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• Nuclear saturation and mean-field approach
• TDDFT for nuclear collective motion

Success & failure
• Requantization of TDDF dynamics

Low-energy nuclear reaction



Nuclear Saturation
“Liquid”-like property
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Bethe-Weizsäcker mass formula

B/A ~ 8 MeV

(B/A ~ 16 MeV for nuclear matter)

Density ρ ≈ 0.16 fm-3

Liquid drop model



Single-particle motion
“Gas”-like picture

• Nuclear shell model
– Strong spin-orbit coupling (Mayer-Jensen)

• Mean free path in nuclei
– Neutron scattering



Sn

Ba

Sm
Hf

Pb

5

7

9

11

13

15

17

19

21

23

25

52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132

Neutron Number

S(2n) M
eV

Energy required to remove two neutrons from nuclei
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Nuclear “transparency”

Optical-model analysis
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Neutron scattering cross section

Bohr and Mottelson,          
Nuclear Structure I (1969) 

Real and imaginary potentials

For low-energy neutrons
!: mean free path of neutrons
R: Size of nucleus
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Mean-field approach

• In order to be consistent with the saturation,
– Need momentum dependent potential
– The lowest order → “Effective mass”

– Inconsistent with experiments!
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A possible solution for the 
inconsistency

• Energy density functional

• State-dependent effective interaction
– Rearrangement terms
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Nuclear energy density functional
• Energy functional for the intrinsic states
• Spin & isospin degrees of freedom

– Spin-current density is indispensable.
• Nuclear superfluidity à Kohn-Sham-

Bogoliubov eq.
– Pair density (tensor) is necessary for heavy 

nuclei. [ ]qqqq JE ktr ;,,
!

spin-current

kinetic pair density



From SciDAC-UNEDF project



Nuclear deformation as symmetry breaking

YY= µµb 2
2

2 Yr
Quadrupole deformation

prolate           oblate        triaxial

Octupole deformation

YY= 30
3

30 Yrb

Pear shape (μ=0)

Pairing deformation 
(superfluidity)
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YY=D yy ˆˆ

Nuclear Superconductivity 
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Deformation in the gauge space
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Nuclear deformation

S. Ebata, T. Nakatsukasa

2016 71st JPS meeting @ Touhoku Gakuin Univ.

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total # 1005)

Results
Ebata and T.N., Phys. Scr. 92 (2017) 064005 

Deformation landscape Quadrupole deformation



FIGURE 2. (Color online) Ground-state deformations β (left) and two-neutron separation energies S2n
(right) obtained within HFBTHO using SkP (top) and SLy4 (bottom) interactions.
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FIGURE 3. (Color online) Deviations of ground-state HFBTHO energies from experiment [13] for
SkP (left) and SLy4 (right) interactions. Positive values correspond to underbound nuclei. No corrections
beyond mean field were included.
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Results

Nuclear deformation predicted by DFT
Intrinsic Q moment

Deformation landscape

N = 82

Z = 50



Time-dependent density functional 
theory (TDDFT) for nuclei

• Time-odd densities (current density, spin 
density, etc.)

• TD Kohn-Sham-Bogoliubov-de-Gennes eq.
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Deformation effects for photoabsorption cross section

SkM* functional

Intrinsic Q moment

Yoshida and TN, Phys. Rev. C 83, 021404 (2011)



Real-time simulation

  

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

● 衝突径数の大きいとき  (3 fm < b)

● 衝突径数の小さいとき  (b < 3 fm)

 K. Sekizawa

58Ni  +208Pb    at Elab=328.4 MeV
28 8230 126TDHF計算の結果:

核子の移行確率核子の移行確率

: 粒子数射影法

208Pb

58Ni

+符号

―符号
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“Partial”-space particle-number projection
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FIG. 6. Same as Figs. 1–5, but for the 136Xe+198Pt reaction at Ec.m. ! 644.98 MeV. The horizontal axis is the mass number
of the fragments. Cross sections for secondary products evaluated by TDHF+GEMINI (with Ē∗ and J̄) are shown by blue
solid lines. The experimental data were reported in Ref. [66].

excited compared to those in proton-stripping channels.
Note that GRAZING also provides similar magnitude of
evaporation effects, although the absolute value of the
cross sections are substantially underestimated.

IV. SUMMARY

In this paper, a method, called TDHF+GEMINI, has
been proposed, which enables us to evaluate production
cross sections for secondary products in low-energy heavy
ion reactions. In the method, the reaction dynamics, on
the timescale of 10−21–10−20 sec, is described microscopi-
cally based on the time-dependent Hartree-Fock (TDHF)
theory. Production probabilities, total angular momenta,
and excitation energies of primary reaction products are
extracted from the TDHF wavefunction after collision,
using the particle-number projection method. Based on
those quantities derived from TDHF, secondary deexci-
tation processes of primary reaction products, both par-
ticle evaporation and fission, are described employing the
GEMINI++ compound-nucleus deexcitation model.
The method was applied to 40,48Ca+124Sn,

