Requantizing the time-dependent density functional dynamics

Takashi Nakatsukasa (University of Tsukuba)

- Nuclear saturation and mean-field approach
- TDDFT for nuclear collective motion

Success \& failure

- Requantization of TDDF dynamics

Low-energy nuclear reaction

Nuclear Saturation "Liquid"-like property

$\mathrm{B} / \mathrm{A} \sim 8 \mathrm{MeV}$
(B/A ~ 16 MeV for nuclear matter)
Density $\rho \approx 0.16 \mathrm{fm}^{-3}$

Bethe-Weizsäcker mass formula

$$
\begin{aligned}
B(N, Z)= & a_{V} A-a_{S} A^{2 / 3} \\
& -a_{s y m} \frac{(N-Z)^{2}}{A} \\
& -a_{C} \frac{Z^{2}}{A^{1 / 3}}+\delta(A)
\end{aligned}
$$

Single-particle motion "Gas"-like picture

- Nuclear shell model
- Strong spin-orbit coupling (Mayer-Jensen)
- Mean free path in nuclei
- Neutron scattering

Energy required to remove two neutrons from nuclei
(2-neutron binding energies $=2$-neutron "separation" energies)

R. Casten

Nuçartarnern

Neutron scattering cross section

MEASURED NEUTRON TOTAL CROSS
SECTIONS

$$
-V \approx 50-0.3 E, \quad-W \approx(0 \sim 2)+0.1 E
$$

Bohr and Mottelson, Nuclear Structure I (1969)
Optical-model analysis

$$
V+i W \Rightarrow k_{i n}+\frac{i}{2 \lambda}
$$

Real and imaginary potentials

For low-energy neutrons

$$
\begin{aligned}
& \lambda \gg \\
& m^{*} \approx 0.7 m
\end{aligned}
$$

$\left(m^{*} \approx m\right.$ around $\left.k \approx k_{F}\right)$
λ : mean free path of neutrons
R : Size of nucleus

Mean-field approach

- In order to be consistent with the saturation,
- Need momentum dependent potential
- The lowest order \rightarrow "Effective mass"

$$
V=U_{0}+U_{1} k^{2} \Rightarrow m^{*} / m=\left(1+U_{1} k_{F}^{2} / T_{F}\right)^{-1}
$$

$B / A \approx S_{n(p)} \approx 16 \mathrm{MeV}$
$T_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m} \approx 40 \mathrm{MeV}$

$$
=\left(\frac{3}{2}+\frac{5}{2} \frac{B}{A} \frac{1}{T_{F}}\right)^{-1} \approx 0.4
$$

- Inconsistent with experiments!

A possible solution for the inconsistency

- Energy density functional

$$
\begin{aligned}
E[\rho] \Rightarrow & h[\rho]\left|\phi_{i}\right\rangle=\varepsilon_{i}\left|\phi_{i}\right\rangle \\
& h[\rho] \equiv \frac{\delta E}{\delta \rho}
\end{aligned}
$$

- State-dependent effective interaction
- Rearrangement terms

Nuclear energy density functional

- Energy functional for the intrinsic states
- Spin \& isospin degrees of freedom - Spin-current density is indispensable.
- Nuclear superfluidity \rightarrow Kohn-ShamBogoliubov eq.
- Pair density (tensor) is necessary for heavy nuclei.

Nuclear Landscape

From SciDAC-UNFDF project

Nuclear deformation as symmetry breaking

$$
e^{i \phi J}|\Psi\rangle \neq|\Psi\rangle
$$

Quadrupole deformation
$\beta_{2 \mu}=\langle\Psi| r^{2} Y_{2 \mu}|\Psi\rangle$

prolate

oblate

triaxial

$$
e^{i \phi N}|\Psi\rangle \neq|\Psi\rangle
$$

Pairing deformation (superfluidity)

$$
\Delta=\langle\Psi| \hat{\psi} \hat{\psi}|\Psi\rangle
$$

Deformation in the gauge space
Nuclear Superconductivity
Nuclear Superfluidity

$$
\beta_{30}=\langle\Psi| r^{3} Y_{30}|\Psi\rangle
$$

$$
\hat{P}|\Psi\rangle \neq \pm|\Psi\rangle
$$

Pear shape ($\mu=0$)

Nuclear deformation

Ebata and T.N., Phys. Scr. 92 (2017) 064005

Predicted nuclear mass

Nuclear deformation predicted by DFT

Intrinsic Q moment

Time-dependent density functional theory (TDDFT) for nuclei

- Time-odd densities (current density, spin density, etc.)

$$
\begin{gathered}
E\left[\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \vec{s}_{q}(t), \vec{T}_{q}(t) ; \kappa_{q}(t)\right] \\
\text { kinetic } / \sim \text { cpin-current }
\end{gathered}
$$

