-Body Problem

Developing better functionals is an important subject in nuclear theory!

May the DFT be with you..

The Jedi of DFT

In principle,

it is an exact approach..

(if we find the universal EDF)

Anakin Skywalker: https://starwars.fandom.com/wiki/Anakin_Skywalker

May the DFT be with you..

The Jedi of DFT

In principle,

it is an exact approach..

(if we find the universal EDF)

In practice,

it would never be exact!!

The Darkside of DFT

(since we don't know the universal EDF)

Anakin Skywalker: https://starwars.fandom.com/wiki/Anakin_Skywalker Darth Vader: https://www.eiganohimitsu.com/1810.html

In electronic systems:

$\hat{H} = \text{Kinetic} + \text{Coulomb} + \text{Coulomb}_{\text{btw electrons}} + \text{Coulomb}_{\text{from ions}}$

The interaction is <u>exactly known</u> :)

In nuclear systems:

"Something complicated"

 $\hat{H} = \text{Kinetic} + \text{Coulomb} +$

btw protons

NN interaction 3-body interaction LS, tensor, ... repulsive core ...

The interaction is <u>not completely known</u> :(

Hartree-Fock theory with an effective interaction

> In practice, a *zero-range* effective NN interaction has been applied

Skyme (zero-range, contact-type, density-dependent) effective interaction

$$\hat{v}_{ij} = \hat{v}(r_i \sigma_i, r_j \sigma_j) = t_0 (1 + x_0 \hat{P}_{\sigma}) \delta(r_i - r_j) + \frac{1}{6} t_3 \rho^{\alpha} \Big(\frac{r_i + r_j}{2} \Big) (1 + x_3 \hat{P}_{\sigma}) \delta(r_i - r_j) + \frac{1}{2} t_1 (1 + x_1 \hat{P}_{\sigma}) \Big\{ \delta(r_i - r_j) \hat{k}^2 + \hat{k}'^2 \delta(r_i - r_j) \Big\} + t_2 (1 + x_2 \hat{P}_{\sigma}) \hat{k}' \cdot \delta(r_i - r_j) \hat{k} + i W_0 (\hat{\sigma}_i + \hat{\sigma}_j) \cdot \{ \hat{k}' \times \delta(r_i - r_j) \hat{k} \}$$

Spin exchange operator:

Relative-wave-vector operator:

 $\hat{m{k}} = rac{m{
abla}_i - m{
abla}_j}{2i}$

$$\hat{P}_{\sigma} = rac{1}{2}(1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)$$

 t_{0-3} , x_{0-3} , α , and W_0 are parameters, which are adjusted to reproduce known nuclear properties.

 $(\hat{k}'$ is a C.C. of \hat{k} acting to the left)

Then, the resulting HF energy becomes <u>a functional of various local densities</u>:

$$E_{\rm SHF} = \left\langle \Phi \middle| \hat{H}_{\rm Skyrme} \middle| \Phi \right\rangle = E[\rho, \tau, \nabla \rho, \nabla^2 \rho, J \dots]$$

*It looks as if there are only local (direct) terms, but it contains the exchange terms.

Skyrme Hartree-Fock vs. DFT

Regarding E_{Skyrme} as an EDF, Skyrme-HF eq. may be regarded as KS eq. in DFT

Unrestricted variation

Schrödinger eq: $\hat{H} ig| \Psi ig> = E ig| \Psi ig>$

so, of course, $HF \neq DFT$

Variation for a Slater determinant

Hartree-Fock eq: $\left(-\frac{\hbar^2}{2m} \nabla^2 + \Gamma_{\rm H}(\boldsymbol{r}) \right) \phi_i(\boldsymbol{r}) + \int \Gamma_{\rm F}(\boldsymbol{r}, \boldsymbol{r}') \phi_i(\boldsymbol{r}') d\boldsymbol{r}' = \varepsilon_i \phi_i(\boldsymbol{r})$

Slater determinant:

$$\Phi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N) = \frac{1}{\sqrt{N!}} \det\{\phi_i(\boldsymbol{r}_j)\} \qquad \langle \phi_i | \phi_j \rangle$$

Hartree potential (direct term):

$$\Gamma_{
m H}(m{r}) = \int v(m{r},m{r}')
ho(m{r}')dm{r}'$$

Fock potential (exchange term):

 $=\delta_{ii}$

Orthonormal condition:

$$\Gamma_{\mathrm{F}}(\boldsymbol{r}, \boldsymbol{r}') = v(\boldsymbol{r}, \boldsymbol{r}') \sum_{i} \phi_{i}(\boldsymbol{r}) \phi_{i}^{*}(\boldsymbol{r}')$$

$$E = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
$$\hat{H} = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < j} v(\mathbf{r}_i, \mathbf{r}_j)$$

Skyrme Hartree-Fock vs. DFT

Regarding E_{Skyrme} as an EDF, Skyrme-HF eq. may be regarded as KS eq. in DFT

Then, how does it work?