40Ca+208Pb, 58Ni+208Pb, 64Ni+238U, and 136Xe+198Pt
reactions for which precise experimental cross sections
are available. The inclusion of deexcitation effects,
which are dominated by neutron evaporation, changes
the cross sections toward the direction consistent with
the experimental data. However, there remain discrep-
ancies between the measured cross sections and the
TDHF+GEMINI results, especially for multi-proton

stripping processes. It may indicate the importance of
description going beyond the standard self-consistent
mean-field theory to correctly describe multinucleon
transfer processes in low-energy heavy ion reactions.
Finally, it is to be reminded that, in the proposed

method, there is no room to adjust the model param-
eters specific to each reaction: energy density functional
is determined so as to reproduce known properties of fi-
nite nuclei and nuclear matter [54]; GEMINI++ [46] and
its ongoing developments [59, 60] allow a systematic re-
production of a large body of data. Therefore, it will be a
promising tool that can predict, in a non-empirical way,
optimal reaction mechanisms to produce new neutron-
rich isotopes that have not yet been produced to date.
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Reaction above the Coulomb barrier
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FIG. 2: (Color online) Energies of �-vibrational states from a) experiment [43], b) SkM⇤, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+gs ! 2+� ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled �-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where Ecal and Eexp are the calculated and experimen-
tal energies of the �-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM⇤ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of

Low-energy states
• Low-energy collective states

– Linear response cal.
– Not as good as GR

Terasaki, Engel, Phys. Rev. C 84, 014332 (2011)

gamma vib.
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Large amplitude collective motion

• Decay modes
– Spontaneous fission
– Alpha decay

• Low-energy reaction
– Sub-barrier fusion reaction
– Alpha capture reaction (element synthesis in 

the stars)



Success & failure
• Success of nuclear (TD)DFT

– Unified picture of liquid-like and gas-like 
properties (saturation and indep. part. motion)

– Giant resonances (linearized TDDFT)
• Problems

– Low-energy collective motion
– Many-body tunneling (spontaneous fission, 

sub-barrier fusion, astrophysical reaction)
• Possible solutions

– Improving DF (,-dep., beyond LDA, etc.) 
– Re-quantization of TDDFT



Strategy

• Purpose
– Recover quantum fluctuation effect 

associated with “slow” collective motion
• Difficulty

– Non-trivial collective variables
• Procedure

1. Identify the collective subspace of such slow 
motion, with canonical variables (., 0)

2. Quantize on the subspace    ., 0 = 3ℏ



Classical Hamilton’s form

The TDDFT can be described by the classical form.

The canonical variables

Number of variables = Number of ph degrees of freedom

ξ ph =
∂H
∂π ph

π ph = −
∂H
∂ξ ph

Blaizot, Ripka, “Quantum Theory of Finite Systems” (1986)  
Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)

! ", $ = & '(", $)

'!!" = " + +$ " + +$ #
!!"

"!$, $!$
'$$" = 1 − " + +$ # " + +$ $$"

'!$ = " + +$ 1 − " + +$ # " + +$ !$



Expansion for “slow” motion
• Hamiltonian

5 = 5 6, 7 ≈
1
2
:*+ 6 7*7+ + <(6)

expanded up to 2nd order in 7 [α, > = (0ℎ)]

• Transformation  !! , #! → %" , &"
0, =

-.!

-/" 7*,         7* =
-/"

-.! 0,

• Hamiltonian
@5 = @5 ., 0 ≈

1
2
A:,0 . 0,00 + <(.)



Decoupled submanifold

• Collective canonical variables (%, &)
– 6* , 7* → ., 0; .1 , 01; E = 2,⋯ ,G23

• Finding a decoupled submanifold Σ
.̇1 = I

-4

-2 5
≈ 0

0̇1 = − I
-4

-/ 5
≈ 0

Klein, Do Dang, Walet, Phys. Rep. 335, 93 (2000) 
Nakatsukasa, Prog. Theor. Exp. Phys. 2012, 01A207 (2012)

on the submanifold Σ

ξα

π
α

qi

pi

(qa,pa)  a = K+1,...,M
Decoupled collective sub-manifold (i = 1,...,K)

Non-collective d.o.f.

TDDFT phase space (α = 1,..., M)

IΣ
/#62#67



ASCC (adiabatic self-consistent collective coordinate) method

• Collective canonical variables (%, &)
– 6* , 7* → ., 0; .1 , 01; E = 2,⋯ ,G23

• Finding a decoupled submanifold
-8

-.! −
-8

-/

-/

-.! = 0 Moving mean-field eq.

:+9 K9
-8

-.!
-/

-.$ = ,:
-/

-.! Moving RPA eq.

.%
&'
&(! ≡

&"'
&(#&(! − Γ)%

* &'
&($

Γ)%
* = +

,1
*- 1-%,) + 1-),% − 1)%,- : Affine connection

Matsuo, et al., PTP 103, 959 (2000)
Nakatsukasa, et al., RMP 88, 045004 (2016)
Nakatsukasa, Prog. Theor. Exp. Phys. 2012, 01A207 (2012)



Numerical procedure

"2,) =
32
3")

-8

-.! −
-8

-/

-/

-.! = 0 Moving mean-field eq.

:+9 K9
-8

-.!
-/

-.$ = ,:
-/

-.! Moving RPA eq.

Move to the next point
!! + +!! = !! + -6,/*

Moving MF eq. to 
determine the point: 6*

",/) =
3")

32

Tangent vectors (Generators)



Canonical variables and quantization

• Solution
– 1-dimensional state:  ξ .

– Tangent vectors:   -/
-.! and -.

!

-/

– Fix the scale of . by making the inertial mass                          
A: =

-/

-.!:
*+ -/

-.! = 1

• Collective Hamiltonian
– @5$<&& ., 0 =

=

:
0: + A<(.),       A< . = <(ξ . )

– Quantization   ., 0 = 3ℏ



3D real space representation

X [ fm ]

y 
[ f

m
 ]

Wen, T.N., Phys. Rev. C 105 (2021) 034603; 
Phys. Rev. C 96 , 014610 (2017); PRC 94, 
054618 (2016).