- TD Kohn-Sham-Bogoliubov-de-Gennes eq.

$$
i \frac{\partial}{\partial t}\binom{U_{\mu}(t)}{V_{\mu}(t)}=\left(\begin{array}{cc}
h(t)-\lambda & \Delta(t) \\
-\Delta^{*}(t) & -(h(t)-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(t)}{V_{\mu}(t)}
$$

Linear response calculation

Deformation effects for photoabsorption cross section
SkM* functional

Reaction above the Coulomb barrier

"Partial"-space particle-number projection
Simenel, C., 2010, Phys. Rev. Lett. 105, 192701.
$P_{n}=\langle\Phi| \hat{P}_{n}|\Phi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i n \theta} \operatorname{det}\left\{\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{T}}}+e^{-i \theta}\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{P}}}\right\}$
Real-time simulation

Sekizawa, Phys. Rev. C 96, 014615 (2017)

Low-energy states

- Low-energy collective states
- Linear response cal.
- Not as good as GR

Terasaki, Engel, Phys. Rev. C 84, 014332 (2011)

Large amplitude collective motion

- Decay modes
- Spontaneous fission
- Alpha decay
- Low-energy reaction
- Sub-barrier fusion reaction
- Alpha capture reaction (element synthesis in the stars)

Success \& failure

- Success of nuclear (TD)DFT
- Unified picture of liquid-like and gas-like properties (saturation and indep. part. motion)
- Giant resonances (linearized TDDFT)
- Problems
- Low-energy collective motion
- Many-body tunneling (spontaneous fission, sub-barrier fusion, astrophysical reaction)
- Possible solutions
- Improving DF (ω-dep., beyond LDA, etc.)
- Re-quantization of TDDFT

Strategy

- Purpose
- Recover quantum fluctuation effect associated with "slow" collective motion
- Difficulty
- Non-trivial collective variables
- Procedure

1. Identify the collective subspace of such slow motion, with canonical variables (q, p)
2. Quantize on the subspace $[q, p]=i \hbar$

Classical Hamilton's form

Blaizot, Ripka, "Quantum Theory of Finite Systems" (1986) Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)

The TDDFT can be described by the classical form.

$$
\begin{aligned}
& \dot{\xi}^{p h}=\frac{\partial H}{\partial \pi_{p h}} \\
& \dot{\pi}_{p h}=-\frac{\partial H}{\partial \xi^{p h}} \quad H(\xi, \pi)=E[\rho(\xi, \pi)]
\end{aligned}
$$

The canonical variables $\left(\xi^{p h}, \pi_{p h}\right)$

$$
\begin{aligned}
& \rho_{p p^{\prime}}=\left[(\xi+i \pi)(\xi+i \pi)^{\dagger}\right]_{p p^{\prime}} \quad \rho_{h h^{\prime}}=\left[1-(\xi+i \pi)^{\dagger}(\xi+i \pi)\right]_{h h^{\prime}} \\
& \rho_{p h}=\left[(\xi+i \pi)\left\{1-(\xi+i \pi)^{\dagger}(\xi+i \pi)\right\}\right]_{p h}
\end{aligned}
$$

Number of variables $=$ Number of $p h$ degrees of freedom

Expansion for "slow" motion

- Hamiltonian

$$
\begin{aligned}
& H=H(\xi, \pi) \approx \frac{1}{2} B^{\alpha \beta}(\xi) \pi_{\alpha} \pi_{\beta}+V(\xi) \\
& \text { expanded up to } 2^{\text {nd }} \text { order in } \pi \quad[\alpha, \beta=(p h)]
\end{aligned}
$$

- Transformation $\left(\xi^{\alpha}, \pi_{\alpha}\right) \rightarrow\left(q^{\mu}, p_{\mu}\right)$

$$
p_{\mu}=\frac{\partial \xi^{\alpha}}{\partial q^{\mu}} \pi_{\alpha}, \quad \pi_{\alpha}=\frac{\partial q^{\mu}}{\partial \xi^{\alpha}} p_{\mu}
$$

- Hamiltonian

$$
\bar{H}=\bar{H}(q, p) \approx \frac{1}{2} \bar{B}^{\mu \nu}(q) p_{\mu} p_{v}+V(q)
$$

Decoupled submanifold

Klein, Do Dang, Walet, Phys. Rep. 335, 93 (2000)
Nakatsukasa, Prog. Theor. Exp. Phys. 2012, 01A207 (2012)

- Collective canonical variables (q, p)
$-\left\{\xi^{\alpha}, \pi_{\alpha}\right\} \rightarrow\left\{q, p ; q^{a}, p_{a} ; \quad a=2, \cdots, N_{p h}\right\}$
- Finding a decoupled submanifold Σ

$$
\begin{aligned}
& \dot{q}^{a}=\left.\frac{\partial H}{\partial p}\right|_{\Sigma} \approx 0 \\
& \dot{p}^{a}=-\left.\frac{\partial H}{\partial q}\right|_{\Sigma} \approx 0
\end{aligned}
$$

on the submanifold Σ

Non-collective d.o.f.