All nuclei can be described with a single EDF

Neutron number

All nuclei can be described with a single EDF

Neutron number

Nuclear TDDFT: Past, Present, and Future

Let us switch from DFT to TDDFT

Brief (over)look at a chronology: from past to present

> TDDFT is a time-dependent extension of DFT, but derivations are different

	DFT	TDDFT
□ For what?	Ground state	Excited states, dynamics
Relies on:	Hohenberg-Kohn theorem	Runge-Gross theorem
	$n(oldsymbol{r}) \stackrel{ ext{H.K.}}{\Leftrightarrow} V_{ ext{ext}}(oldsymbol{r}) \Leftrightarrow \hat{H} \stackrel{ ext{S.E.}}{\Leftrightarrow} \Psi$	$n(\boldsymbol{r},t) \stackrel{\text{R.G.}}{\Leftrightarrow} V_{\text{ext}}(\boldsymbol{r},t) \Leftrightarrow \hat{H}(t) \Leftrightarrow \Psi(t)$
	$\Psi(oldsymbol{r}_1,\ldots,oldsymbol{r}_N)=\Psi[n(oldsymbol{r})]$	$\Psi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N,t)=\Psi[n(\boldsymbol{r},t)]$
□ Based on:	Variational principle	Taylor expansions
	$E_{\rm g.s.} = \min_{n} \left[\min_{\Psi \to n} \left\langle \Psi[n] \hat{H} \Psi[n] \right\rangle \right] = E[$	$n_{\text{g.s.}}] f(\boldsymbol{r},t) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n f(\boldsymbol{r},t)}{\partial t^n} \Big _{t=t'} (t-t')^n$
□ Magic of:	Kohn-Sham Scheme \rightarrow KS eq.	van Leeuwen's theorem \rightarrow TDKS eq.

TDDFT in a tiny nutshell - the Runge-Gross theorem

E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) One-body current density: **One-body density: TDSEs**: $\rho(\boldsymbol{r},t) = N \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N |\Psi(t)|^2 \qquad \boldsymbol{j}(\boldsymbol{r},t) = \frac{\hbar N}{2im} \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N \left[\Psi^*(t) \nabla \Psi(t) - \Psi(t) \nabla \Psi^*(t) \right] \qquad i\hbar \frac{\partial \Psi}{\partial t} = H \Psi \quad i\hbar \frac{\partial \Psi'}{\partial t} = \hat{H}' \Psi'$ $\Psi = \Psi(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N, t) \quad \hat{H} = \hat{T} + \hat{V} + \hat{V}_{ext}$ $\hat{H}' = \hat{T} + \hat{V} + \hat{V}'_{ext}$

The rate of change of the current density reads:

$$\frac{\partial \boldsymbol{j}}{\partial t} = \frac{N}{2m} \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N \left[(H \Psi)^* \nabla \Psi - \Psi^* \nabla (H \Psi) + (H \Psi) \nabla \Psi^* - \Psi \nabla (H \Psi)^* \right] \quad \cdot \quad \cdot \quad (\mathbf{a})$$

$$\frac{\partial \boldsymbol{j}'}{\partial t} = \frac{N}{2m} \int d\boldsymbol{r}_2 \cdots \int d\boldsymbol{r}_N \Big[(H'\Psi')^* \nabla \Psi' - \Psi'^* \nabla (H'\Psi') + (H'\Psi') \Psi'^* - \Psi' \nabla (H'\Psi')^* \Big] \quad \boldsymbol{\cdot} \quad \boldsymbol{\cdot} \quad \boldsymbol{\cdot} \quad \boldsymbol{(b)}$$

(a) - (b)
$$\frac{\partial}{\partial t} [\boldsymbol{j}(\boldsymbol{r},t) - \boldsymbol{j}'(\boldsymbol{r},t)] = -\frac{1}{m} \rho(\boldsymbol{r},t) \nabla [v_{\text{ext}}(\boldsymbol{r},t) - v'_{\text{ext}}(\boldsymbol{r},t)] \qquad \boldsymbol{\star} \quad \boldsymbol{\star} \quad$$

*One can obtain equations for higher-order derivatives in the same manner

As in the case of static DFT, we have a TDKS scheme according to the following one-to-one correspondences:

$$\hat{H}(t) \stackrel{\text{TDSE}}{\Leftrightarrow} \Psi(t) \stackrel{\text{RG}}{\Leftrightarrow} \boldsymbol{j}(\boldsymbol{r},t) \& \rho(\boldsymbol{r},t)$$

*Taking divergence of Eq.(\bigstar) and using the continuity equation, one can obtain equations for the density.

 $\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0$

Nuclear TDDFT: Past, Present, and Future

TDDFT is a time-dependent extension of DFT

R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)

TDDFT is a time-dependent extension of DFT

R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)

Nuclear TDDFT: Past, Present, and Future

TDDFT in Nuclear Physics

TDDFT is a versatile tool!!