• 3D space discretized in lattice
• BKN functional
• Moving mean-field eq.: Imaginary-time method
• Moving RPA eq.： Finite amplitude method (PRC 

76, 024318 (2007) )

At a moment, no pairing

1-dimensional reaction path 
extracted from the Hilbert space of 
dimension of 104 ~105.



• Reaction path
• After touching

– No bound state, but
– a resonance state in 8Be

Simple case: α + α scattering

α particle（4He） α particle（4He）



8Be: Tangent vectors (generators)
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FIG. 1. (Color online) Calculated translational mass of the ↵
particle in units of nucleon’s mass m, as functions of adoptd

mesh size h.

with various mesh sizes h = 0.5 ⇠ 1.4 fm. Note that
the ground state of the system is a trivial solution of the
ASCC equation (6). We can clearly identify the three
translational modes for x, y, and z directions, degener-
ated in energy at !com  1 MeV. Using smaller mesh
size, the eigenfrequency of the translational motion ap-
proaches to zero. There are no low-lying excited states in
the ↵ particle because of its compact and doubly-closed
characters. The calculated energy of the lowest excited
state is larger than 20 MeV.

Using Eqs. (19) and (22) with R as the center of mass,
we calculate the inertial mass of the translational motion
of the ↵ particle. Figure 1 shows the results calculated
with di↵erent mesh size h of the 3D grid. Since this is
the trivial center-of-mass motion of the total system, this
should equal the total mass,M = Am with A = 4. As the
mesh size decreases, the total mass certainly converges to
the value of 4m. In the follwoing, we adopt the mesh size
h = 0.8 fm.

2. Relative motion of two ↵ particles in
8
Be

Figure 2 shows the calculated eigenfrequencies for the
ground state of 8Be and the two well separated ↵’s at
distance R = 7.2 fm. Since the ground state of 8Be
is deformed, there appear the rotational modes of exci-
tation as the zero modes, in addition to the three in-
dependent modes of the translational motion. Because
of the axial symmetry of the ground state, the rota-
tion about the symmetry axis (z axis) does not ap-
pear. In Fig. 2 the calculation produces two rotational
modes of excitation around 2.8 MeV with large transi-
tion matrix element of the K = 1 quadrupole operator,
Q̂2±1 ⌘

R
r2Y2±1(r̂) ̂†(~r) ̂(~r)d~r. The finite energy of

these rotational modes comes from the finite mesh size
discretizing the space. Besides these five zero modes,
the lowest mode of excitation turns out to have a sizable
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FIG. 2. (Color online) Calculated eigenfrequencies for the

ground state of
8
Be (left column) and the two well-separated

↵’s at distance R = 7.2 fm (right column). The three modes

of translational motion and two modes of rotational motion

are shown by thin lines, while the thick line indicates the

K = 0 quadrupole oscillation.
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FIG. 3. (Color online) The density distribution ⇢(~r) for
8
Be

in the upper panels, and the transition density �⇢(~r) of the

lowest mode of excitation in the lower panels. The left panels

show those at the ground state and the right at R = 7.2 fm.

Those on the y � z plane are plotted.

transition strength of the K = 0 quadrupole operator
Q̂20 ⌘

R
r2Y20(r̂) ̂†(~r) ̂(~r)d~r. This mode corresponds

to the elongation of 8Be. The transition density is given
by

�⇢(~r) ⌘ h!| ̂(~r) ̂†(~r)|0i = h0|
h
⌦,  ̂(~r) ̂†(~r)

i
|0i

=

r
2

!

X

i

Pi(~r)'i(~r). (41)

The left panels of Fig. 3 show the density profile of 8Be
and the transition density �⇢(r) corresponding to the low-
est RPA normal mode. We can see an elongated struc-
ture along the z direction in the ground state. The lowest
mode of excitation corresponds to the change of its elon-
gation (�-vibration).

M(O⃗)

PM(O⃗)

Tangent vectors (Generators)



!(#): collective potential
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FIG. 4. (Color online) Potential energy as a function of the
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on the ASCC collective path, while the dashed (red) line

shows 4e2/R+ 2E↵ for reference.

We also perform the same calculation for the state in
which two ↵ particles are located far away, at the rel-
ative distance R = 7.2 fm. In the right panel of Fig.
3, we clearly see that the two ↵ particles are well sepa-
rated, and the quadrupole mode in fact corresponds to
the translational motion of the ↵ particles in the opposite
directions, namely, the relative motion of two ↵’s. The
excitation energy almost vanishes for this normal mode
(Fig. 2).

B. Results of the ASCC method

In Sec. III A 2, we show that the the lowest quadrupole
mode of excitation at the ground state of 8Be may change
its character and lead to the relative motion of two ↵’s
at the asymptotic region. We adopt this mode as the
generators (Q̂(q), P̂ (q)) of the collective variables (q, p),
then, construct the collective path.

1. Collective path, potential, and inertial mass

We successfully derive the collective path {| (q)i; q =
0, �q, 2�q, · · · } connecting the ground state of 8Be into the
well-separated two ↵ particles. The inertial mass M(q)
is taken as unity and the collective potential is calcu-
lated according to Eq. (9). Then, according to Sec. II B,
the collective coordinate q is mapped onto the relative
distance R ⌘ h (q)|R̂| (q)i with Eq. (18). Figure 4
shows the obtained potential energy along the ASCC
collective path. As a reference, we also show the pure
Coulomb potential between two ↵ particles at distance
R, 4e2/R+2E↵, where E↵ is the calculated ground state
energy of the isolated ↵ particle. Apparently, it asymp-
totically approaches the pure Coulomb potential. As two
↵’s get closer, the potential starts to deviate from the
Coulomb potential at R < 6 fm and finally reaches the
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ground state of 8Be. The ground state is at R = 3.54
fm, and the top of the Coulumb barrier is at R = 6.6
fm. Note that the path is determined self-consistently
without any a priori assumption.
With this calculated potential, we may check the self-

