

## Many-body Green's function & DFTS

A pedagogical introduction and my own view of DFT

See, Guistino RevModPhys "Electron-phonon interactions from first principles" Hansen and McDonald "Theory of simple liquids"

#### Contents

A) ElectronsB) Classical particlesC) Electron and phonon

# Starting Hamiltonian

#### **Electrons & Nuclei**

Our target is the interacting electrons and/or nuclei



 $\widehat{H} = \widehat{T}_{\rho} + \widehat{T}_{n} + \widehat{U}_{ee} + \widehat{U}_{nn} + \widehat{U}_{en}$ 

Focusing on electrons  
Born-Oppenheimer  

$$\hat{H} = \hat{T}_n + \hat{U}_{nn} + \int dx \,\hat{\psi}^{\dagger}(x) \left[ -\frac{\hbar^2}{2m_e} \nabla^2 + \hat{V}_n(r) \right] \hat{\psi}(x) + \frac{1}{2} \int dx dx' v(r, r') \,\hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(x') \hat{\psi}(x') \hat{\psi}(x)$$

$$\hat{\psi}(x) = \sum_{i} \varphi_i^{\mathrm{KS}}(x) \hat{a}_i$$

Kohn-Sham orbitals (with modification)



#### **Green's functions**

$$G(xt, x't') = -\frac{i}{\hbar} \langle 0 | \hat{T} [\psi(xt)\psi^{\dagger}(x't')] | 0 \rangle$$
  
$$G_2(121'2') = -\left(\frac{i}{\hbar}\right)^2 \langle 0 | \hat{T} [\psi(1)\psi(2)\psi^{\dagger}(2')\psi^{\dagger}(1')] | 0 \rangle$$

$$\psi(xt) = e^{i\hbar^{-1}(T+V_1+V_2)t}\psi(x)e^{-i\hbar^{-1}(T+V_1+V_2)t}$$

 $V_1 = \int n(x)\varphi(x)dx$  External potential coupled to density  $\langle n(x) \rangle = -i\hbar G(x,x)$ 

 $V_2 = \frac{\lambda}{2} \int v(x, x') n(x) n(x') dx x'$  Coupling constant

### **Spectral function**

$$2\pi A_k(\omega) = \left| \operatorname{Im} \int dx x' \, \varphi_k^*(x) \varphi_k(x') G(x, x', \omega) \right|$$



### Lehman representation

$$G(x, x', \omega) = \sum \frac{g_k(x)g_k^*(x')}{\omega - (E_k^{N+1} - E_0^N) + i\eta} + \sum \frac{f_k(x)f_k^*(x')}{\omega + (E_k^{N-1} - E_0^N) - i\eta}$$

"orbital"

$$f_k(x) = \left\langle \Psi_k^{N-1} \middle| \hat{\psi}(x) \middle| \Psi_0^N \right\rangle$$
$$g_k(x) = \left\langle \Psi_0^N \middle| \hat{\psi}(x) \middle| \Psi_k^{N+1} \right\rangle$$

#### **One-body Green's function**

$$G(xt, x't') = -\frac{\iota}{\hbar} \langle 0 | \hat{T} [ \psi(xt) \psi^{\dagger}(x't') ] | 0 \rangle$$

Move under a given external potential

$$\begin{bmatrix} i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m_e} \nabla^2 - \varphi(rt) \end{bmatrix} G(xt, x't') = \delta(xt, x't')$$
  
$$-\frac{i}{\hbar} \int dx'' dt'' v(r, r'') \langle 0 | \hat{T} [n(x''t'')\psi(xt)\psi^{\dagger}(x't') ] | 0 \rangle$$
  
Hierarchical equation!  
$$\equiv L(1323^+) = -G_2 + G * G$$

 $\left[\hat{\psi}(\boldsymbol{x}_1), \hat{H}\right] = h(\boldsymbol{r}_1)\hat{\psi}(\boldsymbol{x}_1) + \int d\boldsymbol{x}_2 \,\hat{\psi}^{\dagger}(\boldsymbol{x}_2) v(\boldsymbol{r}_1, \boldsymbol{r}_2)\hat{\psi}(\boldsymbol{x}_2)\psi(\boldsymbol{x}_1)$ 