Phys. Rev. C 84, 051309(R) (2011) I. Stetcu, A. Bulgac, P. Magierski, and K.J. Roche

Vortex-nucleus dynamics

Phys. Rev. Lett. **117**, 232701 (2016) G. Wlazłowski, K.S., P. Magierski, A. Bulgac, and M.M. Forbes

Induced fission of ²⁴⁰Pu

Phys. Rev. Lett. **116**, 122504 (2016) A. Bulgac, P. Magierski, K.J. Roche, and I. Stetcu

Low-energy heavy-ion reactions

Phys. Rev. Lett. **119**, 042501 (2017) P. Magierski, K.S., and G. Wlazłowski

Low-energy heavy-ion reactions

Once an EDF is given, there are no empirical parameters

1. Prepare ground states of projectile and target nuclei

KS (or HF) equations

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + v_{\rm \tiny KS}[\rho(\boldsymbol{r})]\right]\phi_i(\boldsymbol{r}) = \varepsilon_i \,\phi_i(\boldsymbol{r})$$

Once an EDF is given, there are no empirical parameters

1. Prepare ground states of projectile and target nuclei

 $^{64}Ni+^{238}U$ at $E_{lab}=390 \text{ MeV}$

K.S. and K. Yabana, PRC93(2016)054616

Quasifission dynamics in TDDFT

Tip collision

Shell effects of ²⁰⁸Pb

Side collision

More mass-symmetric

 64 Ni+ 238 U at E_{lab} =390 MeV

TDDFT provides quantitative description of quasifission dynamics

TKE-A distribution: Comparison with experimental data

Expt.: E.M. Kozulin et al., PLB686(2010)227

Extracting transfer probabilities

One may extract transfer probabilities, though $\Phi_{\text{KS}}[n(\boldsymbol{r},t)] \neq \Psi_{\text{exact}}[n(\boldsymbol{r},t)]$

H.J. Lüdde and R.M. Dreizler, J. Phys. B: Atom. Mol. Phys. **16**, 3973 (<u>1983</u>) R. Nagano, K. Yabana, T. Tazawa, and Y. Abe, PRA**62**(2000)062721

Electron transfer in collisions of Ar⁸⁺ and Ar

S.E. Koonin, K.T.R. Davies, V. Maruhn-Rezwani, H. Feldmeier, S. J. Krieger, and J. W. Negele, PRC15(<u>1977</u>)1359

Particle-number projection for TDHF: C. Simenel, PRL**105**(2010)192701 <u>K. Sekizawa</u> and K. Yabana, PRC**88**(2013)014614

Nucleon transfer in collisions of ⁵⁸Ni and ²⁰⁸Pb

K. Sekizawa

From nuclei to neutron stars

"3d hyperspace background with warp tunnel effect Free Photo" @freepik

The fate of a massive star

Nuclear reactions: ${}^{1}H \rightarrow {}^{4}He \rightarrow {}^{12}C \rightarrow {}^{16}O \rightarrow {}^{20}Ne \rightarrow {}^{24}Mg \rightarrow {}^{28}Si \rightarrow ... \rightarrow {}^{56}Fe$

"Onion structure"

He C, O O, Ne, Mg Si

Fe

After forming the iron core...

 \rightarrow no more fuel

 \rightarrow gravitational collapse

 \rightarrow supernova explosion

The Crab Nebula Remnant of the SN in 1054

Picture: https://en.wikipedia.org/wiki/Crab_Nebula

What's inside a neutron star?

Neutron star is a great playground for nuclear physicists

✓ It offers extreme situations which can not be realized in terrestrial experiments!

How can we understand NS structure from nucleons?

from nuclear force to neutron stars

EoS characterizes the nuclear matter properties

✓ From low-energy nuclear experiments, one may extract information in the vicinity of the saturation density
E.g.) ISGMR: U. Grag and G. Colò, PPNP101(2018)55; Electric dipole (E1) polarizability → skin thickness: A. Tamii *et al.*, EPJA50(2014)28

From EoS to neutron stars

An EoS defines a Mass-Radius relation of neutron stars

K. Sekizawa

Nuclear TDDFT: Past, Present, and Future

Thu., Dec. 8, 2022

In an outer (low-density) region of neutron stars, nuclear matter is <u>not</u> actually <u>homogeneous</u>

The nuclear interaction "clusterize" neutrons and protons, akin to finite nuclei, which form a Coulomb lattice (*i.e.* a crystal, like a solid)

Let's see: from the outer crust to the inner crust

Outer crust

Structure of the outer crust is "similar" to that of a white dwarf

Inner crust

In the inner crust, a sea of "dripped neutrons" permeates the Coulomb lattice

Neutron-star "glitch"

Picture: https://astronomy.com/magazine/ask-astro/2017/12/stellar-magnets

Pulsar - a rotating neutron star

- ✓ First discovery in August 1967 → "Little Green Man" LGM-1 → PSR B1919+21
- ✓ Since then, more than 2650 pulsars have been observed
- ✓ It gradually <u>spins down</u> due to the EM radiation

What is the glitch?