consistency of the ASCC potential and the eigenfre-
quency. If the collective path perfectly follows the di-
rection defined by the local generators (Q̂(p), P̂ (q)) at
each point of q, the second derivative of the potential
d2V/dq2 should coincide with the eigenfrequency !2 of
the moving RPA equation. The almost perfect agree-
ment between these is shown in Fig. 5.
For the region of R < 3.5 fm, there exists some discrep-

ancy between d2V/dq2 and !2. In this region, the 8Be
nucleus has even more compact shapes than the ground
state, then, the coordinate q and R become almost or-
thogonal to each other, losing the one-to-one correspon-
dence between them. In other words, the states | (q)i
change as q gets smaller, but keep R = h (q)|R̂| (q)i al-
most constant. In addition, the moving RPA frequency !
becomes larger than the particle threshold energy, enter-
ing in the continuum. Thus, in this region of R < 3.5 fm,
the results somewhat depend on the adopted box size.
Figure 6 shows the obtained inertial mass M(R) as a

function of R for the scattering between two ↵’s As the
two ↵’s are far away, the ASCC inertial mass asymp-
totically produces the exact reduced mass of 2m. This
means that the collective coordinate q becomes parallel
to the relative distance R, even though we do not assume
so. At R < 3.54 fm, the value of inertial mass M(R) in-
creases. This is due to the decrease of the factor dR/dq
in Eq. (19). Making the sytem even more compact than
the ground state, M(R) rises up drastically, which means
that the coordinates q and R become almost orthogonal.

2. Phase shift for ↵� ↵ scattering

The ASCC calculation provides us the collective
Hamiltonian along the optimal reaction path. Using this,
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�L(E) =

Z 1

R0

k(R)dR�

Z 1

Rc

kc(R)dR, (42)

with

k2(R) = 2M(R)

(
E � V (R)�

�
L+ 1

2

�2

4mR2

)
,

k2c (R) = 4m

(
E �

4e2

R
�

�
L+ 1

2

�2

4mR2

)
, (43)

where k(R) and kc(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
kc(Rc) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E↵. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP

cr
(R) = 2

X

m,i

|h'm(R)|@/@R|'i(R)i|2

em(R)� ei(R)
, (44)

where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'µ(R)i = eµ(R))|'µ(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'i(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial
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This violation should be corrected by the residual fields that
depend on the velocity of the translational motion [29]. In-
deed, the ASCC mass reproduces the exact total mass even
when the mean-field potential violates the Galilean invariance,
which will be shown in Sec. III.

III. APPLICATION

In the following numerical calculations, in order to ex-
press the orbital wave functions, the grid representation
is employed, discretizing the rectangular box into three-
dimensional (3D) Cartesian mesh [4]. The model space is
set to be 12 × 12 × 18 fm3 for the systems α + α → 8Be
and 16O +α → 20Ne. It is 12 × 12 × 24 fm3 for 16O + 16O →
32S. The mesh size is set to be 1.0 fm for the system α + α →
8Be and 1.1 fm for the other two systems.

For numerical calculations of the ASCC method, we use
the finite amplitude method (FAM) [38–41]. The FAM pro-
vides us with high numerical efficiency with simple computer
programs, because only the calculations of the mean-field
(single-particle) Hamiltonian constructed with independent
bra and ket states are required [38]. The matrix FAM (m-
FAM) prescription [41] is adopted to solve the moving RPA
Eqs. (7) and (8). On the other hand, the iterative FAM (i-
FAM) [38–40] is adopted to calculate the response functions
for the NG modes. The moving mean-field Eq. (6) is solved
by using the imaginary-time method [42].

A. Modified Bonche, Koonin, and Negele energy
density functional

To investigate the effect of this time-odd mean-field po-
tential on the collective inertial masses, we adopt an energy
density functional of the simplest choice, namely, the Bonche,
Koonin, and Negele (BKN) energy density functional [43]
with the minimum extension.

The original BKN functional assumes the spin-isospin
symmetry without the spin-orbit interaction, which is a func-
tional of the isoscalar kinetic and local densities, τ (r) and
ρ(r), only. The mean-field potential is local and has no veloc-
ity dependence. Thus, the nucleon’s effective mass is identical
to the bare nucleon mass. However, in most of realistic energy
density functionals, the effective mass is smaller than the
bare mass, typically m∗/m ≈ 0.7. To introduce the effective
mass, we extend the energy density by adding terms ρτ − j2

where j(r) is the isoscalar current density. The appearance
of the current density is necessary to preserve the Galilean
invariance.

The modified BKN energy density functional reads

E [ρ] =
∫

1
2m

τ (r)dr +
∫

dr
{

3
8

t0ρ2(r) + 1
16

t3ρ3(r)
}

+
∫∫

drdr′ρ(r)v(r − r′)ρ(r′)

+ B3

∫
dr{ρ(r)τ (r) − j2(r)}, (27)

where ρ(r), τ (r), and j(r) are calculated as

ρ(r) = 4
A/4∑

j=1

|ψ j (r)|2, τ (r) = 4
A/4∑

j=1

|∇ψ j (r)|2,

j(r) = 4
2i

A/4∑

j=1

{ψ∗
j (r)∇ψ j (r) − ψ j (r)∇ψ∗

j (r)}.

In Eq. (27), v(r) is the sum of the Yukawa and the Coulomb
potentials [43],

v(r) ≡ V0a
e−r/a

r
+

(e/2)2

r
.