Decoupled collective sub-manifold ($\mathrm{i}=1, \ldots, \mathrm{~K}$)

ASCC (adiabatic self-consistent collective coordinate) method

Matsuo, et al., PTP 103, 959 (2000)
Nakatsukasa, et al., RMP 88, 045004 (2016)
Nakatsukasa, Prog. Theor. Exp. Phys. 2012, 01A207 (2012)

- Collective canonical variables (q, p)

$$
-\left\{\xi^{\alpha}, \pi_{\alpha}\right\} \rightarrow\left\{q, p ; q^{a}, p_{a} ; \quad a=2, \cdots, N_{p h}\right\}
$$

- Finding a decoupled submanifold

$$
\begin{aligned}
& \frac{\partial V}{\partial \xi^{\alpha}}-\frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}}=0 \\
& B^{\beta \gamma}\left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}}\right) \frac{\partial q}{\partial \xi^{\beta}}=\omega^{2} \frac{\partial q}{\partial \xi^{\alpha}} \\
& \nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \equiv \frac{\partial^{2} V}{\partial \xi^{\gamma} \partial \xi^{\alpha}}-\Gamma_{\alpha \gamma}^{\beta} \frac{\partial V}{\partial \xi^{\beta}} \\
& \Gamma_{\alpha \gamma}^{\beta}=\frac{1}{2} B^{\beta \delta}\left(B_{\delta \gamma, \alpha}+B_{\delta \alpha, \gamma}-B_{\alpha \gamma, \delta}\right): \text { Affine connection } \\
& \text { Moving mean-field eq. } \\
& \text { Moving RPA eq. }
\end{aligned}
$$

Numerical procedure

$$
\begin{aligned}
& \frac{\partial V}{\partial \xi^{\alpha}}-\frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}}=0 \quad \text { Moving mean-field eq. } \\
& B^{\beta \gamma}\left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}}\right) \frac{\partial q}{\partial \xi^{\beta}}=\omega^{2} \frac{\partial q}{\partial \xi^{\alpha}} \quad \text { Moving RPA eq. }
\end{aligned}
$$

Tangent vectors (Generators)

$$
q_{, \alpha}=\frac{\partial q}{\partial \xi^{\alpha}} \quad \xi_{, q}^{\alpha}=\frac{\partial \xi^{\alpha}}{\partial q}
$$

Moving MF eq. to determine the point: ξ^{α}

Move to the next point

$$
\xi^{\alpha}+\delta \xi^{\alpha}=\xi^{\alpha}+\varepsilon \xi_{, q}^{\alpha}
$$

Canonical variables and quantization

- Solution
- 1-dimensional state: $\xi(q)$
- Tangent vectors: $\frac{\partial q}{\partial \xi^{\alpha}}$ and $\frac{\partial \xi^{\alpha}}{\partial q}$
- Fix the scale of q by making the inertial mass

$$
\bar{B}=\frac{\partial q}{\partial \xi^{\alpha}} B^{\alpha \beta} \frac{\partial q}{\partial \xi^{\alpha}}=1
$$

- Collective Hamiltonian
- $\bar{H}_{\text {coll }}(q, p)=\frac{1}{2} p^{2}+\bar{V}(q), \quad \bar{V}(q)=V(\xi(q))$
- Quantization $[q, p]=i \hbar$

3D real space representation

-3D space discretized in lattice

- BKN functional
- Moving mean-field eq.: Imaginary-time method
- Moving RPA eq. : Finite amplitude method (PRC 76, 024318 (2007))

Wen, T.N., Phys. Rev. C 105 (2021) 034603; Phys. Rev. C 96 , 014610 (2017); PRC 94, 054618 (2016).

At a moment, no pairing
1-dimensional reaction path extracted from the Hilbert space of dimension of $10^{4} \sim 10^{5}$.