 $(\mathbf{r}_2, \mathbf{t}_2)$ environment

#### **Functional derivative method**

$$L(2313^{+}) = \frac{\delta}{\delta\varphi(3)}G(21)$$
• Kato, Kobayashi, Namiki  
• Schwinger  
• Hedin, Lundquvist

cf 
$$\frac{\delta n(1)}{\delta \varphi(2)}\Big|_{\varphi \to 0} = \chi(12) = -iL(121^+2^+)$$

$$\int dx'' dt'' \left[ i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m_e} \nabla^2 - \varphi(rt) - i\hbar v(rt, r''t'') \frac{\delta}{\delta \varphi(r''t'')} \right] G(x''t'', x't') = \delta(xt, x't')$$

#### Further step: Introduction of self-energy

$$\int dx'' dt'' \left[ i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m_e} \nabla^2 - \varphi(rt) - i\hbar v(rt, r''t'') \frac{\delta}{\delta \varphi(r''t'')} \right] G(x''t'', x't') = \delta(xt, x't')$$

$$\int dx'' dt'' \left[ i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m_e} \nabla^2 - \varphi(xt) - \Sigma(xt, x''t'') \right] G(x''t'', x't') = \delta(xt, x't')$$

$$Self-energy$$

$$\frac{\delta}{\delta\varphi(r't')}G(xt,x''t'') \rightarrow \frac{\delta}{\delta\varphi(3)}G(12)$$

$$= -\int d45 G(14) \frac{\delta G^{-1}(45)}{\delta\varphi(3)}G(52)$$

$$= -\int d456 G(14) \frac{\delta G^{-1}(45)}{\delta V_{\text{tot}}(6)} \frac{\delta V_{\text{tot}}(6)}{\delta \varphi(3)}G(52)$$

$$= -\int d456 G(14) \frac{\delta G^{-1}(45)}{\delta V_{\text{tot}}(6)} \frac{\delta V_{\text{tot}}(6)}{\delta\varphi(3)}G(52)$$

$$\equiv W(16^{+})$$

$$-\int d3 v(13) \frac{\delta}{\delta\varphi(3)}G(12^{+}) = \int d456 G(14)\Gamma(456) \left[\int d3 v(13)\epsilon^{-1}(63)\right]G(52)$$

$$\equiv -i\hbar^{-1}\Sigma(15)$$

## Equation of motion (summary)

$$\int d3 \left[ i\hbar \frac{\partial}{\partial t_1} + \frac{\hbar^2}{2m_e} \nabla^2(1) - \varphi(1) - \Sigma(13) \right] G(32) = \delta(12)$$
$$\Sigma(12) = i\hbar \int d34 G(13)\Gamma(324)W(41^+)$$
$$\Gamma(123) = \delta(12)\delta(13) + \int d4567 \frac{\delta\Sigma(12)}{\delta G(45)} G(46)G(75)\Gamma(673)$$
$$W(12) = \int d3 \,\epsilon^{-1}(13)\nu(32)$$

# Screened Coulomb and<br/>polarization $\delta \varphi(1)$ <br/> $\delta V_{-}(2) = \epsilon(12)$

$$W(12) = \int d3 \,\epsilon^{-1}(13) v(32)$$
  
=  $v(12) + \int d34 \,v(13) \frac{\delta \langle \hat{n}(3) \rangle}{\delta V_{\text{tot}}(4)} W(42)$ 

*P*(34)

Interaction with correlated density fluctuation

#### **Relation with density correlation**

 $iD(12) \equiv \langle \Psi_0 | T[\tilde{n}_{\rm H}(1)\tilde{n}_{\rm H}(2)] | \Psi_0 \rangle \qquad \tilde{n}_{\rm H} \equiv \hat{n} - \langle \hat{n} \rangle$  $\hbar P(12) = D(12)$ 