The new parameter B3 controls the effective mass and the
velocity dependence of the mean-field potential.

The variation of the total energy with respect to the density
(or equivalently single-particle wave functions) defines the
mean-field (Hartree-Fock) Hamiltonian,

ĥHF(r) = −∇ 1
2m∗(r)

∇ + 3
4

t0ρ(r) + 3
16

t3ρ2(r)

+
∫

dr′v(r − r′)ρ(r′) + B3[τ (r) + i∇ · j(r)]

+ 2iB3j(r) · ∇, (28)

where the effective mass is now deviated from bare nucleon
mass,

1
2m∗(r)

= 1
2m

+ B3ρ(r). (29)

For B3 (= 0, Eq. (28) indicates the velocity (momentum) de-
pendence of the mean-field potential and the presence of the
time-odd mean fields, iB3(∇ · j + 2j · ∇). For the time-even
states, such as the ground state of even-even nuclei, the current
density disappears, j(r) = 0. Nevertheless, as will be shown
later, the terms associated with j(r) play an important role in
the collective inertial mass.

The parameters t0, t3, V0, and a are adopted from Ref. [43],
and we vary B3 to change the effective mass and the time-odd
mean fields.

B. Inertial masses for translational motion: Alpha particle

First, we demonstrate the importance of the time-odd mean
fields, taking the translational total mass as a trivial example.
We adopt the simplest case, namely, the single alpha particle.
In Fig. 1, we show the translational mass of a single alpha
particle as a function of B3. Increasing B3, the effective mass
m∗ decreases, as we see in Eq. (29). In the present case, we
use the center-of-mass coordinate Rc.m. as the collective coor-
dinate R in Sec. II A and II B. Since the system is isotropic, we
use its z component Zc.m. in the numerical calculation. In the
present model, neutrons and protons have the identical mass
m. Therefore, the total inertial mass of an alpha particle should
be equal to 4m.

It is clearly demonstrated that the ASCC always reproduces
the correct total mass Am, irrespective of values of the param-
eter B3. The nonperturbative cranking mass reproduces the
total mass, Mnp

cr = 4m, at B3 = 0, which agrees with Eq. (26).
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This violation should be corrected by the residual fields that
depend on the velocity of the translational motion [29]. In-
deed, the ASCC mass reproduces the exact total mass even
when the mean-field potential violates the Galilean invariance,
which will be shown in Sec. III.

III. APPLICATION

In the following numerical calculations, in order to ex-
press the orbital wave functions, the grid representation
is employed, discretizing the rectangular box into three-
dimensional (3D) Cartesian mesh [4]. The model space is
set to be 12 × 12 × 18 fm3 for the systems α + α → 8Be
and 16O +α → 20Ne. It is 12 × 12 × 24 fm3 for 16O + 16O →
32S. The mesh size is set to be 1.0 fm for the system α + α →
8Be and 1.1 fm for the other two systems.

For numerical calculations of the ASCC method, we use
the finite amplitude method (FAM) [38–41]. The FAM pro-
vides us with high numerical efficiency with simple computer
programs, because only the calculations of the mean-field
(single-particle) Hamiltonian constructed with independent
bra and ket states are required [38]. The matrix FAM (m-
FAM) prescription [41] is adopted to solve the moving RPA
Eqs. (7) and (8). On the other hand, the iterative FAM (i-
FAM) [38–40] is adopted to calculate the response functions
for the NG modes. The moving mean-field Eq. (6) is solved
by using the imaginary-time method [42].

A. Modified Bonche, Koonin, and Negele energy
density functional

To investigate the effect of this time-odd mean-field po-
tential on the collective inertial masses, we adopt an energy
density functional of the simplest choice, namely, the Bonche,
Koonin, and Negele (BKN) energy density functional [43]
with the minimum extension.

The original BKN functional assumes the spin-isospin
symmetry without the spin-orbit interaction, which is a func-
tional of the isoscalar kinetic and local densities, τ (r) and
ρ(r), only. The mean-field potential is local and has no veloc-
ity dependence. Thus, the nucleon’s effective mass is identical
to the bare nucleon mass. However, in most of realistic energy
density functionals, the effective mass is smaller than the
bare mass, typically m∗/m ≈ 0.7. To introduce the effective
mass, we extend the energy density by adding terms ρτ − j2

where j(r) is the isoscalar current density. The appearance
of the current density is necessary to preserve the Galilean
invariance.

The modified BKN energy density functional reads

E [ρ] =
∫

1
2m

τ (r)dr +
∫

dr
{

3
8

t0ρ2(r) + 1
16

t3ρ3(r)
}

+
∫∫

drdr′ρ(r)v(r − r′)ρ(r′)

+ B3

∫
dr{ρ(r)τ (r) − j2(r)}, (27)

where ρ(r), τ (r), and j(r) are calculated as

ρ(r) = 4
A/4∑

j=1

|ψ j (r)|2, τ (r) = 4
A/4∑

j=1

|∇ψ j (r)|2,

j(r) = 4
2i

A/4∑

j=1

{ψ∗
j (r)∇ψ j (r) − ψ j (r)∇ψ∗

j (r)}.

In Eq. (27), v(r) is the sum of the Yukawa and the Coulomb
potentials [43],

v(r) ≡ V0a
e−r/a

r
+

(e/2)2

r
.

The new parameter B3 controls the effective mass and the
velocity dependence of the mean-field potential.