Simple case: $\alpha+\alpha$ scattering

a particle $\left({ }^{4} \mathrm{He}\right)$

a particle $\left({ }^{4} \mathrm{He}\right)$

- Reaction path
- After touching
- No bound state, but
- a resonance state in ${ }^{8} \mathrm{Be}$

${ }^{8} \mathrm{Be}$: Tangent vectors (generators)

Tangent vectors (Generators)

$V(R)$: collective potential

Represented by the relative distance R Transformation: $q \rightarrow R$

$M(R)$ for relative motion

Transformation: $q \rightarrow R$

$$
\bar{B}(R)=\frac{\partial R}{\partial q} \bar{B} \frac{\partial R}{\partial q}=\left(\frac{\partial R}{\partial q}\right)^{2}
$$

Ground (resonance) state

Introduction of effective mass

$$
\begin{aligned}
E[\rho]= & \int \frac{1}{2 m} \tau(\mathbf{r}) d \mathbf{r}+\int d \mathbf{r}\left\{\frac{3}{8} t_{0} \rho^{2}(\mathbf{r})+\frac{1}{16} t_{3} \rho^{3}(\mathbf{r})\right\} \\
& +\iint d \mathbf{r} d \mathbf{r}^{\prime} \rho(\mathbf{r}) v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}\right) \\
& +B_{3} \int d \mathbf{r}\left\{\rho(\mathbf{r}) \tau(\mathbf{r})-\mathbf{j}^{2}(\mathbf{r})\right\},
\end{aligned}
$$

$$
\begin{aligned}
\hat{h}_{\mathrm{HF}}(\mathbf{r})= & -\nabla \frac{1}{2 m^{*}(\mathbf{r})} \nabla+\frac{3}{4} t_{0} \rho(\mathbf{r})+\frac{3}{16} t_{3} \rho^{2}(\mathbf{r}) \\
& +\int d \mathbf{r}^{\prime} v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}\right)+B_{3}[\tau(\mathbf{r})+i \nabla \cdot \mathbf{j}(\mathbf{r})] \\
& +2 i B_{3} \mathbf{j}(\mathbf{r}) \cdot \nabla
\end{aligned}
$$

$$
\begin{aligned}
& B_{3}=0 \rightarrow m^{*}=m \\
& B_{3}>0 \rightarrow m^{*}<m
\end{aligned}
$$

Failure of cranking formula

$M(R) \quad\left(m^{*} / m \leq 1\right)$

$$
M_{\mathrm{cr}}=2 \sum_{n \in p, j \in h} \frac{\left.\left|\langle n| \partial_{R}\right| j\right\rangle\left.\right|^{2}}{e_{n}-e_{j}}
$$

$$
m^{*}<m^{*}<m^{*}=m
$$

ASCC mass

Cranking mass

$M(R) \neq \mu_{R} \quad(R \rightarrow \infty)$
$M(R)=\mu_{R} \quad(R \rightarrow \infty)$

$$
\begin{array}{ccc}
& I(R) \quad\left(m^{*} / m \leq 1\right) \\
\hline m^{*}<m^{*}<m^{*}=m & \alpha+\alpha \\
\hline
\end{array}
$$

Microscopic construction of nuclear reaction model

Model Hamiltonian

$$
\left\{-\frac{d}{d R} \frac{1}{2 M(R)} \frac{d}{d R}+\frac{L(L+1)}{2 I(R)}+V(R)\right\} \psi_{L}(R)=E_{L} \psi_{L}(R)
$$

Microscopically calculating $V(R), M(R), I(R)$

$\alpha+\alpha$ scattering (phase shift)

Nuclear phase shift

Effect of dynamical change of the inertial mass
Dashed line: Constant reduced mass $(M(R) \rightarrow 2 m)$

${ }^{16} \mathrm{O}+\alpha$ scattering

- Important reaction to synthesize heavy elements in giant stars
- Alpha reaction

${ }^{16} \mathrm{O}+\alpha$ to/from ${ }^{20} \mathrm{Ne}$

Reaction path

${ }^{20} \mathrm{Ne}$: Collective potential

$M(R) \quad\left(m^{*} / m \leq 1\right)$

$I(R) \quad\left(m^{*} / m<1\right)$

Ground state of ${ }^{20} \mathrm{Ne} \quad \mathrm{R}[\mathrm{fm}]$

$$
\begin{aligned}
& I(R)=I_{\text {red }} \text { at large } R \\
& I_{\text {cr }} \neq I_{\text {red }} \text { at large } R
\end{aligned}
$$

Alpha reaction : ${ }^{16} \mathrm{O}+\alpha$

Fusion reaction:

Astrophysical S-factor

$$
\sigma(E)=\frac{1}{E} P(E) \times S(E)
$$

Synthesis of ${ }^{20} \mathrm{Ne}$

Summary

- Missing correlations in nuclear density functional
- Correlations associated with low-energy collective motion
- Re-quantize a specific mode of collective motion
- Derive the slow collective motion
- Quantize the collective Hamiltonian
- Applicable to nuclear structure and reaction