Typical example: the Vela pulsar

Irregularity has been observed from continuous monitoring of the pulsation period

What happened?

Dynamics of superfluid "quantized vortices" play a key role!

?

Quantum vortices

In superfluid, vortices are quantized!

Circulation:

 $\kappa = \int_{S} (\nabla \times \boldsymbol{v}_s) \cdot d\boldsymbol{S} = 0$ *Unless, there is no topological defect

This hole topologically distinguishes a mag from a cow

Pictures: https://en.wikipedia.org/wiki/Topology

In superfluid, vortices are quantized!

Quantum vortex

In superconductor, magnetic flux is quantized!

Quantum vortex

 Φ_{B}

side view

Comment on flux tube generation in neutron stars

Supernova

have happened inside the

neutron star core!

A hot, "proto" neutron star resides as a remnant.

It would cool down form $T > T_c$ to below T_c :

***<u>Protons</u>** are supposed to be **<u>type-II</u>** superconductor via ${}^{1}S_{0}$ pairing inside the neutron-star core.

Animation: https://i.imgur.com/gROHZnG.gifv

Supernova: https://www.forbes.com/sites/jamiecartereurope/2021/09/15/a-zombie-supernova-that-stunned-stargazers-in-the-year-1181-has-finally-been-found-welcome-to-parkers-star/

In daily life, a vortex is continuous..

In superfluid, vortices are quantized!!

W. Ketterle, MIT Physics Annual. 2001

G.P. Bewley, D.P. Lathrop, and K.R. Sreenivasan, Nature 441, 588 (2006)

A movie from a talk by W. Guo (available from <u>https://youtu.be/P2ckefSAN20</u>) at INT Program 19-1a "Quantum Turbulence: Cold Atoms, Heavy Ions, and Neutron Stars" March 18 - April 19, 2019

Direct visualization of quantized vortices

Hydrogen particles were trapped in the vortex core, then worked as a tracer

Neutron star is a great playground for nuclear physicists

✓ It offers extreme situations which can not be realized in terrestrial experiments!

Neutron star is a great playground for nuclear physicists

✓ It offers extreme situations which can not be realized in terrestrial experiments!

Ocean Outer crust	Ocean Hot plasma ~ 0.1 km	Outer crus	5t Nuclei (Z= 0.3-0.6 km	=26-42), electrons $\rho < \rho_{\rm drip}$
		$\begin{cases} \rho_{\rm drip} \sim 0.0014 \rho_0; \\ \rho_0 = 2.8 \times 10^{14} {\rm g/cm} \end{cases}$	Above ρ_{drip} unbount $m^3=0.16 \text{ fm}^{-3}$; N	nd neutrons exist outside nuclei Nuclear saturation density
Uniform nuclear m n, p, e ⁻ , μ ⁻	atter:		nner crust	Nuclei, electrons, "dripped" neutrons
			0.5-0.8 km	$\rho_{\rm drip} \le \rho \le 0.6 \rho_0$
Hyperons?				
Meson condensate	s?		Outer/inne	r core
Quark matter?			7-12 KII	$1 0.0p_0$

$T < T_c \sim 10^{10} \, {\rm K} \quad B < B_c \sim 10^{17} \, {\rm G}$

Neutrons (protons) are superfluid (superconducting) in neutron stars!

A lattice of neutron-rich nuclei are immersed in a neutron superfluid

Quantum vortices can exist!

Fig.4 in N. Chamel and P. Haensel, Living Rev. Relativity 11, 10 (2008)

In rotating superfluid, an array of quantum vortices is generated

W. Ketterle, MIT Physics Annual. 2001

In rotating superfluid, an array of quantum vortices is generated

Observation in ultra-cold atomic gases

W. Ketterle, MIT Physics Annual. 2001

There must be a huge number (~10¹⁸) of vortices inside a neutron star!!

W. Ketterle, MIT Physics Annual. 2001

The vortex mediated glitch: Naive picture

Rotation frequency

Time

To fully understand the glitches, we need to clarify:

Glitch dynamics

How do vortices move?

and, of course, details of NS matter..

Pinning mechanism

How are vortices pinned?

Trigger mechanism

How are vortices unpinned?

We attacked this problem using the state-of-the-art microscopic nuclear theory We attack this problem with HPC on GPU supercomputers with TDDFT for superfluid systems, TDSLDA!