Equation of motion (summary)  

$$\int d3 \left[ i\hbar \frac{\partial}{\partial t_1} + \frac{\hbar^2}{2m_e} \nabla^2(1) - \varphi(1) - \Sigma(13) \right] G(32) = \delta(12)$$

$$\Sigma(12) = i\hbar \int d34 G(13) \Gamma(324) W(41^+)$$

$$\Gamma(123) = \delta(12)\delta(13) + \int d4567 \frac{\delta\Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(673)$$

$$W(12) = v(12) + \int d34 v(13) P(34) W(42)$$

$$P(12) = -i\hbar \int d34 G(13) G(41^+) \Gamma(342)$$



# Hedin's equation







# **GW** approximation

$$\Sigma_{\rm xc}(12) = i\hbar \int d34 \, G(13)\Gamma(324) W(41^{+}) \quad \text{Effective potential (triplet)}$$
$$W^{\rm eff}(1^{+}23) = \int d4 \, \Gamma(324) W(41^{+})$$



## **GW** approximation

$$\Sigma_{\rm xc}(12) = i\hbar \int d34 \, G(13) \Gamma(324) W(41^{+}) \quad \text{Effective potential (triplet)}$$

$$W^{\rm eff}(1^{+}23) = \int d4 \, \Gamma(324) W(41^{+})$$

$$\Sigma_{\rm xc}(12) = iG(12) W(1^{+}2)$$

$$\int d3 \left[ i\hbar \frac{\partial}{\partial t_1} - h(1) - iG(13)W(1+3) \right] G(32) = \delta(12)$$

 $G(12) \rightarrow G_0(12)$  then W(12) can be recognized as effective interaction between Kohn-Sham states



# **GW** approximation

$$\Sigma_{\rm xc}(12) = iG(12)W(1^+2)$$

$$= iG(12) \left( v(12) + \int d4v(14)\chi(43)v(32) \right)$$

screening due to classical response

If completely time-independent,

 $\Sigma_{\rm xc}(xx') = -n(rr')W(xx')$ 

Similar in structure to hybrid DFT

## Modeling functional

 $\Sigma_c(r,r',t-t') \rightarrow \mathrm{i}G(r,r',t-t')[W(r,r',t-t')-v(r,r')]$ 

 $G_0W_0$  approximation

## **Modeling functional**

$$E[G] = \frac{1}{2} \int d1 \lim_{2 \to 1} \left[ \hbar \frac{\partial}{\partial t_1} + i \frac{\hbar^2}{2m_e} \nabla^2(1) - iV_{\text{tot}}(1) \right] G(12)$$

$$= E_{\text{HF}}[G] + \frac{1}{2} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \text{Tr}[G(\mu + i\omega)\Sigma_c(\mu + i\omega)]$$

$$\rightarrow E_{\text{HF}}[\varphi^{\text{KS}}] + \frac{1}{2} \text{Tr}[\nu G^{\text{KS}}G^{\text{KS}} + \log(1 - \nu G^{\text{KS}}G^{\text{KS}})]$$
RPA Bohm-Pines (1953)

Non-interacting system (HF)  $\rightarrow$  lowest order w.r.t.  $\Gamma$ 

## **Modeling functional**

$$\chi(12) = -iG(12)G(21^{+}) - i\int d345G(13)G(41^{+}) \left(\delta(34)v(35) + \frac{\delta\Sigma_{\rm xc}(34)}{\delta n(5)}\right) \chi(52)$$
  

$$W_0(12) = v(12) + \int d4v(14)\chi(43)v(32) \rightarrow \delta(34)f_{\rm xc}(35)$$

$$E_c[\varphi^{\mathrm{KS}}] = \frac{1}{2} \mathrm{Tr}[\nu G^{\mathrm{KS}} G^{\mathrm{KS}} + \log(1 - \nu G^{\mathrm{KS}} G^{\mathrm{KS}})]$$

# Welcome to the classical world!

$$\Xi[\phi] = \sum_{N=0}^{\infty} \int \frac{1}{N!} \exp[-\beta V_N] \left( \prod_{i=1}^{N} z \exp[-\beta \phi(r_i)] \right) \qquad z \equiv \frac{\exp[\beta \mu]}{\Lambda^3} : \text{activity}$$
$$V_N(r_1, \cdots, r_N) = \frac{1}{2} \sum v(r_i, r_j) \quad \text{Lennard Johns potential } v(r) = Ar^{-12} - Br^{-6}$$

i≠i

#### Potential versus density: $\Omega$ versus $\mathcal{F}$

$$\Omega[\psi] = -k_B T \log(\Xi) \iff \Omega[\psi[\rho]] = \mathcal{F}[\rho] + \int \psi[\rho](1)\rho(1)d1$$
  