The variation of the total energy with respect to the density
(or equivalently single-particle wave functions) defines the
mean-field (Hartree-Fock) Hamiltonian,

ĥHF(r) = −∇ 1
2m∗(r)

∇ + 3
4

t0ρ(r) + 3
16

t3ρ2(r)

+
∫

dr′v(r − r′)ρ(r′) + B3[τ (r) + i∇ · j(r)]

+ 2iB3j(r) · ∇, (28)

where the effective mass is now deviated from bare nucleon
mass,

1
2m∗(r)

= 1
2m

+ B3ρ(r). (29)

For B3 (= 0, Eq. (28) indicates the velocity (momentum) de-
pendence of the mean-field potential and the presence of the
time-odd mean fields, iB3(∇ · j + 2j · ∇). For the time-even
states, such as the ground state of even-even nuclei, the current
density disappears, j(r) = 0. Nevertheless, as will be shown
later, the terms associated with j(r) play an important role in
the collective inertial mass.

The parameters t0, t3, V0, and a are adopted from Ref. [43],
and we vary B3 to change the effective mass and the time-odd
mean fields.

B. Inertial masses for translational motion: Alpha particle

First, we demonstrate the importance of the time-odd mean
fields, taking the translational total mass as a trivial example.
We adopt the simplest case, namely, the single alpha particle.
In Fig. 1, we show the translational mass of a single alpha
particle as a function of B3. Increasing B3, the effective mass
m∗ decreases, as we see in Eq. (29). In the present case, we
use the center-of-mass coordinate Rc.m. as the collective coor-
dinate R in Sec. II A and II B. Since the system is isotropic, we
use its z component Zc.m. in the numerical calculation. In the
present model, neutrons and protons have the identical mass
m. Therefore, the total inertial mass of an alpha particle should
be equal to 4m.

It is clearly demonstrated that the ASCC always reproduces
the correct total mass Am, irrespective of values of the param-
eter B3. The nonperturbative cranking mass reproduces the
total mass, Mnp

cr = 4m, at B3 = 0, which agrees with Eq. (26).
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FIGURE 4 | Relative inertial masses in the presence of time-odd mean-field potential for the reaction α+α↔8Be as a function of relative distance R. The results of the

cranking masses are shown in the left panel and those of the ASCC method are shown in the right panel. The solid (red), dashed (green), and dotted (blue) curves

show the results calculated with B3 = 0, 25, and 75 MeV fm5, respectively.

values. This is true even at the HF ground state (R = 3.55
fm), in which the single-particle states |ϕµ(R) and their single-
particle energies eµ(R) are all identical to each other. This is
because the derivative ∂/∂R gives different values, since the
different constraint produces different states away from the HF
ground state. This ambiguity exposes another drawback of the
CHF+cranking approach, while the ASCCmass has an advantage
that the collective coordinate as well as the wave functions are
self-consistently calculated rather than artificially assumed.

3.4. Impact of Time-Odd Potential
All the results shown so far are obtained with the standard BKN
energy density functional that has no derivative terms. Therefore,
the nucleon’s effective mass is identical to the bare nucleon mass.
However, most of realistic effective interactions have effective
mass smaller than the bare mass, typically m∗/m ∼ 0.7. In such
cases, an improper treatment of the collective dynamics leads to a
wrong answer for the collective inertial mass [27]. This change in
the effectivemass typically comes from the term ρτ in the Skyrme
energy density functional, which should accompany the term−j2

to restore the Galilean symmetry [27, 28]. These terms are absent
in the standard BKN functional.

To investigate the effect of the time-odd mean-field potential
on the collective inertial mass, we add the term B3(ρτ − j2) to
the original BKN energy density functional. The modified BKN
energy density functional reads,

E[ρ] =
∫

1

2m
τ (r)dr+

∫

dr

{

3

8
t0ρ

2(r)+ 1

16
t3ρ

3(r)

}

+
∫ ∫

drdr′ρ(r)v(r− r′)ρ(r′)

+B3

∫

dr
{

ρ(r)τ (r)− j2(r)
}

(16)

where ρ(r), τ (r), and j(r) are the isoscalar density, the isoscalar
kinetic density, and the isoscalar current density, respectively. In
Equation (16), v(&r) is the sum of the Yukawa and the Coulomb

potentials [25]. The variation of the total energy with respect
to the density (or equivalently single-particle wave functions)
defines the single-particle (Hartree-Fock) Hamiltonian. In the
present case, the single-particle Hamiltonian turns out to be

h[ρ] = −∇ 1

2m∗(r)
∇ + 3

4
t0ρ(r)+

3

16
t3ρ

2(r)

+
∫

dr′v(r− r′)ρ(r′),

+B3(τ (r)+ i∇ · j(r))+ 2iB3j(r) · ∇ (17)

where the effective mass is now deviated from bare nucleon mass

h̄2

2m∗(r)
= h̄2

2m
+ B3ρ(r). (18)

For the time-even states, such as the ground state of even-even
nuclei, the current density disappears, j = 0. Even though, these
terms play an important role in the collective inertial mass. The
parameter B3 (= 0 provides the effective mass and the time-
odd effect. The rest of the parameters are the same as those in
reference [25].

To examine the impact of the time-odd terms on the inertial
mass, in Figure 4 we show M(R) calculated with and without
the B3 term. When the time-odd terms are absent, B3 = 0,
both the ASCC and the cranking formula reproduce the α + α

reduced mass in the asymptotic limit (R → ∞). However, the
cranking formula fails to do so with B3 (= 0. As the value of B3
increases, the asymptotic cranking mass decreases. This can be
naively expected from the reduction of the effective mass from
the bare mass. In contrast, the ASCC inertial mass converges to
the correct reduced mass, no matter what B3 values are. This
means that the ASCC method is capable of taking into account
the time-odd effect and recovering the exact Galilean symmetry.