TDSLDA (Time-Dependent Superfluid Local Density Approximation)

TDSLDA: TDDFT with local treatment of pairing

Kohn-Sham scheme is extended for non-interacting quasiparticles

TDSLDA equations (formally equivalent to TDHFB or TD-BdG equations)

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_{k,\uparrow}(\boldsymbol{r},t)\\u_{k,\downarrow}(\boldsymbol{r},t)\\v_{k,\uparrow}(\boldsymbol{r},t)\\v_{k,\downarrow}(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_{\uparrow\uparrow}(\boldsymbol{r},t) & h_{\uparrow\downarrow}(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t)\\h_{\downarrow\uparrow}(\boldsymbol{r},t) & h_{\downarrow\downarrow}(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0\\0 & -\Delta^{*}(\boldsymbol{r},t) & -h_{\uparrow\uparrow}^{*}(\boldsymbol{r},t) & -h_{\uparrow\downarrow}^{*}(\boldsymbol{r},t)\\\Delta^{*}(\boldsymbol{r},t) & 0 & -h_{\downarrow\uparrow}^{*}(\boldsymbol{r},t) & -h_{\downarrow\downarrow}^{*}(\boldsymbol{r},t)\end{pmatrix} \begin{pmatrix}u_{k,\uparrow}(\boldsymbol{r},t)\\u_{k,\downarrow}(\boldsymbol{r},t)\\v_{k,\uparrow}(\boldsymbol{r},t)\\v_{k,\downarrow}(\boldsymbol{r},t)\end{pmatrix}$$

$$h_{\sigma} = \frac{\delta E}{\delta n_{\sigma}} \quad : \text{ s.p. Hamiltonian} \\ \Delta = -\frac{\delta E}{\delta \nu^{*}} \quad : \text{ pairing field} \\ \lambda = -\frac{\delta E}{\delta \nu^{*}} \quad : \text{ pairing field} \\ n_{\sigma}(\boldsymbol{r}, t) = \sum_{E_{k} < E_{c}} |v_{k,\sigma}(\boldsymbol{r}, t)|^{2} \quad : \text{ number density} \\ \nu(\boldsymbol{r}, t) = \sum_{E_{k} < E_{c}} u_{k,\uparrow}(\boldsymbol{r}, t) v_{k,\downarrow}^{*}(\boldsymbol{r}, t) : \text{ anomalous density} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}(\boldsymbol{r}, t)] : \text{ current} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r}, t) = \hbar \sum_{E_{k} < E_{c}} \text{Im}[v_{k,\sigma}^{*}(\boldsymbol{r}, t) \nabla v_{k,\sigma}($$

A large number (10⁴-10⁶) of 3D coupled non-linear PDEs have to be solved!! # of qp orbitals ~ # of grid points

TDSLDA (Time-Dependent Superfluid Local Density Approximation)

TDSLDA: TDDFT with local treatment of pairing

Kohn-Sham scheme is extended for non-interacting quasiparticles

TDSLDA equations (formally equivalent to TDHFB or TD-BdG equations)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_{k,\uparrow}(\boldsymbol{r},t) \\ u_{k,\downarrow}(\boldsymbol{r},t) \\ v_{k,\uparrow}(\boldsymbol{r},t) \\ v_{k,\downarrow}(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h_{\uparrow\uparrow}(\boldsymbol{r},t) & h_{\uparrow\downarrow}(\boldsymbol{r},t) & 0 & \Delta(\boldsymbol{r},t) \\ h_{\downarrow\uparrow}(\boldsymbol{r},t) & h_{\downarrow\downarrow}(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) & 0 \\ 0 & -\Delta^*(\boldsymbol{r},t) & 0 & -h_{\uparrow\downarrow}^*(\boldsymbol{r},t) \\ \Delta^*(\boldsymbol{r},t) & \Delta^*(\boldsymbol{r},t) \\ \Delta^*(\boldsymbol{r},t) & \Delta^*(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_{k,\uparrow}(\boldsymbol{r},t) \\ u_{k,\downarrow}(\boldsymbol{r},t) \\ v_{k,\downarrow}(\boldsymbol{r},t) \end{pmatrix} \\ \frac{SuperComputing!!}{h_{\sigma} = \frac{\delta E}{\delta n_{\sigma}}} : \text{ s.p. Hamiltonian} \\ \Delta = -\frac{\delta E}{\delta \nu^*} : \text{ pairing field} \end{pmatrix} = \begin{pmatrix} h_{\uparrow\uparrow}(\boldsymbol{r},t) & h_{\downarrow\downarrow}(\boldsymbol{r},t) & -\Delta(\boldsymbol{r},t) \\ 0 & -\Delta^*(\boldsymbol{r},t) & 0 \\ -h_{\uparrow\downarrow}^*(\boldsymbol{r},t) & -h_{\uparrow\downarrow}^*(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_{k,\uparrow}(\boldsymbol{r},t) \\ u_{k,\downarrow}(\boldsymbol{r},t) \\ v_{k,\downarrow}(\boldsymbol{r},t) \end{pmatrix} \\ \frac{V(\boldsymbol{r},t) = \sum_{E_k < E_c} |v_{k,\sigma}(\boldsymbol{r},t)|^2 : \text{ number density} \\ \nu(\boldsymbol{r},t) = \sum_{E_k < E_c} u_{k,\uparrow}(\boldsymbol{r},t) v_{k,\downarrow}^*(\boldsymbol{r},t) : \text{ anomalous density} \\ \boldsymbol{j}_{\sigma}(\boldsymbol{r},t) = \hbar \sum_{E_k < E_c} \text{Im}[v_{k,\sigma}^*(\boldsymbol{r},t) \nabla v_{k,\sigma}(\boldsymbol{r},t)] : \text{ current} \end{pmatrix}$$