 $\psi$ :Potential corresponding to the equilibrium density  $\rho$ 

$$\Lambda^{3} z^{*}(r) = \exp[\beta(\mu - \phi(r))]: \text{ local activity}$$
  
$$\beta(\mu - \phi(r)) \equiv \beta\psi(r) \equiv \overline{\psi}(r): \text{ dimensionless potential}$$

#### **Intrinsic free energy** $\mathcal{F} = \mathcal{F}^{\mathrm{id}} + \mathcal{F}^{\mathrm{ex}}$

$$\frac{\delta\beta\mathcal{F}^{\rm id}}{\delta\rho^{(1)}(r)} = \ln[\Lambda^3\rho^{(1)}(r)]: \text{ ideal gas}$$

#### Quantity of central importance

 $\rho^{(n)}(1, \dots, n) = \frac{z^*(1) \cdots z^*(n)}{\Xi} \frac{\delta^n \Xi}{\delta z^*(1) \cdots \delta z^*(n)}$  $g^{(n)}(1, \dots, n) = \frac{\rho^{(n)}(1, \dots, n)}{\rho^{(1)}(1) \cdots \rho^{(1)}(n)}$ 

#### Potential versus density: $\Omega$ versus $\mathcal{F}$

|                       | Functional of $\psi$ (external potential)                                                                                                         | Functional of $ ho$ (equilibrium density)                                                                                              |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| energy                | Grand potential $\Omega$                                                                                                                          | Intrinsic free energy $\mathcal{F} = \mathcal{F}^{id} + \mathcal{F}^{ex}$                                                              |  |
| equilibrium condition | $\frac{\delta\Omega}{\delta\psi(r)} = -\rho^{(1)}(r)$                                                                                             | $\frac{\delta \mathcal{F}}{\delta \rho^{(1)}(r)} = \psi(r)$                                                                            |  |
| Correlation fn.       | $\frac{\delta^n \beta \Omega}{\delta \bar{\psi}(1) \cdots \delta \bar{\psi}(n)} = -H^{(n)}(1, \cdots, n)$                                         | $\frac{\delta^n \beta \mathcal{F}^{\text{ex}}[\rho^{(1)}]}{\delta \rho^{(1)}(1) \cdots \delta \rho^{(1)}(n)} = -c^{(n)}(1, \cdots, n)$ |  |
| 1 <sup>st</sup> order | $H^{(1)}(r) = \rho^{(1)}(r)$                                                                                                                      | $c^{(1)}(\mathbf{r}) = \ln[\Lambda^3 \rho^{(1)}(r)] - \bar{\psi}(r)$                                                                   |  |
| interrelation         | $-\bar{\psi}(r) + \ln[\Lambda^3 H^{(1)}(r)] = c^{(1)}(r)$                                                                                         |                                                                                                                                        |  |
| 2 <sup>nd</sup> order | $H^{(2)}(1,2) = \frac{\delta \rho^{(1)}(1)}{\delta \bar{\psi}(2)}$                                                                                | $\frac{\delta\bar{\psi}(1)}{\delta\rho^{(1)}(2)} = \frac{\delta(1-2)}{\rho^{(1)}(1)} - c^{(2)}(1,2)$                                   |  |
| OZ eq.                | $h^{(2)}(1,2) = c^{(2)}(1,2) + \int c^{(2)}(1,3)\rho^{(1)}(3)h^{(2)}(3,2)d(3)$                                                                    |                                                                                                                                        |  |
|                       | $H^{(n)}(1, \dots, n) \equiv \langle \left(\hat{\rho}(1) - \rho^{(1)}(1)\right) \cdots$ $H^{(2)}(1, 2) = \rho^{(1)}(1)\rho^{(1)}(2)h^{(2)}(1, 2)$ | $ \cdot \left( \hat{\rho}(n) - \rho^{(1)}(n) \right) $<br>+ $\rho^{(1)}(1)\delta(1-2) $                                                |  |

#### Hierarchical structure

28

| Hierarchical equation for $H^{(n)}$                |                    | Hierarchical equation for $c^{(n)}$                |                   |
|----------------------------------------------------|--------------------|----------------------------------------------------|-------------------|
| $\frac{\delta H^{(2)}(12)}{\delta \bar{\psi}(3)}$  | $= -H^{(3)}(123)$  | $\frac{\delta c^{(2)}(12)}{\delta \rho^{(1)}(3)}$  | $= -c^{(3)}(123)$ |
| $\frac{\delta H^{(3)}(123)}{\delta \bar{\psi}(4)}$ | $= -H^{(4)}(1234)$ | $\frac{\delta c^{(3)}(123)}{\delta \rho^{(1)}(4)}$ | $=-c^{(4)}(1234)$ |

Kirkwood superposition approximation (valid for low density)

 $g^{(3)}(123) = g(12)g(23)g(31) \left[ 1 - h(12)h(23)h(31) - \rho \int d4 h(14)h(24)h(34) + \cdots \right]$ 

Rewrite this using  $\rho^{(n)}(1, \dots, n)$ 

|                                                   | Hierarchical equation for $ ho^{(n)}$                                                                          |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $\frac{\delta\rho^{(1)}(1)}{\delta\bar\psi(2)}$   | $= \rho^{(2)}(12) - \rho^{(1)}(1)\rho^{(2)}(2) + \delta_{12}\rho^{(1)}(1)$                                     |
| $\frac{\delta\rho^{(2)}(12)}{\delta\bar\psi(3)}$  | $= (\delta_{13} + \delta_{23})\rho^{(2)}(12) - \rho^{(1)}(3)\rho^{(2)}(12) + \rho^{(3)}(123)$                  |
| $\frac{\delta\rho^{(3)}(123)}{\delta\bar\psi(4)}$ | $= (\delta_{14} + \delta_{24} + \delta_{34})\rho^{(3)}(123) + \rho^{(1)}(4)\rho^{(3)}(123) + \rho^{(4)}(1234)$ |

After truncating the hierarchy, one can approach the target system either via

1. adiabatic application of external potential  $ar{\psi}$ 

or

2. Taylor expansion around  $\bar{\psi}_0$ 



# One can alternatively rewrite the hierarchy using the $\lambda$ -derivative

$$\frac{\partial}{\partial \lambda} \rho^{(m)}(1, \dots, m) = \rho_{\lambda}^{(m)}(1, \dots, m)$$

Functional Renormalization Group (FRG) equation

$$\left(\partial_{\lambda} + \sum_{i,j} \beta v(i,j)\right) \rho_{\lambda}^{(m)}(1, \dots, m)$$

$$= -\frac{1}{2} \beta \int v(a,b) \left[\rho_{\lambda}^{(m+2)}(1, \dots, m, a, b)\right] d(ab) + \int \rho_{\lambda}^{(m+1)}(1, \dots, m, a) \left[\psi(a) - \sum_{i} \beta v(a, i)\right] d(a)$$

$$- \rho_{\lambda}^{(m)}(1, \dots, m) \left[\int \rho(a) \psi(a) d(a) - \sum_{i} \psi(i) - \frac{1}{2} \beta \int v(a, b) \rho_{\lambda}^{(2)}(a, b) d(ab)\right]$$

Yokota *et al.* (2021)

#### Construction of the functional





#### Percus test charge method for <u>distinguishable</u> particles



$$\rho^{(1)}(r) = \rho_0 \to \rho_0 + \delta \rho(r)$$

$$\delta \rho(r) = \rho_0 h^{(2)}[\rho_0](r, 0)$$

Modified by the pair correlation

#### Percus test charge method for <u>distinguishable</u> particles



The Kirkwood superposition approximation (KSA)  $g_{123} = g_{12}g_{23}g_{31}$ equivalent to the (three-particle) direct correlation  $c^{(3)}$   $c^{(3)}(1,2,3) = f(\rho, c^{(2)}, h^{(2)})$ : a simple sum product  $\frac{\delta^{3}\beta \mathcal{F}^{\text{ex}}[\rho^{(1)}]}{\delta \rho^{(1)}(1)\delta \rho^{(1)}(2)\delta \rho^{(1)}(3)} = -c^{(3)}(1,2,3)$ 

In principle, one can get  $c^{(n)}(1, \dots, n)$  by fixing n-2 particles.