Another inertial mass indispensable in the collective
Hamiltonian of nuclear reaction models is the rotational
moments of inertia. The rotational motion is a Nambu-
Goldstone (NG) mode. To calculate this, we utilize a method

Frontiers in Physics | www.frontiersin.org 6 February 2020 | Volume 8 | Article 16

:∗ < :∗ < :∗ = :

Cranking mass ASCC mass

(

ASCC mass 

* ( = RD (( → ∞)

E"# = 2 G

$∈&,(∈)

H I* J +

K$ − K(



Wen and Nakatsukasa Collective Inertial Masses

FIGURE 5 | Rotational moments of inertias in the presence of time-odd mean-field potential for the system α+α as a function of relative distance R. The results of
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results calculated with B3 = 0, 25, 75 MeV fm5, respectively, as labeled in the figure.

proposed in the reference [29], where the inertial masses of
the NG modes are calculated from the zero-frequency linear
response with the momentum operator of the NG modes. The
formulation has been tested in the cases of translational and
pairing rotational modes, showing high precision and efficiency.
Based on the collective path obtained, we apply this technique to
calculate the rotational moments of inertia.

In Figure 5, the calculated moments of inertias are presented.
With B3 = 0, the moments of inertia calculated with the ASCC
and with the cranking formula well agree with each other in the
asymptotic region of large R. The value is equal to the point-mass
approximation in which the point α particles are assumed at the
center of mass of each α particle. However, when non-zero B3
comes in, the cranking mass formula can no longer reproduce
this asymptotic value. Similar to the case of relative motion, as
the value of B3 increases, the asymptotic moments of inertia
decrease and deviate from the asymptotic value. In contrast, the
ASCC method provides the moments of inertia almost invariant
with respect to the B3 values. These results show again that,
compared with the cranking formula, the ASCC method gives
the collective inertial masses by properly taking into account the
time-odd effects.

4. SUMMARY AND DISCUSSION

Based on the ASCC theory, we presented a method to
determine the collective reaction path for the nuclear reaction
as the large amplitude collective motion. This method is
applied to the fusion/fission α+α↔8Be, using the BKN energy
density functional. In the three-dimensional coordinate-space
representation, the reaction path, the collective potential, as
well as the inertial masses are self-consistently calculated. We
compare the ASCC results with those of the CHF+cranking
method. Since the reaction system is very simple, there is no
significant difference between the calculated CHF reaction paths
with different constraint operators. Despite of this similarity in
the CHF states, the inertial masses calculated with the cranking

formula turn out to sensitively depend on the choice of the
constraint operator. The ASCC method is able to remove this
ambiguity in the inertial mass, by taking into account the residual
effects caused by the density fluctuation.

We add a term, which introduce the effective mass and time-
odd mean fields, to the standard BKN energy density functional,
to examine the effect of these terms on the inertial masses for
both the relative and rotational motions. In the presence of time-
odd term, the cranking formula fails to preserve the correct
asymptotic values, while the validity of ASCCmass is not affected
by the introduction of the effective mass. The time-odd mean-
fields properly recover the Galilean symmetry, leading to the
exact values of the asymptotic inertial mass. This is found to be
true in both relative and rotational motions. With this property,
we are quite confident that the ASCC method is promising to
be applied to the modern nuclear energy density functionals,
and make advanced microscopic theoretical analysis on various
nuclear reactionmodels. Another important issue is the inclusion
of the paring correlation, which may influence not only static
but also dynamical nuclear properties. In order to keep the
lowest-energy configuration during the collective motion, the
pairing interaction is known to play a key role [30]. Therefore,
we may expect significant impact on both the collective inertial
masses and the reaction paths. To study the above issues are our
future tasks.
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�L(E) =

Z 1

R0

k(R)dR�

Z 1

Rc

kc(R)dR, (42)

with

k2(R) = 2M(R)

(
E � V (R)�

�
L+ 1

2

�2

4mR2

)
,

k2c (R) = 4m

(
E �

4e2

R
�

�
L+ 1

2

�2

4mR2

)
, (43)

where k(R) and kc(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
kc(Rc) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E↵. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP

cr
(R) = 2

X

m,i

|h'm(R)|@/@R|'i(R)i|2

em(R)� ei(R)
, (44)

where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'µ(R)i = eµ(R))|'µ(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'i(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial

Nuclear phase shift
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shows the results of ASCC inertial masses, where the thicker
(red), medium thick (green) and thinner (blue) curves show
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and perturbative cranking inertial masses.

For both the systems in Fig. 4 and Fig. 5, as the
two nuclei get closer, the ASCC inertial masses show a
drastic increase, that is due to the increase of value dq/dR
in Eq. (6). For the reaction α+16O →20Ne, the non-
perturbative cranking mass shows similar pattern to that
of ASCC. The perturbative cranking mass for α+16O
→20Ne and both the cranking masses for 16O+16O →32S
are significantly different from that of ASCC except in
the asymptotic region. At the same time the perturbative
and non-perturbative cranking masses turn out to give
different values. The ambiguity of cranking masses has
been discussed in our previous work[31].

At large R, The reduced mass, µred = 3.2m for α+16O
→20Ne and µred = 8m for 16O+16O →32S are well repro-
duced by the ASCC method regardless of the existence
or the strength of the time-odd mean-field potential. A-
gain the two cranking formulae don’t show this proper-
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ty, both the perturbative and non-perturbative cranking
masses can only reproduce the asymptotic inertial mass-
es if the time-odd mean-field is absent, once the B3 get
a finite value, the result start to decrease and deviate
from the correct results. The inclusion of time-odd po-
tential enlarges the size of the nuclei, the touching points
between the two nuclei occurs at larger R, thus as B3

increases, the steep increase of ASCC results as well as
the oscillating patterns both shift towards the right.