A large number (10⁴-10⁶) of 3D coupled non-linear PDEs have to be solved!! # of qp orbitals ~ # of grid points

*The number indicates the rank according to the TOP500 list (June 2022)

Piz Daint, CSCS, Switzerland (No. 23)

TITAN, ORNL, USA

TSUBAME3.0, Japan (No. 64)

Summit, ORNL, USA (No. 4) GPU, 200 PFlops/s

No.4: Summit, ORNL, USA No.5: Sierra, LLNL, USA No.7: Perlmutter, NERSC, USA No.8: Selene, NVIDIA Co., USA No.11: JUWELS Booster Module, FZJ, Germany No.12: HPC5, Eni S. p. A., Italy No.13: Voyager-EUS2, Azure East US 2, USA No.14: Polaris, ANL, USA No.15: SSC-21, Samsung Electronics, South Korea No.18: Damman-7, Saudi Aramco, Saudi Arabia No.19: ABCI 2.0, AIST, Japan

Certainly, GPU is competing with CPU machines!!

Vortex-nucleus dynamics within TDSLDA

G. Wlazłowski, <u>K. Sekizawa</u>, P. Magierski, A. Bulgac, and M.M. Forbes, Phys. Rev. Lett. **117**, 232701 (2016)
A key to understand the glitches is: <u>Vortex pinning mechanism in the inner crust of neutron stars</u>

Q. Is the vortex-nucleus interaction

Attractive?

or

"Nuclear pinning"

"Interstitial pinning"

We performed 3D, dynamical simulations by TDDFT with superfluidity

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Computational details

75 fm × 75 fm × 60 fm $(50 \times 50 \times 40, \ \Delta x = 1.5 \text{ fm})$ $k_{\rm c} = \pi/\Delta x > k_{\rm F}$ $k_{\rm F} = (3\pi^2 \rho_n)^{1/3}$ Nuclear impurity: Z = 50 $\rho_n \simeq 0.014 \text{ fm}^{-3} (N \simeq 2,530)$ $\rho_n \simeq 0.031 \text{ fm}^{-3} (N \simeq 5,714)$ # of quasi-particle w.f. $\approx 100,000$

20 30 R=30fm 50 60 55 45 70 Z=50 $\rho(\mathbf{r})$ 50 40 30 20 10 $\rho_n \simeq 0.014 \, \mathrm{fm}^{-3}$

a vortex line exists here

We performed 3D, dynamical simulations by TDDFT with superfluidity

TDSLDA equations (or TDHFB, TD-BdG)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} h(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -h(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_i(\mathbf{r}) \\ v_i(\mathbf{r}) \end{pmatrix}$$

Computational details

75 fm × 75 fm × 60 fm $(50 \times 50 \times 40, \ \Delta x = 1.5 \text{ fm})$ $k_{\rm c} = \pi/\Delta x > k_{\rm F}$ $k_{\rm F} = (3\pi^2 \rho_n)^{1/3}$ Nuclear impurity: Z = 50 $\rho_n \simeq 0.014 \text{ fm}^{-3} (N \simeq 2,530)$ $\rho_n \simeq 0.031 \text{ fm}^{-3} (N \simeq 5,714)$ # of quasi-particle w.f. $\approx 100,000$

MPI+GPU → 48h w/ 200GPUs for 10,000 fm/c

TITAN, Oak Ridge

NERSC Edison, Berkeley

HA-PACS, Tsukuba

Results of TDSLDA calculation: $\rho_n \simeq 0.014 \text{ fm}^{-3}$

Results of TDSLDA calculation: $\rho_n \simeq 0.014 \text{ fm}^{-3}$

time= 8032 fm/c F_m (10.6)= 0.17 MeV/fm Q= 13 fm²

Nuclear TDDFT: Past, Present, and Future

Results of TDSLDA calculation: $\rho_n \simeq 0.014 \text{ fm}^{-3}$

Nuclear TDDFT: Past, Present, and Future

"Unpinned configuration"

"Pinned configuration"

Time-Dependent Band Theory for the Inner Crust of Neutron Stars

Neutron star is a great playground for nuclear physicists

Neutron star is a great playground for nuclear physicists

What is "Nuclear Pasta"?

https://www.newsweek.com/nuclear-pasta-neutron-star-strongest-material-universe-1127491

M. E. Caplan and C. J. Horowitz, Rev. Mod. Phys. 89, 041002 (2017)

This is one of my most recent publications:

PHYSICAL REVIEW C 105, 045807 (2022)

Time-dependent extension of the self-consistent band theory for neutron star matter: <u>Anti-entrainment effects</u> in the slab phase

Kazuyuki Sekizawa[®],^{1,2,*} Sorataka Kobayashi,³ and Masayuki Matsuo^{®4,†} ¹Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata 950-2181, Japan ²Nuclear Physics Division, Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8577, Japan ³Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan ⁴Department of Physics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

(Received 28 December 2021; accepted 4 April 2022; published 25 April 2022)

in collaboration with

Sorataka Kobayashi (Finished MSc in Mar. 2019)

Masayuki Matsuo

Kenta Yoshimura (M1)

Superfluid extension: Dec. 12 (Mon)

What is the "entrainment" effect?