 $\mathcal{F}^{\text{ex}}\left[\rho_{0}^{(1)} + \delta\rho^{(1)}\right]$  (free energy functional) can be constructed

#### Machine learning of the functional System of interest Weighted density approximation Reference (MC or MD simulation)

$$\bar{\rho}_i(r) = \int w_i(r-r')\rho^{(1)}(r')dr'$$
$$\mathcal{F}^{\text{ex}}[\rho] = \int f[\{\bar{\rho}_i(r)\}]\rho^{(1)}(r)dr$$

Density near the field point r

Local functional

#### Fundamental measure theory

36

"Exact" form for f's is known for hard spheres

Rosenfeld PRL (1989)

# Back to quantum world!

In most cases, (electrons and phonons)  $\neq$  (electrons and nuclei) Harmonic approximation +  $\alpha$ 

#### **Density correlations**

$$D_{\rm e}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm e}(1)\delta\hat{n}_{\rm e}(2) \rangle$$
$$D_{\rm n}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm n}(1)\delta\hat{n}_{\rm n}(2) \rangle$$

#### **Density correlations**

$$D_{\rm e}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm e}(1)\delta\hat{n}_{\rm e}(2) \rangle$$

 $D_{\rm n}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm n}(1)\delta\hat{n}_{\rm n}(2) \rangle$ 



 $\kappa$ 's nucleus at p-th cell

$$\hat{n}_{\rm n}(r) = \sum_{\kappa p} Z_{\kappa} \delta \left( r - \tau^0_{\kappa p} - \Delta \hat{\tau}_{\kappa p} \right)$$

#### **Density correlations**

$$D_{\rm e}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm e}(1)\delta\hat{n}_{\rm e}(2) \rangle$$

 $D_{\rm n}(12) = -i\hbar^{-1} \langle \hat{T}\delta\hat{n}_{\rm n}(1)\delta\hat{n}_{\rm n}(2) \rangle$ 



 $\kappa$ 's nucleus at p-th cell

# **Displacement vector** $\hat{n}_n(r) = \sum_{\kappa p} Z_{\kappa} \delta(r - \tau_{\kappa p}^0 - \Delta \hat{\tau}_{\kappa p})$

$$\hat{n}_{\rm n}(r) \simeq n_{\rm n}^0(r) + \sum_{\kappa p} Z_{\kappa} \Delta \hat{\tau}_{\kappa p} \cdot \nabla \delta \left( r - \tau_{\kappa p}^0 \right) - \frac{1}{2} \sum_{\kappa p} Z_{\kappa} \Delta \hat{\tau}_{\kappa p} \cdot \nabla \nabla \delta \left( r - \tau_{\kappa p}^0 \right) \cdot \Delta \hat{\tau}_{\kappa p}$$

$$D_{\rm n}(12) = \sum_{\kappa\alpha p,\kappa'\alpha'p'} Z_{\kappa} \nabla_{1,\alpha} \delta(r_1 - \tau^0_{\kappa p}) D_{\kappa\alpha p,\kappa'\alpha'p'}(t_1 t_2) Z_{\kappa'} \nabla_{1,\alpha'} \delta(r_2 - \tau^0_{\kappa'p'})$$

 $D_{\kappa\alpha p,\kappa'\alpha'p'}(t_1t_2) = -i\hbar^{-1} \left\langle \widehat{T} \Delta \widehat{\tau}_{\kappa\alpha p}(t) \Delta \widehat{\tau}_{\kappa'\alpha'p'}(t') \right\rangle$ 

Correlation of displacements

#### Screened interactions of electrons modified by phonon excitation $W(12) = v(12) + \int d34 \, v(13) P(34) W(42)$ $W_{\rm e}(12) = \int d34\epsilon^{-1}(13)v(32)$ $W_{\rm e}(12) = \int a34\epsilon^{-1}(13)\nu(32) \frac{\delta\langle \hat{n}_{\rm n}(1)\rangle}{\delta\varphi(2)} = -i\hbar^{-1}\langle \hat{T}\delta\hat{n}_{\rm tot}(1)\delta\hat{n}_{\rm n}(2)\rangle$ $W_{\rm ph}(12) = \int d34W_{\rm e}(13)D(34)W_{\rm e}(24) \xrightarrow{\delta\langle \hat{n}_{\rm n}(1)\rangle}{\mathcal{K}} = -i\hbar^{-1}\langle \hat{T}\delta\hat{n}_{\rm tot}(1)\delta\hat{n}_{\rm n}(2)\rangle$ Kato, Kobayashi, Namiki $W = W_{\rm e} + W_{\rm ph}$ Hedin Lundqvist ('69)