B. Rotational inertia

Next we shift to another indispensable inertial mass in
the collective Hamiltonian, the rotational inertia. Unlike
the relative motion, rotational motion is a Nambu Gold-
stone mode. As mentioned in Sec. II A, the rotational
inertia is obtained by calculating the response strength at

α + 16O
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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FIG. 1. Density distribution on the x-z plane at four points on
the ASCC fusion reaction path of 16O + α → 20Ne: (a) R = 7.6 fm,
(b) R = 5.2 fm, (c) R = 4.2 fm, and (d) R = 3.8 fm corresponding
to the ground state of 20Ne.

without the spin-orbit interaction. To express the orbital wave
functions, the grid representation is employed, discretizing
the rectangular box into the three-dimensional (3D) Cartesian
mesh. The model space is set to be 12 × 12 × 18 fm3 for the
reaction 16O + α → 20Ne, 12 × 12 × 24 fm3 for the system
16O + 16O → 32S, and the mesh size is set to be 1.1 fm.

A. 16O + α → 20Ne

1. Collective path: 16O + α → ground state 20Ne

As a trivial solution of the ASCC equations, the well-
separated 16O and α both at the ground states can be the initial
state |ψ(q = 0)〉 to start the iterative procedure in Sec. II B.
Alternatively, the ground state of 20Ne can also be the initial
state for the iteration. Although it is not trivial, we find that
the same trajectory is produced starting from these two initial
states. The ASCC collective path smoothly connects the two
well-separated nuclei, 16O and α, to 20Ne at the ground state.
The ground state of 20Ne has a large quadrupole deformation.
The density profile is shown in Fig. 1(d). At the ground state,
the lowest physical RPA state is found to be the Kπ = 0−

octupole excitation, which has a sizable transition strength of
the operator Q̂30 defined in Eq. (11). Choosing this Kπ = 0−

octupole mode as the generators Q̂(q) and P̂ (q), a series of
states can be obtained by iteration, forming a collective fusion
path of 16O + α ↔ 20Ne. In the asymptotic region [Fig. 1(a)],
the generators smoothly change into those representing the
relative motion between 16O and α. Figure 1 shows density
distributions in the x-z plane (y = 0) at four different points
on the collective path. Figure 1(a) shows the well-separated
16O + α, Fig. 1(d) shows 20Ne at the ground state, and two
intermediate states are shown in Figs. 1(b) and 1(c).

Figure 2 shows the square of moving RPA eigenfrequency
ω2(q) of the generators with K = 0 as a function of relative
distance R. At the ground state of 20Ne (R = 3.8 fm), the parity
is a good quantum number and the RPA mode corresponds to
the negative parity π = −, leading to 〈ω|Q̂30|0〉 = 3017 fm3
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FIG. 2. Square of the moving RPA eigenfrequency ω2(q) on the
ASCC collective path of 16O + α → 20Ne, shown as a function of
relative distance R. At the ground state of 20Ne (R = 3.8 fm), this
mode corresponds to the Kπ = 0− octupole mode of excitation.

and 〈ω|Q̂20|0〉 = 0. At larger R, the octupole deformation
Q30 increases, then the parity is no longer conserved. The
transition strength 〈ω|Q̂20|0〉 becomes nonzero, then gradually
changes its character into the relative motion between 16O and
α. Since the curvature of the potential energy can be negative,
the value of ω2(q) can be negative, leading to imaginary ω(q).
Since the generators keep the K = 0 character all the way,
the states |ψ(q)〉 on the collective path are axially symmetric.
There appear five NG modes; namely, two rotational modes,
and the three translational modes. In an actual calculation,
these NG modes have finite energy due to the finite mesh
size in numerical calculation. At the ground state, we obtain
ω = 1.9 MeV for the rotational modes, ω = 3.5 MeV for the
translational modes along the x and y directions, and ω =
1.3 MeV for the translational mode along the z direction.

The next lowest K = 0 mode of excitation at the ground
state of 20Ne has the positive parity π = + and a transition
strength of operator of Q̂20, 〈ω|Q̂20|0〉 = 5.3 fm2. The RPA
frequency ω of this state is about 10 MeV, which is much higher
than the octupole mode and many other modes with K '= 0.
If we adopt this Kπ = 0+ mode as the starting generators,
we cannot construct the collective path connecting the ground
state and two separated nuclei. Generally speaking, the higher
the RPA eigenfrequency is, the more difficult it is to find a
solution of the moving mean-field equation (6).

Figure 3 shows the potential energy of the ASCC collective
path, Eq. (9), as a function of R. The dashed line shows the
asymptotic Coulomb energy on top of the summed ground-
state energies of α and 16O. The ground state of 20Ne is at
R = 3.8 fm, and the top of the Coulomb barrier is located
at R = 7.7 fm. To compare the ASCC collective path with
those obtained with conventional CHF calculations, we show
the octupole moment as a function of R in Fig. 4 for these
different collective paths. Two collective paths of the CHF
calculations are constructed with the constraining operators of
Q̂20 (dotted line) and Q̂30 (dashed line). From Fig. 4 we can
see all these three collective paths deviate from each other. In
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Summary
• Missing correlations in nuclear density 

functional
– Correlations associated with low-energy 

collective motion
• Re-quantize a specific mode of collective 

motion
– Derive the slow collective motion
– Quantize the collective Hamiltonian
– Applicable to nuclear structure and reaction

Recent progress: Talk by K. Wen on Dec. 12