"Entrainment" is a phenomenon between two species (particles, gases, fluids, etc.), where a motion of one component attracts the other.

"Entrainment" is a phenomenon between two species (particles, gases, fluids, etc.), where a motion of one component attracts the other.

"Entrainment" in the inner crust

Part of dripped neutrons are "effectively bound" (immobilized) by the periodic structure (due to Bragg scatterings), resulting in a larger effective mass

The "entrainment effect" is still a debatable problem

- The first consideration for 1D, square-well potential
- Band calculations for slab (1D) and rod (2D) phases

Entrainment effects are weak for the slab & rod phases:

K. Oyamatsu and Y. Yamada, NPA578(1994)184

B. Carter, N. Chamel, and P. Haensel, NPA748(2005)675

 $\frac{m^{\star}}{m} \sim \begin{cases} 1.02 - 1.03 & \text{for the slab phase} \\ 1.11 - 1.40 & \text{for the rod phase} \end{cases}$

Band calculations for cubic-lattice (3D) phases

N. Chamel, NPA747(2005)109 (2005); NPA773(2006)263; PRC85(2012)035801; J. Low Temp. Phys. 189, 328 (2017)

<u>Significant</u> entrainment effects were found in a low-density region: $\frac{m^*}{m} \gtrsim 10$ or more! for the cubic lattice

The first *self-consistent* band calculation for the slab (1D) phase (based on DFT with a BCPM EDF)

"<u>*Reduction*</u>" of the effective mass was observed for the slab phase:

 $\left| {{m^\star}\over{m}} \sim 0.65\!-\!0.75
ight|$ for the slab phase

Yu Kashiwaba and T. Nakatsukasa, PRC100(2019)035804

Time-dependent extension of the self-consistent band theory (based on TDDFT with a Skyrme EDF) "*Reduction*" was observed, consistent with the Tsukuba group.

K. Sekizawa, S. Kobayashi, and M. Matsuo, PRC105(2022)045807

It may affect interpretation of various phenomena, e.g.:

Neutron-star glitch

Quasi-periodic oscillation

Seismology (地震学): Studying inside of the Earth from earthquakes and their propagation

Picture taken from AusPass by Australian National University

QPOs as "asteroseismology"

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 489, 3022–3030 (2019) Advance Access publication 2019 August 29

Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich

Hajime Sotani⁰,¹* Kei Iida² and Kazuhiro Oyamatsu³

¹Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

²Department of Mathematics and Physics, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

³Department of Human Informatics, Aichi Shukutoku University, 2-9 Katahira, Nagakute, Aichi 480-1197, Japan

Many (~30) observed QPO frequencies, and prediction by a Bayesian analysis, have been nicely explained by torsional oscillations of tube-bubble or spherecylinder layer

QPOs as "asteroseismology"

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 489, 3022–3030 (2019) Advance Access publication 2019 August 29

Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich

Hajime Sotani⁰,¹* Kei Iida² and Kazuhiro Oyamatsu³

¹Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan ²Department of Mathematics and Physics, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan ³Department of Human Informatics, Aichi Shukutoku University, 2-9 Katahira, Nagakute, Aichi 480-1197, Japan

The interpretation could be affected by the entrainment effects!

Many (~30) observed QPO frequencies, and prediction by a Bayesian analysis, have been nicely explained by torsional oscillations of tube–bubble or sphere– cylinder layer We employ the Skyrme-Kohn-Sham DFT with the Bloch boundary condition

Nuclear TDDFT: Past, Present, and Future

K. Sekizawa

Thu., Dec. 8, 2022

✓ The collective mass is extracted from **acceleration motion under constant force**

How to introduce spatially-uniform electric field

✓ TDKS equation in a "velocity gauge"

Spatially-uniform Vector potential

$$i\hbar \frac{\partial \widetilde{u}_{\alpha \mathbf{k}}^{(q)}(z,t)}{\partial t} = \left(\hat{h}^{(q)}(z,t) + \hat{h}_{\mathbf{k}(t)}^{(q)}(z,t)\right) \widetilde{u}_{\alpha \mathbf{k}}^{(q)}(z,t) \qquad \mathbf{k}(t) = \mathbf{k} + \frac{e}{\hbar c} \underbrace{A_z(t)}_{\mathbf{k}(t)} \hat{e}_z$$