Screened interactions of electrons modified by phonon excitation  $W(12) = v(12) + \int d34 \, v(13) P(34) W(42)$  $W_{\rm e}(12) = \int d34\epsilon^{-1}(13)\nu(32)$   $W_{\rm ph}(12) = \int d34W_{\rm e}(13)D(34)W_{\rm e}(24) \xrightarrow{\delta\langle \hat{n}_{\rm n}(1)\rangle \\ \delta\varphi(2)} = -i\hbar^{-1}\langle \hat{T}\delta\hat{n}_{\rm tot}(1)\delta\hat{n}_{\rm n}(2)\rangle$ Kato, Kobayashi, Namiki  $W = W_{
m e} + W_{
m ph}$  Hedin Lundqvist ('69) Coulomb interaction  $W_{\rm ph}(12) = \sum_{\kappa\alpha p} \int d34 \,\epsilon_{\rm e}^{-1}(13) \nabla_{3,\alpha} v \left(r_3 - \tau_{\kappa p}^0\right) D_{\kappa\alpha p,\kappa' \alpha' p'}(t_1 t_2) \epsilon_{\rm e}^{-1}(24) \nabla_{4,\alpha} v \left(r_4 - \tau_{\kappa' p'}^0\right)$  $\kappa' \alpha' p'$ 

Screened interactions of electrons  
modified by phonon excitation  
$$W(12) = v(12) + \int d34 v(13)P(34)W(42)$$
$$W_{e}(12) = \int d34e^{-1}(13)v(32)$$
$$W_{ph}(12) = \int d34W_{e}(13)D(34)W_{e}(24)$$
$$W = W_{e} + W_{ph}$$
Hedin Lundqvist ('69)
$$W = W_{e} + W_{ph}$$
Hedin Lundqvist ('69)
$$W_{ph}(12) = \sum_{\substack{\kappa \alpha p \\ \kappa' \alpha' p'}} \int d34 \epsilon_{e}^{-1}(13)\nabla_{3,\alpha}v(r_{3} - \tau_{\kappa p}^{0})D_{\kappa \alpha p,\kappa' \alpha' p'}(t_{1}t_{2})\epsilon_{e}^{-1}(24)\nabla_{4,\alpha}v(r_{4} - \tau_{\kappa' p'}^{0})$$

Equation of motion (EOM) of D  $\leftarrow$  EOM of  $\Delta \hat{\tau}$  Add external potential as  $\sum_{\kappa p} F_{\kappa p} \cdot \Delta \hat{\tau}_{\kappa p}$ 

$$M_{\kappa} \partial^{2} \Delta \hat{\tau}_{\kappa p} / \partial t^{2} = -M_{\kappa} \hbar^{-2} \left[ \left[ \Delta \hat{\tau}_{\kappa p}, \widehat{H} \right] \widehat{H} \right]$$

# Screened interactions of electrons modified by phonons

# Screened interactions of electrons modified by phonons

$$= -\sum_{\kappa\alpha p,\kappa'\alpha'p'} \int dt'' \underline{\Pi_{\kappa\alpha p,\kappa'\alpha'p'}(tt'')} D_{\kappa\alpha p,\kappa'\alpha'p'}(t''t') \quad \longleftarrow \text{ When } D \text{ is small and harmonic}$$

# Screened interactions of electrons modified by phonons

$$= -\sum_{\kappa\alpha p,\kappa'\alpha'p'} \int dt'' \frac{\prod_{\kappa\alpha p,\kappa'\alpha'p'} (tt'') D_{\kappa\alpha p,\kappa'\alpha'p'} (t''t')}{\sqrt{\frac{1}{1}}} \quad \text{When } D \text{ is small and harmonic}}$$

 $\int dr dr' \left[ \delta_{\kappa p,\kappa'p'} \delta(tt') \nabla_{\alpha} \langle \hat{n}(r) \rangle v(r,r') Z_{\kappa'} \nabla_{\alpha'}' \delta\left(r' - \tau_{\kappa'p'}^{0}\right) + Z_{\kappa} \nabla_{\alpha} \delta\left(r - \tau_{\kappa p}^{0}\right) W_{\rm e}(rt,r't') Z_{\kappa'} \nabla_{\alpha'}' \delta\left(r' - \tau_{\kappa'p'}^{0}\right) \right]$ 

 $= \Pi^{A} \delta(tt') + \Pi^{NA}(tt')$  Adiabatic and non-adiabatic terms

#### Inclusion of phonon excitation



#### What is D? Relation to "phonon"

$$\begin{aligned} \Delta \tau_{\kappa \alpha p} &= \sqrt{\frac{M_0}{N_p M_\kappa}} \sum_{q\nu} e^{iq \cdot R_p} e_{\kappa \alpha \nu}(q) \sqrt{\frac{\hbar}{2M_0 \omega_{q\nu}}} \left( \hat{a}_{q\nu} + \hat{a}_{q\nu}^{\dagger} \right) \\ D_{\kappa \alpha p, \kappa' \alpha' p'}(tt') &\to D_{q\nu, q'\nu'}(tt') = D_{q\nu, q'\nu'}^{A}(tt') + D_{q\nu, q'\nu'}^{NA}(tt') \\ D_{q\nu, q'\nu'}(tt') &= -i \langle \hat{T} \left[ \hat{a}_{q\nu}^{\dagger}(t) \hat{a}_{q\nu}(t') + \hat{a}_{-q\nu}(t) \hat{a}_{-q\nu}^{\dagger}(t') \right] \rangle \, \delta_{\nu\nu'} \end{aligned}$$

 $D(\omega) = D^{A} + D^{A}\Pi^{NA}(\omega)D(\omega)$  Formally (when homogeneous in time)

#### What is D? Relation to "phonon"

$$\begin{aligned} \Delta \tau_{\kappa \alpha p} &= \sqrt{\frac{M_0}{N_p M_\kappa}} \sum_{q\nu} e^{iq \cdot R_p} e_{\kappa \alpha \nu}(q) \sqrt{\frac{\hbar}{2M_0 \omega_{q\nu}}} \left( \hat{a}_{q\nu} + \hat{a}_{q\nu}^{\dagger} \right) \\ D_{\kappa \alpha p, \kappa' \alpha' p'}(tt') &\to D_{q\nu, q'\nu'}(tt') = D_{q\nu, q'\nu'}^{A}(tt') + D_{q\nu, q'\nu'}^{NA}(tt') \\ D_{q\nu, q'\nu'}(tt') &= -i \langle \hat{T} \left[ \hat{a}_{q\nu}^{\dagger}(t) \hat{a}_{q\nu}(t') + \hat{a}_{-q\nu}(t) \hat{a}_{-q\nu}^{\dagger}(t') \right] \rangle \, \delta_{\nu\nu'} \end{aligned}$$

 $D(\omega) = D^{A} + D^{A}\Pi^{NA}(\omega)D(\omega)$  Formally (when homogeneous in time)

$$\Pi_{q\nu,q'\nu'}^{\mathrm{NA}}(\omega) = \int dr dr' \left[ \int dr'' \,\epsilon_{\mathrm{e}}(r,r''\omega) g_{q\nu}^{\mathrm{b}}(r'') \right] P_{\mathrm{e}}(r,r'\omega) \left[ \int dr''' \,\epsilon_{\mathrm{e}}^{-1}(r',r'''\omega) g_{q\nu}^{\mathrm{b}*}(r'') \right] - \int dr dr' q_{\mathrm{q}\nu}^{\mathrm{b}}(r) P_{\mathrm{e}}(r,r'0) q_{\mathrm{q}\nu}^{\mathrm{b}}(r')$$

 $q_{q\nu}^{\rm b}(r) \equiv \Delta_{q\nu} V^{\rm en}(r)$  $V^{\rm en}(r) \equiv \sum_{\kappa pT} V_{\kappa} (r - \tau_{\kappa p} - T) \quad T: \text{Lattice vector (periodic systems)}$ 

#### Summary

- It is not easy to simulate a matter based on the many-body theory.
- The theory, however, gives a hint for constructing a density functional.
- Different methods have been developed in different fields, and in this context, exchanging the idea will induce a breakthrough.