Gauge transformation for the Bloch orbitals:Electric field:k-dependent term:Velocity operator: $\tilde{u}_{\alpha \mathbf{k}}^{(q)}(z,t) = \exp\left[-\frac{ie}{\hbar c}A_z(t)z\right]u_{\alpha \mathbf{k}}^{(q)}(z,t)$ $E_z(t) = -\frac{1}{c}\frac{dA_z}{dt}$ $\hat{h}_{\mathbf{k}}^{(q)}(z) = \frac{\hbar^2 \mathbf{k}^2}{2m_q^{\oplus}(z)} + \hbar \mathbf{k} \cdot \hat{v}^{(q)}(z)$ $\hat{v}^{(q)}(z) \equiv \frac{1}{i\hbar}[\mathbf{r}, \hat{h}^{(q)}(z)]$

cf. K. Yabana and G.F. Bertsch, Phys. Rev. B 54, 4484 (1996); G.F. Bertch et al., Phys. Rev. B 62, 7998 (2000)

"Anti-entrainment" effect

Current density:

$$j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\boldsymbol{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\boldsymbol{k}}^{(q)*}(\boldsymbol{r},t) \nabla \psi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\boldsymbol{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\boldsymbol{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\boldsymbol{k}}^{(q)}) dk_{\parallel}$$

 \checkmark Protons inside the slab move toward the direction of the external force, as expected.

"Anti-entrainment" effect

Current density: $j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\boldsymbol{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\boldsymbol{k}}^{(q)*}(\boldsymbol{r},t) \nabla \psi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\boldsymbol{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\boldsymbol{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\boldsymbol{k}}^{(q)}) dk_{\parallel}$

✓ Dripped neutrons outside the slab move toward the opposite direction!

Since it reduces $P_{\rm tot}$ and $\dot{P}_{\rm tot}$, $M_{\rm slab} = \dot{P}_{\rm tot}/a_{\rm p}$ is reduced

"Anti-entrainment" effect

Current density:

$$j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\boldsymbol{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\boldsymbol{k}}^{(q)*}(\boldsymbol{r},t) \nabla \psi_{\alpha\boldsymbol{k}}^{(q)}(\boldsymbol{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\boldsymbol{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\boldsymbol{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\boldsymbol{k}}^{(q)}) dk_{\parallel}$$

✓ Dripped neutrons outside the slab move toward the opposite direction!

Since it reduces $P_{\rm tot}$ and $\dot{P}_{\rm tot}$, $M_{\rm slab} = \dot{P}_{\rm tot}/a_{\rm p}$ is reduced

Reduction of $M_{\rm slab}$

 \rightarrow enhancement of $n_{\rm c}$

 \rightarrow reduction of m^*

We interpret it as an "anti-entrainment" effect

$Y_{ m p}$	$n_{ m n}^{ m f}/ar{n}_{ m n}$	Static		Dynamic
		$n_{ m n}^{ m c}/ar{n}_{ m n}$	$m_{ m n}^{\star}/m_{ m n}$	$n_{ m n}^{ m c}/ar{n}_{ m n}$
0.3	$2.09 imes 10^{-4}$	0.005	0.040	0.005
0.2	0.127	0.256	0.496	0.229
0.1	0.362	0.630	0.574	0.586

 $\left(m_{\mathbf{n},\alpha\boldsymbol{k}}^{\star\,-1}\right)_{\mu\nu} = \frac{1}{\hbar^2} \frac{\partial^2 \varepsilon_{\alpha\boldsymbol{k}}^{(\mathbf{n})}}{\partial k_{\mu} \partial k_{\nu}}$

Future of nuclear (TD)DFT - a personal look

Ab initio approaches **Chiral EFT** Machine learning **Fundamentals** Symmetry restorations **Re-quantization** (TD)GCM Hypernuclei Inverse Kohn-Sham Multi-Slater determinants EM fields Tensor force pn pairing Applications Extension **Fission** ³P₂ neutron superfluidity SHE synthesis Memory effects ¹S₀ proton superconductivity Glitches **Band structure effects** EoS

K. Sekizawa

Nuclear TDDFT: Past, Present, and Future

Future of nuclear (TD)DFT - a personal look

Interactions with physicists from other fields must be important!! Ab initio approaches Chiral EFT Machine learning Fundamentals

Symmetry restorations

EoS

Condensed-matter physics Solid-state physics Quantum chemistry Astrophysics

Re-quantization (TD)GCM Inverse Kohn-Sham

Multi-Slater determinants EM fields Tensor force pn pairing Applications Fission Memory effects ³P₂ neutron superfluidity SHE synthesis ¹S₀ proton superconductivity Band structure effects

Thu., Dec. 8, 2022

K. Sekizawa

.. and we should go together for the future of DFT..

Nuclear Physics

Condensed Matter Physics

"End Credits" from "E.T.": https://youtu.be/YuhZ80YHFns

Kazuyuki Sekizawa Associate Professor Department of Physics, School of Science Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan sekizawa @ phys.titech.ac.jp About me: <u>http://sekizawa.fizyka.pw.edu.pl/english/</u> About us: <u>https://nuclphystitech.wordpress.com/</u>

See also:

